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Trilinos Tutorial

Marzio Sala, Michael Heroux, David Day
Computational Mathematics and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Abstract

The Trilinos Project is an effort to facilitate the design, development, integration and
ongoing support of mathematical software libraries. The goal of the Trilinos Project is to
develop parallel solver algorithms and libraries within an object-oriented software frame-
work for the solution of large-scale, complex multiphysics engineering and scientific ap-
plications. The emphasis is on developing robust, scalable algorithms in a software frame-
work, using abstract interfaces for flexible interoperability of components while providing
a full-featured set of concrete classes that implement all the abstract interfaces.

This document introduces the use of Trilinos, version 4.0. The presented material
includes, among others, the definition of distributed matrices and vectors with Epetra,
the iterative solution of linear systems with AztecOO, incomplete factorizations with IF-
PACK, multilevel and domain decomposition preconditioners with ML, direct solution of
linear system with Amesos, and iterative solution of nonlinear systems with NOX.

The tutorial is a self-contained introduction, intented to help computational scientists
effectively apply the appropriate Trilinos package to their applications. Basic examples
are presented that are fit to be imitated.

This document is a companion to the Trilinos User’s Guide [20] and Trilinos Develop-
ment Guides [21, 22]. Please note that the documentation included in each of the Trilinos’
packages is of fundamental importance.
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1 Introduction

1.1 Getting Started
The Trilinos framework uses a two level software structure that connects a system of pack-
ages. A Trilinos package is an integral unit, usually developed to solve a specific task, by a
(relatively) small group of experts. Packages exist beneath the Trilinos top level, which pro-
vides a common look-and-feel. Each package has its own structure, documentation and set
of examples, and it is possibly available independently of Trilinos. However, each package is
even more valuable when combined with other Trilinos packages.

Trilinos is a large software project, and currently about twenty packages are included. The
entire set of packages covers a wide range of numerical methods for large scale computing, as
well as a large set of utilities to improve the development of software for scientific computing.

Clearly, a full understanding all the functionalities of the Trilinos packages requires time.
Each package offers sophisticated features, difficult to “unleash” at a first sight. Besides that, a
detailed description of each Trilinos package is beyond the scope of this document. For these
reasons, the goal of this tutorial is to ensure that users have the background to make good use
of the extensive documentation contained in each package.

We will describe the following subset of the Trilinos packages.- Epetra. The package defines the basic classes for distributed matrices and vectors,
linear operators and linear problems. Epetra classes are the common language spoken
by all the Trilinos packages (even if some packages can “speak” other languages). Each
Trilinos package accepts as input Epetra objects. This allows powerful combinations
among the various Trilinos functionalities.- Triutils. This is a collection of utilities that are useful in software development. Here,
we present a command line parser and a matrix generator, that are used throughout this
document to define example matrices.- AztecOO. This is a linear solver package based on preconditioned Krylov methods.
Aztec users will find that AztecOO supports all the Aztec interfaces and functionality,
and also provides significant new functionality.- IFPACK. The package performs various incomplete factorizations, and is here used
with AztecOO.- Teuchos. This is a collection of classes that can be essential for advanced code devel-
opment.- ML. The algebraic multilevel and domain decomposition preconditioner package pro-
vides scalable preconditioning capabilities for a variety of problems. It is here used as a
preconditioner for AztecOO solvers.
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- Amesos. The package provides a common interface to certain sparse direct linear
solvers (generally available outside the Trilinos framework), both sequential and par-
allel.- NOX. This is a collection of nonlinear solvers, designed to be easily integrated into an
application and used with many different linear solvers.- Didasko. This package contains all the examples reported in this tutorial. The sources
of the examples can be found in the subdirectory
<your-trilinos-home>/packages/didasko/examples.

Table 1 gives a partial overview of what can be accomplished using Trilinos.

Remark 1. As already pointed out, Epetra objects are meant to be the “common language”
spoken by all the Trilinos packages, and are a natural starting point. For new users, Chapters
2-4 are a prerequisite to the later chapters. Chapters 5 is not essential to understand Trilinos,
but the functionalities there presented are used in this document as a starting point for many
examples. One of the classes described in Chapter 8, the Teuchos::ParameterList, is later
used in Chapters 9 and 10. Chapter 6 should be read before Chapters 7 and 9 (even if both
IFPACK and ML can be compiled and run without AztecOO).

The only prerequisites assumed in this tutorial are some familiarities with numerical meth-
ods for PDEs, and with iterative linear and nonlinear solvers. Although not strictly necessary,
the reader is assumed to have some familiarity with distributed memory computing and, to a
lesser extent, with MPI1.

Note that this tutorial is not a substitute for individual packages’ documentation. Also,
for an overview of all the Trilinos packages, the Trilinos philosophy, and a description of the
packages provided by Trilinos, the reader is referred to [17]. Developers should also consider
the Trilinos Developers’ Guide, which addresses many topics, including the development tools
used by Trilinos’ developers, and a description of how to include a new package2.

1.2 Installation
To obtain Trilinos, please follow the instructions at the web site

http://software.sandia.gov/Trilinos

1Although almost no explicit MPI instructions are required in a Trilinos code, the reader should be aware of
the basic concepts of message passing, like the definition of a communicator.

2Trilinos provides a variety of services to a developer wanting to integrate a package into Trilinos. The
services include Autoconf [11], Automake [12] and Libtool [13]. The tools provide a robust, full-featured set
of tools for building software across a broad set of platforms. The tools are not officially standards, but are
widely used. All existing Trilinos packages use Autoconf and Automake. Libtool support will be added in future
releases.
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Service provided/Task performed Package Tutorial
Advanced serial dense or sparse matrices: Epetra Chapter 3
Advanced utilities for Epetra vectors and sparse
matrices:

EpetraExt –

Templated distributed vectors and sparse matri-
ces:

Tpetra . –

Distributed sparse matrices: Epetra –
Solve a linear system with preconditioned
Krylov accelerators, CG, GMRES, Bi-
CGSTAB, TFQMR:

AztecOO,
Belos. Chapter 6

Incomplete Factorizations: AztecOO,
IFPACK

Chapter 7

Multilevel preconditioners: ML Chapter 9
“Black-box” smoothed aggregation precondi-
tioners:

ML Section 9.4

One-level Schwarz preconditioner (overlapping
domain decomposition):

AztecOO,
IFPACK

Chapter 7

Two-level Schwarz preconditioner, with coarse
matrix based on aggregation:

AztecOO+ML Section 9.5

Systems of nonlinear equations: NOX Chapter 11
Interface with various direct solvers, as UMF-
PACK, MUMPS, SuperLU DIST and ScaLA-
PACK :

Amesos Chapter 10

Eigenvalue problems for sparse matrices: Anasazi . –
Complex linear systems (using equivalent real
formulation):

Komplex . –

Segregated and block preconditioners (e.g., in-
compressible Navier-Stokes equations):

Meros . –

Light-weight interface to BLAS and LAPACK: Epetra Chapter 3
Templated interface to BLAS and LAPACK,
arbitrary-precision arithmetic, parameters’ list,
smart pointers:

Teuchos Section 8.4

Definition of abstract interfaces to vectors, lin-
ear operators, and solvers:

TSF. ,
TSFCore . ,
TSFExtended . –

Generation of test matrices Triutils Section 5.2

Table 1. Partial overview of intended uses of Trilinos. / : not
covered in this tutorial.
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Trilinos has been compiled on a variety of architectures, including various flavors of Linux,
Sun Solaris, SGI Irix, DEC, Mac OS X, ASCI Red, and many others. Trilinos has been de-
signed to support parallel applications. However, it also compiles and runs on serial comput-
ers. Detailed comments on the installation, and an exhaustive list of FAQs, may be found at
the web pages:

http://software.sandia.gov/Trilinos/installing_manual.html
http://software.sandia.gov/Trilinos/faq.html

After obtaining Trilinos, the next step is its compilation. The description here is for
LINUX platforms with MPI, the compilation on other platforms being pretty similar.

Each Trilinos’ package can be enabled or disabled at configuration time. A procedure one
may follow in order to compile Trilinos with AztecOO, ML, IFPACK, Anasazi, NOX, Triutils,
and Didasko (which contains the examples used in this tutorial) is reported below. $ indicates
the shell prompt. The tee command is used to write the output to standard output and to the
specified file, and may be omitted. More details about the installation of Trilinos can be found
in [20].

$ cd <your-trilinos-directory>
$ mkdir LINUX_MPI
$ cd LINUX_MPI
$ ../configure --prefix=<your-trilinos-directory>/LINUX_MPI \

--enable-mpi --with-mpi-compilers \
--disable-default-packages \
--enable-teuchos \
--enable-epetra \
--enable-aztecoo \
--enable-triutils \
--enable-amesos \
--enable-ifpack \
--enable-ml \
--enable-nox \
--enable-nox-epetra \
--enable-didasko | tee configure_LINUX_MPI.log

$ make | tee make_LINUX_MPI.log
$ make install | tee make_install_LINUX_MPI.log

For more details, simply type

$ <your-trilinos-directory>/configure --help

For serial configuration, simply delete the --enable-mpi --with-mpi-compilers
options (and possibly change the name of the installation directory from LINUX MPI to some-
thing like LINUX SERIAL).
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Remark 2. All Trilinos packages can be build to run with or without MPI. If MPI is enabled
(using --enable-mpi), the users must know the procedure for beginning MPI jobs on their
computer system(s). It may be necessary to specify on the configure line the location of MPI
include files and libraries.

Remark 3. Compiling Trilinos may require a little bit of time! For instance, on a Pentium
4, 1.7 GHz with Intel compilers, to configure Trilinos with LOCA, NOX, AztecOO, Anasazi,
IFPACK, Triutils, EpetraExt, Teuchos, ML and Epetra, required 2 minutes and 11 seconds.
The compilation (without the examples) took 5 minutes and 41 seconds. The reader might find
convenient to start by enabling a limited number of packages, then re-configuring Trilinos as
required.

1.3 Copyright and Licensing of Trilinos
Trilinos is released under the Lesser GPL GNU Licence.

Trilinos is copyrighted by Sandia Corporation. Under the terms of Contract DE-AC04-
94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S.
Government. Export of this program may require a license from the United States Govern-
ment.

NOTICE: The United States Government is granted for itself and others acting on its be-
half a paid-up, nonexclusive, irrevocable worldwide license in ths data to reproduce, prepare
derivative works, and perform publicly and display publicly. Beginning five (5) years from
July 25, 2001, the United States Government is granted for itself and others acting on its be-
half a paid-up, nonexclusive, irrevocable worldwide license in this data to reproduce, prepare
derivative works, distribute copies to the public, perform publicly and display publicly, and to
permit others to do so.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES DE-
PARTMENT OF ENERGY, NOR SANDIA CORPORATION, NOR ANY OF THEIR EM-
PLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS,
OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.

Some parts of Trilinos are dependent on a third party code. Each third party code comes
with its own copyright and/or licensing requirements. It is responsibility of the user to under-
stand these requirements.

1.4 Programming Language Used in this Tutorial
Trilinos is written in C++ (for most packages), and in C. Some interfaces are provided to
FORTRAN codes (mainly BLAS and LAPACK routines). Even if limited support is included
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for C programs (and a more limited for FORTRAN code), to unleash the full power of Trilinos
we recommend C++. All the example programs contained in this tutorial are in C++; some
packages (like ML) contain examples in C.

1.5 Referencing Trilinos
The Trilinos project can be referenced by using the following BiBTeX citation information:

@techreport{Trilinos-Overview,
title = "{An Overview of Trilinos}",
author = "Michael Heroux and Roscoe Bartlett and Vicki Howle
Robert Hoekstra and Jonathan Hu and Tamara Kolda and
Richard Lehoucq and Kevin Long and Roger Pawlowski and
Eric Phipps and Andrew Salinger and Heidi Thornquist and
Ray Tuminaro and James Willenbring and Alan Williams ",
institution = "Sandia National Laboratories",
number = "SAND2003-2927",
year = 2003}

@techreport{Trilinos-Dev-Guide,
title = "{Trilinos Developers Guide}",
author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",
number = "SAND2003-1898",
year = 2003}

@techreport{Trilinos-Dev-Guide-II,
title = "{Trilinos Developers Guide Part II: ASCI Software Quality
Engineering Practices Version 1.0}",
author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",
number = "SAND2003-1899",
year = 2003}

@techreport{Trilinos-Users-Guide,
title = "{Trilinos Users Guide}",
author = "Michael A. Heroux and James M. Willenbring",
institution = "Sandia National Laboratories",
number = "SAND2003-2952",
year = 2003}

@techreport{Trilinos-Tutorial-5.0,
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title = "{Trilinos Tutorial}",
author = "Marzio Sala and Michael A. Heroux and David D. Day",
institution = "Sandia National Laboratories",
number = "SAND2004-2189",
year = 2004}

The BiBTeX information is available at the web page

http://software.sandia.gov/Trilinos/citing.html

1.6 A Note on the Directory Structure
Each Trilinos package in contained in the subdirectory

<your-trilinos-directory>/packages

Each package contains sources, examples, tests and documentation subdirectories:

<your-trilinos-directory>/packages/<package-name>/src
<your-trilinos-directory>/packages/<package-name>/examples
<your-trilinos-directory>/packages/<package-name>/test
<your-trilinos-directory>/packages/<package-name>/doc

Developers’ documentation is written using Doxygen3. For instance, to create the documen-
tation for Epetra are

$ cd <your-trilinos-home>/packages/epetra/doc
$ doxygen

Generally, both HTML and LATEX documentation are created by Doxygen. The browser of
choice can be used to walk through the HTML documentation. To compile the LATEX sources,
the commands are:

$ cd <your-trilinos-home>/packages/epetra/doc/latex
$ make

1.7 List of Trilinos Developers
The Trilinos’ developers as of May 2004 are (in alphabetical order):

Roscoe A. Bartlett, Jason A. Cross, David M. Day, Robert Heaphy, Michael A. Heroux
(project leader), Russell Hooper, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara
G. Kolda, Richard B. Lehoucq, Paul Lin, Kevin R. Long, Roger P. Pawlowski, Michael N.
Phenow, Eric T. Phipps, Andrew J. Rothfuss, Marzio Sala, Andrew G. Salinger, Paul M. Sex-
ton, Kendall S. Stanley, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring, and
Alan Williams.

3Copyright c
0

1997-2003 by Dimitri van Heesch. More information can by found at the web address
http://www.stack.nl/ dimitri/doxygen/.
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2 Working with Epetra Vectors
A vector is a fundamental data structure required by almost all numerical methods. Within the
Trilinos framework, vectors are usually constructed starting from Epetra classes.

An Epetra vector may store either double-precision values (like the solution of a PDE
problem, the right-hand side of a linear system, or nodal coordinates), or integer data values
(such as a set of indexes or global IDs).

An Epetra vector may be either serial or distributed. Serial vectors are usually small, so
that it is not convenient to distribute them across the processes. Possibly, serial vectors are
replicated across the processes. On the other hand, distributed vectors tend to be significantly
larger, and therefore their elements are distributed across the processors. In this latter case,
users must specify the partition they intend to use. In Epetra, this is done by specifying a
communicator (introduced in Section 2.1) and an Epetra object called map (introduced in
Section 2.2). A map is basically a partitioning of a list of global IDs.

During the Chapter, the user will be introduced to:- The fundamental Epetra communicator object, Epetra Comm (in Section 2.1);- The Epetra Map object (in Section 2.2);- The creation and assembly of Epetra vectors (in Sections 2.3 and 2.4). The sections also
present common vector operations, such as dot products, fill with constant or random
values, vector scalings and norms;- A tool to redistributing vectors across processes (in Section 2.5).

2.1 Epetra Communicator Objects
The Epetra Comm virtual class is an interface that encapsulates the general information and
services needed for the other Epetra classes to run on serial or parallel computer. An Epe-
tra Comm object is required for building all Epetra Map objects, which in turn are required
for all other Epetra classes.

Epetra Comm has two basic concrete implementations:- Epetra SerialComm (for serial executions);- Epetra MpiComm (for MPI distributed memory executions).

For most basic applications, the user can create an Epetra Comm object using the follow-
ing code fragment:

#include "Epetra_ConfigDefs.h"
#ifdef HAVE_MPI
#include "mpi.h"
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#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
// .. other include files and others ...
int main( int argv, char *argv[]) {
// .. some declarations here ...

#ifdef HAVE_MPI
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

#else
Epetra_SerialComm Comm;

#endif
// ... other code follows ...

Note that the MPI_Init() call and the

#ifdef HAVE_MPI
MPI_Finalize();

#endif

call, are likely to be the only MPI calls users have to explicitly introduce in their code.
Most of Epetra Comm methods are similar to MPI functions. The class provides methods

such as MyPID(), NumProc(), Barrier(), Broadcast(), SumAll(), GatherAll(),
MaxAll(), MinAll(), ScanSum(). For instance, the number of processes in the com-
municator, NumProc, and the ID of the calling process, MyPID, can be obtained by

int NumProc = Comm.NumProc();
int MyPID = Comm.MyPID();

The file didasko/examples/epetra/ex1.cpp presents the use of some of the
above introduced functions. For a description of the syntax, please refer to the Epetra Class
Documentation.

2.2 Defining a Map
The distribution of a set of integer labels (or elements) across the processes is here called a
map, and its actual implementation is given by the Epetra Map class (or, more precisely, by
an Epetra BlockMap, from which Epetra Map is derived). Basically, the class handles the
definition of the:- global number of elements in the set (called NumGlobalElements);- local number of elements (called NumMyElements);
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NumGlobaElementss()
The total number of elements across all processes.

NumMyElementss()
The number of elements on the calling process.

MinAllGID()
The minimum global index value across all processes.

MaxAllGID()
The maximum global index value across all processes.

MinMyGID()
The minimum global index value on the calling process.

MaxMyGID()
The maximum global index value on the calling process.

MinLID()
The minimum local index value on the calling process.

MaxLID()
The maximum local index value on the calling process.

LinearMap()
Returns true if the elements are distributed linearly across processes, i.e., process 0 gets
the first n/p elements, process 1 gets the next n/p elements, etc. where n is the number of
elements and p is the number of processes.

DistributedGlobal()
Returns true if the element space of the map spans more than one process. This will be
true in most cases, but will be false in serial cases and for objects that are created via the
derived Epetra LocalMap class.

Table 2. Some methods of the class Epetra Map
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- global numbering of all local elements (an integer vector of size NumMyElements,
called MyGlobalElements).

There are three ways to define an map. The easiest way is to specify the global number of
elements, and let Epetra decide:

Epetra_Map Map(NumGlobalElements,0,Comm);

In this case, the constructor takes the global dimension of the vector, the base index4, and an
Epetra_Comm object (introduced in Section 2.1). As a result, each process will be assigned
a contiguous set of elements.

A second way to build the Epetra Comm object is to furnish the local number of elements:

Epetra_Map Map(-1,NumMyElements,0,Comm);

This will create a vector of size 132547698;:=<?>?@BACED;F NumMyElements. Each process will get a
contiguous set of elements. These two approached are coded in file
didasko/examples/epetra/ex2.cpp.

A third more involved way to create an Epetra Map, is to specify on each process both the
number of local elements, and the global indexing of each local element. To understand this,
consider the following code. A vector of global dimension 5 is split among processes p0 and
p1. Process p0 owns elements 0 an 4, and process p1 elements 1, 2, and 3.

#include "Epetra_Map.h"
// ...
MyPID = Comm.MyPID();
switch( MyPID ) {
case 0:

MyElements = 2;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 4;
break;

case 1:
MyElements = 3;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;
break;

4The index base is the index of the lowest order element, and is usually, 0 for C or C++ arrays, and 1 for
FORTRAN arrays. Epetra can indeed accept any number as index base. However, some other Trilinos package
may require a C-style index base.
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}

Epetra_Map Map(-1,MyElements,MyGlobalElements,0,Comm);

The complete code is reported in didasko/examples/epetra/ex3.cpp.
Once created, a Map object can be queried for the global and local number of elements,

using

int NumGlobalElements = Map.NumGlobalElements();
int NumMyElements = Map.NumMyElements();

and for the global ID of local elements, using

int * MyGlobalElements = Map.MyGlobalElements();

that returns a pointer to the internally stored global indexing vector, or, equivalently,

int MyGlobalElements[NumMyElements];
Map.MyGlobalElements(MyGlobalElements);

that copies in the user’s provided array the global indexing.

The class Epetra Map is derived from Epetra BlockMap. The class keeps information that
describes the distribution of objects that have block elements (for example, one or more con-
tiguous entries of a vector). This situation is common in applications like multiple-unknown
PDE problems. A variety of constructors are available for the class. An example of the use of
block maps is reported in didasko/examples/epetra/ex23.cpp.

Note that different maps may coexist in the same part of the code. The user may define vec-
tors with different distributions (even for vectors of the same size). Two classes are provided
to transfer data from one map to an other: Epetra Import and Epetra Export (see Section 2.5).

Remark 4. Most Epetra objects overload the << operator. For example, to visualize informa-
tion about the Map, one can simply write

cout << Map;

We have constructed very basic map objects. More general objects can be constructed as
well. First, element numbers are only labels, and they do not have to be consecutive. This
means that we can define a map with elements 1, 100 and 10000 on process 0, and elements 2,
200 and 20000 on process 1. This map, composed by 6 elements, is perfectly legal. Second,
each element can be assigned to more than one process. Examples
didasko/examples/epetra/ex20.cpp and
didasko/examples/epetra/ex21.cpp can be used to better understand the potential
of Epetra Maps.

Remark 5. The use of “distributed directory” technology facilitates arbitrary global ID sup-
port.
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2.3 Creating and Assembling Serial Vectors
Within Epetra, it is possible to define sequential vectors for serial and parallel platforms. A
sequential vector is a vector which, in the opinion of the programmer, does not need to be
partitioned among the processes. Note that each process defines its own sequential vectors,
and that changing an element of this vector on this process will not directly affect the vectors
stored on other processes (if any have been defined).

The class Epetra SerialDenseVector enables the construction and use of real-valued, dou-
ble precision dense vectors. The Epetra SerialDenseVector class provides convenient vec-
tor notation but derives all significant functionality from Epetra SerialDenseMatrix class (see
Section 3.1). The following instruction creates a sequential double-precision vector containing
Length elements:

#include "Epetra_SerialDenseVector.h"
Epetra_SerialDenseVector DoubleVector(Length);

Other constructors are available, as described in the Epetra Class Documentation. Integer
vectors can be created as

#include "Epetra_IntSerialDenseVector.h"
Epetra_SerialIntDenseVector IntVector(Length);

We recomment Epetra SerialDenseVector and Epetra SerialIntDenseVector instead of more
common C++ allocations (using new), because Epetra serial vectors automatically delete the
allocated memory when destructed, avoiding possible memory leaks.

The vector can be filled using the [] or () operators. Both methods return a reference to
the specified element of the vector. However, using (), bound checking is enforced. Using
using [], no bounds checking is done unless Epetra is compiled with
EPETRA_ARRAY_BOUNDS_CHECK.

Remark 6. To construct replicated Epetra objects on distributed memory machines, the user
may consider the class Epetra LocalMap. The class constructs the replicated local objects
and keeps information that describe the distribution.

The file didasko/examples/epetra/ex4.cpp illustrates basic operations on dense
vectors.

2.4 Creating and Assembling a Distributed Vector
A distributed object is an entity whose elements are partitioned across more than one pro-
cess. Epetra’s distributed objects (derived from the Epetra DistObject class) are created from
a Map. For example, a distributed vector can be constructed starting from an Epetra Map (or
Epetra BlockMap) with an instruction of type
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Epetra_Vector x(Map);

(We shall see that this dependency on Map objects holds for all distributed Epetra objects.)
This constructor allocates space for the vector and sets all the elements to zero. A copy
constructor may be used as well:

Epetra_Vector y(x);

A variety of sophisticated constructors are indeed avaiable. For instance, the user can pass a
pointer to an array of double precision values,

Epetra_Vector x(Copy,Map,LocalValues);

Note the word Copy is input to the constructor. It specifies the Epetra CopyMode, and refers
to many Epetra objects. In fact, Epetra allows two data access modes:

1. Copy: allocate memory and copy the user-provided data. In this mode, the user data is
not needed be the new Epetra Vector after construction;

2. View: create a “view” of the user’s data. The user data is assumed to remain untouched
for the life of the vector (or modified carefully). From a data hiding perspective, View
mode is very dangerous. But is is often the only way to get the required performance.
Therefore, users are strongly encouraged to develop code using the Copy mode. Only
use View mode as needed in a secondary performance optimization phase. To use the
View mode, the user has to define the vector entries using a (double) vector (of appro-
priate size), than construct an Epetra Vector with an instruction of type

Epetra_Vector z(View,Map,z_values);

where z_values is a pointer a double array containing the values for z.

To set a locally owned element of a vector, ont can use the [] operator, regardless of how
a vector has been created. For example,

x[i] = 1.0*i;

where i is in the local index space.
Epetra also defines some functions to set vector elements in local or global index space.

ReplaceMyValues or SumIntoMyValueswill replace or sum values into a vector with a
given indexed list of values, with indexes in the local index space; ReplaceGlobalValues
or SumIntoGlobalValues will replace or sum values into a vector with a given indexed
list of values in the global index space (but locally owned). It is important to note that no pro-
cess may set vector entries locally owned by another process. In other words, both global and
local insert and replace functions refer to the part of a vector assigned to the calling process.
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Intra-process communications can be (easily) performed using Import and Export objects,
covered in Section 2.5.

The user might need (for example, for reasons of computational efficiency) to work on
Epetra Vectors as if they were double * pointers. File
didasko/examples/epetra/ex5.cpp
shows the use of ExtractCopy(). ExtractCopy does not give access to the vector
elements, but only copies them into the user-provided array. The user must commit those
changes to the vector object, using, for instance, ReplaceMyValues.

A further computationally efficient way, is to extract a “view” of the (multi-)vector in-
ternal data. This can be done as follows, using method ExtractView(). Let z be an
Epetra Vector.

double * z_values;
z.ExtractView( &z_values );
for( int i=0 ; i<MyLength ; ++i ) z_values[i] *= 10;

In this way, modifying the values of z_values will affect the internal data of the Epe-
tra Vector z. An example of the use of ExtractView is reported in file
didasko/examples/epetra/ex6.cpp.

Remark 7. The class Epetra Vector is derived from Epetra MultiVector. Roughly speaking, a
multi-vector is a collection of one or more vectors, all having the same length and distribution.
File didasko/examples/epetra/ex7.cpp illustrates use of multi-vectors.

The user can also consider the function ResetView, which allows a (very) light-weight
replacement of multi-vector values, created using the Epetra DataMode View. Note that no
checking is performed to see if the values passed in contain valid data. This method can be
extremely useful in the situation where a vector is needed for use with an Epetra operator or
matrix, and the user is not passing in a multi-vector. Use this method with caution as it could
be extremely dangerous. A simple example is reported in
didasko/examples/epetra/ex8.cpp

It is possible to perform a certain number of operations on vector objects. Some of them
are reported in Table 3. Example didasko/examples/epetra/ex18.cppworks with
some of the functions reported in the table.

2.5 Epetra Import and Epetra Export classes
The Epetra Import and Epetra Export classes suites apply off-processor communication. Epe-
tra Import and Epetra Export are used to construct a communication plan that can be called
repeatedly by computational classes such the Epetra multi-vectors of the Epetra matrices.

Currently, those classes have one constructor, taking two Epetra Map (or Epetra BlockMap)
objects. The first map specifies the global IDs that are owned by the calling processor. The
second map specifies the global IDs of elements that we want to import later.
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int NumMyELements()
returns the local vector length on the calling processor

int NumGlobalElements()
returns the global length

int Norm1(double *Result) const
returns the 1-norm (defined as 1HGC�I J C I (see also Norm2 and NormInf)

Normweigthed(double *Result) const

returns the 2-norm, defined as K AG 1HGL!D A7MON L J L#P�Q )
int Dot(const Epetra MultiVector A, double *Result) const
computes the dot product of each corresponding pair of vectors

int Scale(double ScalarA, const Epetra MultiVector &A
Replace multi-vector values with scaled values of A, this=ScalarA*A

int MinValue(double *Result) const
compute minimum value of each vector in multi-vector (see also MaxValue and
MeanValue)

int PutScalar(double Scalar)
Initialize all values in a multi-vector with constant value

int Random()
set multi-vector values to random numbers

Table 3. Some methods of the class Epetra Vector
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Using an Epetra Import object means that the calling process knows what it wants to re-
ceive, while an Epetra Export object means that it knows what it wants to send. An Epe-
tra Import object can be used to do an Export as a reserve operation (and equivalently an
Epetra Export can be used to do an Import). In the particular case of bijective maps, either
Epetra Import or Epetra Export is appropriate.

To better illustrate the use of these two classes, we present the following example. Sup-
pose that the double-precision distributed vector x of global length 4, is distributed over two
processes. Process 0 own elements 0,1,2, while process 1 owns elements 1,2,3. This means
that elements 1 and 2 are replicated over the two processes. Suppose that we want to bring
all the components of x to process 0, summing up the contributions of elements 1 and 2 from
the 2 processes. This is done in the following example (the complete code is reported in
didasko/examples/epetra/ex9.cpp).

int NumGlobalElements = 4; // global dimension of the problem

int NumMyElements; // local elements
Epetra_IntSerialDenseVector MyGlobalElements;

if( Comm.MyPID() == 0 ) {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 1;
MyGlobalElements[2] = 2;

} else {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;

}

// create a double-precision map
Epetra_Map Map(-1,MyGlobalElements.Length(),

MyGlobalElements.Values(),0, Comm);

// create a vector based on map
Epetra_Vector x(Map);
for( int i=0 ; i<NumMyElements ; ++i )
x[i] = 10*( Comm.MyPID()+1 );

cout << x;
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// create a target map, in which all the elements are on proc 0
int NumMyElements_target;

if( Comm.MyPID() == 0 )
NumMyElements_target = NumGlobalElements;

else
NumMyElements_target = 0;

Epetra_Map TargetMap(-1,NumMyElements_target,0,Comm);

Epetra_Export Exporter(Map,TargetMap);

// work on vectors
Epetra_Vector y(TargetMap);

y.Export(x,Exporter,Add);
cout << y;

Running this code with 2 processors, the output will be approximatively the following:

[msala:epetra]> mpirun -np 2 ./ex31.exe
Epetra::Vector

MyPID GID Value
0 0 10
0 1 10
0 2 10

Epetra::Vector
1 1 20
1 2 20
1 3 20

Epetra::Vector
Epetra::Vector

MyPID GID Value
0 0 10
0 1 30
0 2 30
0 3 20
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3 Working with Epetra Matrices
Epetra contains several matrix classes. Epetra matrices can be defined to be either serial or
distributed. A serial matrix could be the matrix corresponding to a given element in a finite-
element discretization, or the Hessemberg matrix in the GMRES method. Those matrices are
of (relatively) small size, so that it is not convenient to distribute them across the processes.

Other matrices, e.g. the linear system matrices, must be distributed to obtain scalability.
For distributed sparse matrices, the basic Epetra class is Epetra RowMatrix, meant for double-
precision matrices with row access. Epetra RowMatrix is a pure virtual class. The classes that
are derived from Epetra_RowMatrix include:- Epetra_CrsMatrix for point matrices;- Epetra_VbrMatrix for block matrices (that is, for matrices which have a block

structure, for example the ones deriving from the discretization of a PDE problem with
multiple unknowns for node);- Epetra_FECrsMatrix and Epetra_FEVbrMatrix for matrices arising from FE
discretizations.

The purpose of the Chapter is to review the allocation and assembling of different types of
matrices as follows:- The creation of (serial) dense matrices (in Section 3.1);- The creation of sparse point matrices (in Section 3.2);- The creation of sparse block matrices (in Section 3.3);- The insertion of non-local elements using finite-element matrices (in Section 3.4).

3.1 Serial Dense Matrices
Epetra supports sequential dense matrices with the class Epetra SerialDenseMatrix. A possi-
ble way to create a serial dense matrix D of dimension n by m is

#include "Epetra_SerialDenseMatrix.h"
Epetra_SerialDenseMatrix D(n,m);

One could also create a zero-size object,

Epetra_SerialDenseMatrix D();

and then shape this object:

D.Shape(n,m);
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(D could be reshaped using ReShape().)
An Epetra SerialDenseMatrix is stored in a column-major order in the usual FORTRAN

style. This class is built on the top of the BLAS library, and is derived from Epetra Blas (not
covered in this tutorial). Epetra SerialDenseMatrix supports dense rectangular matrices.

To access the matrix element at the i-th row and the j-th column, it is possible to use
the parenthesis operator (A(i,j)), or the bracket operator (A[j][i], note that i and j are
reversed)5.

As an example of the use of this class, in the following code we consider a matrix-matrix
product between two rectangular matrices A and B.

int NumRowsA = 2, NumColsA = 2;
int NumRowsB = 2, NumColsB = 1;
Epetra_SerialDenseMatrix A, B;
A.Shape(NumRowsA, NumColsA);
B.Shape(NumRowsB, NumColsB);
// ... here set the elements of A and B
Epetra_SerialDenseMatrix AtimesB;
AtimesB.Shape(NumRowsA,NumColsB);
double alpha = 1.0, beta = 1.0;
AtimesB.Multiply(’N’,’N’,alpha, A, B, beta);
cout << AtimesB;

Multiply() performs the operation RTSVUXWZYZ[X\ , where W replaced by W�] if the first input
parameter is T, and \ replaced by \^] if the second input parameter is T. The corresponding
source code file is didasko/examples/epetra/ex10.cpp.

To solve a linear system with a dense matrix, one has to create an Epetra SerialDenseSolver.
This class uses the most robust techniques available in the LAPACK library. The class is built
on the top of BLAS and LAPACK, and thus has excellent performance and numerical stabil-
ity6.

The primary difference is that Epetra LAPACK is a “thin” layer on the top of LAPACK,
while Epetra SerialDenseSolver attempts to provide easy access to the more robust dense
linear solvers.

Epetra LAPACK is preferable if the user seeks a convenient wrapper around the FOR-
TRAN LAPACK routines, and the problem at hand is well-conditioned. Instead, when the
user wants (or potentially wants to) solve ill-conditioned problems or favors a more object-
oriented interface, then we suggest Epetra SerialDenseMatrix..

Given an Epetra SerialDenseMatrix and two Epetra SerialDenseVectors x and b, the gen-
eral approach is as follows:

5The bracket approach is in general faster, as the compiler can inline the corresponding function. Instead,
some compiler have problems to inline the parenthesis operator.

6Another package, Teuchos, covered in Chapter 8, allows a templated access to LAPACK. ScaLAPACK is
supported through Amesos, see Chapter 10.
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Epetra_SerialDenseSolver Solver();
Solver.SetMatrix(D);
Solver.SetVectors(x,b);

Then, it is possible to invert the matrix with Invert(), solve the linear system with Solve(),
apply iterative refinement with ApplyRefinement(). Other methods are available; for in-
stance,

double rcond=Solve.RCOND();

returns the reciprocal of the condition number of matrix D (or -1 if not computed).
didasko/examples/epetra/ex11.cpp outlines some of the capabilities of the

Epetra SerialDenseSolver class.

3.2 Distributed Sparse Matrices
Epetra provides an extensive set of classes to create and fill distributed sparse matrices. These
classes allow row-by-row or element-by-element constructions. Support is provided for com-
mon matrix operations, including scaling, norm, matrix-vector multiplication and matrix-
multivector multiplication7.

Using Epetra objects, applications do not need to know about the particular storage format,
and other implementation details such as data layout, the number and location of ghost nodes.
Epetra furnishes two basic formats, one suited for point matrices, the other for block matrices.
The former is presented in this Section; the latter is introduced in Section 3.3. Other matrix
formats can be introduced by deriving the Epetra RowMatrix virtual class as needed.

Remark 8. Some numerical algorithms require the application of the linear operator only.
For this reason, some applications choose not to store a given matrix. Epetra can handle this
situation using with the Epetra Operator class; see Section 4.3.

The process of creating a sparse matrix is more involved than the process for dense matri-
ces. This is because, in order to obtain excellent numerical performance, one has to provide
an estimation of the nonzero elements on each row of the sparse matrix. (Recall that dy-
namic allocation of new memory and copying the old storage into the new one is an expensive
operation.)

As a general rule, the process of constructing a (distributed) sparse matrix is as follows:- allocate an integer array Nnz, whose length equals the number of local rows;- loop over the local rows, and estimate the number of nonzero elements of that row;

7Methods for matrix-matrix products are avaiable through the EpetraExt package. Another alternative is to
use the efficient matrix-matrix product of ML, which requires ML Operator objects. One may use light-weight
conversions to ML Operator, perform the ML matrix-matrix product, then convert the result to Epetra Matrix.
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virtual int Multiply (bool TransA, const Epetra MultiVector
&X, Epetra MultiVector &Y) const=0
Returns the result of a Epetra RowMatrix multiplied by a Epetra MultiVector X in Y.

virtual int Solve (bool Upper, bool Trans,
bool UnitDiagonal, const Epetra MultiVector &X,
Epetra MultiVector &Y) const=0
Returns result of a local-only solve using a triangular Epetra RowMatrix with Epe-
tra MultiVectors X and Y.

virtual int InvRowSums (Epetra Vector &x) const=0
Computes the sum of absolute values of the rows of the Epetra RowMatrix, results re-
turned in x.

virtual int LeftScale (const Epetra Vector &x)=0
Scales the Epetra RowMatrix on the left with a Epetra Vector x.

virtual int InvColSums (Epetra Vector &x) const=0
Computes the sum of absolute values of the cols of the Epetra RowMatrix, results re-
turned in x.

virtual int RightScale (const Epetra Vector &x)=0
Scales the Epetra RowMatrix on the right with a Epetra Vector x.

Table 4. Mathematical methods of Epetra RowMatrix
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virtual bool Filled () const=0
If FillComplete() has been called, this query returns true, otherwise it returns false.
virtual double NormInf () const=0
Returns the infinity norm of the global matrix.
virtual double NormOne () const=0
Returns the one norm of the global matrix.
virtual int NumGlobalNonzeros () const=0
Returns the number of nonzero entries in the global matrix.
virtual int NumGlobalRows () const=0
Returns the number of global matrix rows.
virtual int NumGlobalCols () const=0
Returns the number of global matrix columns.
virtual int NumGlobalDiagonals () const=0
Returns the number of global nonzero diagonal entries, based on global row/column index
comparisons.
virtual int NumMyNonzeros () const=0
Returns the number of nonzero entries in the calling processor’s portion of the matrix.
virtual int NumMyRows () const=0
Returns the number of matrix rows owned by the calling processor.
virtual int NumMyCols () const=0
Returns the number of matrix columns owned by the calling processor.
virtual int NumMyDiagonals () const=0
Returns the number of local nonzero diagonal entries, based on global row/column index
comparisons.
virtual bool LowerTriangular () const=0
If matrix is lower triangular in local index space, this query returns true, otherwise it
returns false.
virtual bool UpperTriangular () const=0
If matrix is upper triangular in local index space, this query returns true, otherwise it
returns false.
virtual const Epetra Map & RowMatrixRowMap () const=0
Returns the Epetra Map object associated with the rows of this matrix.
virtual const Epetra Map & RowMatrixColMap () const=0
Returns the Epetra Map object associated with the columns of this matrix.
virtual const Epetra Import * RowMatrixImporter () const=0
Returns the Epetra Import object that contains the import operations for distributed oper-
ations.

Table 5. Atribute access methods of Epetra RowMatrix
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- create the sparse matrix using Nnz;- fill the sparse matrix.

As an example, in this Section we will present how to construct a distributed (sparse)
matrix, arising from a finite-difference solution of a one-dimensional Laplace problem. This
matrix looks like: WVS _``a � bZ�bZ� � bc�d(d#ded#d(dfd(d(d bc�bc� �

g#hhi d
The example illustrates how to construct the matrix, and how to perform matrix-vector opera-
tions. The code can be found in didasko/examples/epetra/ex12.cpp.

We start by specifying the global dimension (here is 5, but can be any number):

int NumGlobalElements = 5;

We create a map (for the sake of simplicity linear), and define the local number of rows and
the global numbering for each local row:

Epetra_Map Map(NumGlobalElements,0,Comm);
int NumMyElements = Map.NumMyElements();
int * MyGlobalElements = Map.MyGlobalElements( );

In particular, we have that j=MyGlobalElements[i] is the global numbering for local
node i. Then, we have to specify the number of nonzeros per row. In general, this can be
done in two ways:- Furnish an integer value, representing the number of nonzero element on each row (the

same value for all the rows);- Furnish an integer vector NumNz, of length NumMyElements(), containing the nonzero
elements of each row.

The first approach is trivial: the matrix is create with the simple instruction

Epetra_CrsMatrix A(Copy,Map,3);

(The Copy keyword is explained in Section 2.4.) In this case, Epetra considers the number 3
as a “suggestion,” in the sense that the user can still add more than 3 elements per row (at the
price of a possible performance decay). The second approach is as follows:

int * NumNz = new int[NumMyElements];
for( int i=0 ; i<NumMyElements ; i++ )
if( MyGlobalElements[i]==0 ||
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MyGlobalElements[i] == NumGlobalElements-1)
NumNz[i] = 2;

else
NumNz[i] = 3;

We are building a tridiagonal matrix where each row has (-1 2 -1). Here NumNz[i] is the
number of nonzero terms in the i-th global equation on this process (2 off-diagonal terms,
except for the first and last equation).

Now, the command to create an Epetra CsrMatrix is

Epetra_CrsMatrix A(Copy,Map,NumNz);

We add rows one at a time. The matrix A has been created in Copy mode, in a way that
relies on the specified map. To fill its values, we need some additional variables: let us call
them Indexes and Values. For each row, Indices contains global column indices, and
Values the correspondingly values.

double * Values = new double[2];
Values[0] = -1.0; Values[1] = -1.0;
int * Indices = new int[2];
double two = 2.0;
int NumEntries;

for( int i=0 ; i<NumMyElements; ++i ) {
if (MyGlobalElements[i]==0) {

Indices[0] = 1;
NumEntries = 1;

} else if (MyGlobalElements[i] == NumGlobalElements-1) {
Indices[0] = NumGlobalElements-2;
NumEntries = 1;

} else {
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
NumEntries = 2;

}
A.InsertGlobalValues(MyGlobalElements[i], NumEntries,

Values, Indices);
// Put in the diagonal entry
A.InsertGlobalValues(MyGlobalElements[i], 1, &two,

MyGlobalElements+i);
}

Note that column indices have been inserted using global indices (but a method called InsertMyValues
can be used as well) . Finally, we transform the matrix representation into one based on local
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indexes. The transformation in required in order to perform efficient parallel matrix-vector
products and other matrix operations.

A.FillComplete();

This call to FillComplete()will reorganize the internally stored data so that each process
knows the set of internal, border and external elements for a matrix-vector product of the form\jSkW�l . Also, the communication pattern is established. As we have specified just one map,
Epetra considers that the the rows of W are distributed among the processes in the same way
of the elements of l and \ . Although standard, this approach is only a particular case. Epetra
allows the user to handle the more general case of a matrix whose Map differs from that of l
and that of \ . In fact, each Epetra matrix is defined by four maps:- Two maps, called RowMap and ColumnMap, define the sets of rows and columns of

the elements assigned to a given processor. In general, one processor cannot set ele-
ments assigned to other processors8. RowMap and ColumnMap define the pattern of
the matrix, as it is used during the construction. They can be obtained using the meth-
ods RowMatrixRowMap() and RowMatrixColMap() of the Epetra RowMatrix
class. Usually, as a ColumnMap is not specified, it is automatically created by Epetra.
In general RowMap and ColumnMap can differ.- DomainMap and RangeMap define, instead, the parallel data layout of l and \ , re-
spectively. Note that those two maps can be completely different from RowMap and
ColumnMap, meaning that a matrix can be constructed using a certain data distribution,
then used on vectors with another data distribution. DomainMap and RangeMap can
differ. Maps can be obtained using the methods DomainMap() and RangeMap().

The potential of the approach are illustated by the example file
didasko/examples/epetra/ex24.cpp. In this example, to be run using two proces-
sors, we build two maps: MapA will be used to construct the matrix, while MapB to define the
parallel layout of the vectors l and \ . For the sake of simplicity, W is diagonal.

Epetra_CrsMatrix A(Copy,MapA,MapA,1);

As usual in this Tutorial, the integer vector MyGlobalElementsA contains the global ID
of local nodes. To assemble W , we cycle over all the local rows (defined by MapA):

for( int i=0 ; i<NumElementsA ; ++i ) {
double one = 2.0;
int indices = MyGlobalElementsA[i];
A.InsertGlobalValues(MyGlobalElementsA[i], 1, &one, &indices );

}

8Some classes, derived from the Epetra RowMatrix, can perform data exchange; see for instance Epe-
tra FECrsMatrix or Epetra FEVbrMatrix.
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Now, as both l and \ are defined using MapB, instead of calling FillComplete(), invoke

A.FillComplete(MapB,MapB);

Now, we can create l and \ as vectors based on MapB, and perform the matrix-vector prod-
uct:

Epetra_Vector X(MapB); Epetra_Vector B(MapB);
A.Multiply(false,X,B);

Remark 9. Although presented for Epetra CrsMatrix objects, the distinction between RowMap,
ColMap, DomainMap, and RangeMap holds for all classed derived from Epetra RowMatrix.

Example didasko/examples/epetra/ex14.cpp shows the use of some of the
methods of the Epetra CrsMatrix class. The code prints out information about the structure of
the matrix and its properties. The output will be approximatively as reported here:

[msala:epetra]> mpirun -np 2 ./ex14
*** general Information about the matrix
Number of Global Rows = 5
Number of Global Cols = 5
is the matrix square = yes
||A||_\infty = 4
||A||_1 = 4
||A||_F = 5.2915
Number of nonzero diagonal entries = 5( 100 %)
Nonzero per row : min = 2 average = 2.6 max = 3
Maximum number of nonzero elements/row = 3
min( a_{i,j} ) = -1
max( a_{i,j} ) = 2
min( abs(a_{i,j}) ) = 1
max( abs(a_{i,j}) ) = 2
Number of diagonal dominant rows = 2 (40 % of total)
Number of weakly diagonal dominant rows = 3 (60 % of total)
*** Information about the Trilinos storage
Base Index = 0
is storage optimized = no
are indices global = no
is matrix lower triangular = no
is matrix upper triangular = no
are there diagonal entries = yes
is matrix sorted = yes

Other examples for Epetra CrsMatrix include:
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- Example didasko/examples/epetra/ex13.cpp implements a simple distributed
finite-element solver. The code solves a 2D Laplace problem with unstructured triangu-
lar grids. In this example, the information about the grid is hardwired. The interested
user can easily modify those lines in order to read the grid information from a file.- Example didasko/examples/epetra/ex15.cppexplains how to export an Epe-
tra CrsMatrix to file in a MATLAB format. The output of this example will be approx-
imatively as follows:

[msala:epetra]> mpirun -np 2 ./ex15
A = spalloc(5,5,13);
% On proc 0: 3 rows and 8 nonzeros
A(1,1) = 2;
A(1,2) = -1;
A(2,1) = -1;
A(2,2) = 2;
A(2,3) = -1;
A(3,2) = -1;
A(3,3) = 2;
A(3,4) = -1;
% On proc 1: 2 rows and 5 nonzeros
A(4,4) = 2;
A(4,5) = -1;
A(4,3) = -1;
A(5,4) = -1;
A(5,5) = 2;

A companion to this example is
didasko/examples/epetra/ex16.cpp, which exports an Epetra Vector to MAT-
LAB format. Note also that the package EpetraExt contains several purpose tools to read
and write matrices in various formats.

3.3 Creating Block Matrices
This section reviews how to work with block matrices (where each block is a dense matrix)9.
This format has been designed for PDE problems with more than one unknown per grid node.
The resulting matrix has a sparse block structure, and the size of each dense block equals the
number of PDE equations defined on that block. This format is quite general, and can handle
matrices with variable block size, as is done is the following example.

9Trilinos offers capabilities to deal with matrices composed by few sparse blocks, like for instance matrices
arising from the discretization of the incompressible Navier-Stokes equations, through the Meros package (not
covered in this tutorial).
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First, we create a map, containing the distribution of the blocks:

Epetra_Map Map(NumGlobalElements,0,Comm);

Here, a linear decomposition is used for the sake of simplicity, but any map may be used as
well. Now, we obtain some information about the map:

// local number of elements
int NumMyElements = Map.NumMyElements();
// global numbering of local elements
int * MyGlobalElements = new int [NumMyElements];
Map.MyGlobalElements( MyGlobalElements );

A block matrix can have blocks of different size. Here, we suppose that the dimension of
diagonal block row m is m�Y � . The integer vector ElementSizeListwill contain the block
size of local element i.

Epetra_IntSerialDenseVector ElementSizeList(NumMyElements);
for( int i=0 ; i<NumMyElements ; ++i )
ElementSizeList[i] = 1+MyGlobalElements[i];

Here ElementSizeList is declared as Epetra IntSerialDenseVector, but an int array is fine
as well.

Now we can create a map for the block distribution:

Epetra_BlockMap BlockMap(NumGlobalElements,NumMyElements,
MyGlobalElements,
ElementSizeList.Values(),0,Comm);

and finally we can create the VBR matrix based on BlockMap. In this case, nonzero elements
are located in the diagonal and the sub-diagonal above the diagonal.

Epetra_VbrMatrix A(Copy, BlockMap, 2);

int Indices[2];
double Values[MaxBlockSize];

for( int i=0 ; i<NumMyElements ; ++i ) {
int GlobalNode = MyGlobalElements[i];
Indices[0] = GlobalNode;
int NumEntries = 1;
if( GlobalNode != NumGlobalElements-1 ) {
Indices[1] = GlobalNode+1;
NumEntries++;
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}
A.BeginInsertGlobalValues(GlobalNode, NumEntries, Indices);
// insert diagonal
int BlockRows = ElementSizeList[i];
for( int k=0 ; k<BlockRows * BlockRows ; ++k )
Values[k] = 1.0*i;

B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockRows);

// insert off diagonal if any
if( GlobalNode != NumGlobalElements-1 ) {
int BlockCols = ElementSizeList[i+1];
for( int k=0 ; k<BlockRows * BlockCols ; ++k )

Values[k] = 1.0*i;
B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockCols);

}
B.EndSubmitEntries();

}

Note that, with VBR matrices, we have to insert one block at time. This required two more
instructions, one to start this process (BeginInsertGlobalValues), and another one
to commit the end of submissions (EndSubmitEntries). Similar functions to sum and
replace elements exist as well.

Please refer to didasko/examples/epetra/ex17.cpp for the entire source.

3.4 Insert non-local Elements Using FE Matrices
The most important additional feature provided by the Epetra FECrsMatrix with respect to
Epetra CrsMatrix, is the capability to set non-local matrix elements. We will illustrate this
using the following example, reported in
didasko/examples/epetra/ex23.cpp. In the example, we will set all the entries of
a distributed matrix from process 0. For the sake of simplicity, this matrix is diagonal, but
more complex cases can be handled as well.

First, we define the Epetra FECrsMatrix in Copy mode as

Epetra_FECrsMatrix A(Copy,Map,1);

Now, we will set all the diagonal entries from process 0:

if( Comm.MyPID() == 0 ) {
for( int i=0 ; i<NumGlobalElements ; ++i ) {
int indices[2];
indices[0] = i; indices[1] = i;
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double value = 1.0*i;
A.SumIntoGlobalValues(1,indices,&value);

}
}

The Function SumIntoGlobalValues adds the coefficients specified in indices (as
pair row-column) to the matrix, adding them to any coefficient that may exist at the specified
location. In a finite element code, the user will probably insert more than one coefficient at
time (typically, all the matrix entries corresponding to an elemental matrix).

Next, we need to exchange data, to that each matrix element not owned by process 0 could
be send to the owner, as specified by Map. This is accomplished by calling, on all processes,

A.GlobalAssemble();

A simple

cout << A;

can be used to verify the data exchange.
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4 Other Epetra Classes
Epetra includes classes that facilitate the development of parallel codes. In this Chapter we
will recall the main usage of some of those classes:- Epetra Time (in Section 4.1);- Epetra Flops (in Section 4.2).- Epetra Operator and Epetra RowMatrix (in Section 4.3);- Epetra LinearProblem (in Section 4.4).

4.1 Epetra Time
Retrieving elapsed and wall-clock time is problematic due to platform-dependent and language-
dependent issues. To avoid those problems, Epetra furnishes the Epetra Time class. Epe-
tra Time is meant to insulate the user from the specifics of timing among a variety of plat-
forms. Using Epetra Time, it is possible to measure the elapsed time. This is the time elapsed
between two phases of a program.

An Epetra Time object is defined as

Epetra_Time time(Comm);

(Comm being an Epetra Comm object, see Section 2.1.) To compute the elapsed time required
by a given piece of code, then user should put the instruction

time.ResetStartTime();

before the code to be timed. ElapsedTime() returns the elapsed time from the creation of
this object or from the last call to ResetStartTime().

4.2 Epetra Flops
The Epetra Flops class provides basic support and consistent interfaces for counting and re-
porting floating point operations performed in the Epetra computational classes. All classes
based on the Epetra CompObject can count flops by the user creating an Epetra Flops object
and calling the SetFlopCounter() method for an Epetra CompObject.

As an example, suppose you are interested in counting the flops required by a vector-vector
product (between, say, x and y). The first step is to create an instance of the class:

Epetra_Flops counter();

Then, it is necessary to “hook” the counter object to the desired computational object, in the
following way:
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x.SetFlopCounter(counter);
y.SetFlopCounter(counter);

Then, perform the desired computations on Epetra objects, like

x.Dot(y,&dotProduct);

Finally, extract the number of performed operations and stored it in the double variable total_flops
as

total_flops = counter.Flops();

This returns the total number of serial flops, and then resets the flop counter to zero.
Epetra Time objects can be used in conjunction with Epetra Flops objects to estimate the

number of floating point operations per second of a given code (or a part of it). One can
proceed as here reported:

Epetra_Flops counter;
x.SetFlopCounter(counter);
Epetra_Time timer(Comm);
x.Dot(y,&dotProduct);
double elapsed_time = timer.ElapsedTime();
double total_flops =counter.Flops();
cout << "Total ops: " << total_flops << endl;
double MFLOPs = total_flops/elapsed_time/1000000.0;
cout << "Total MFLOPs for mat-vec = " << MFLOPs << endl<< endl;

This code is reported in didasko/examples/epetra/ex20.cpp. The output will be
approximatively as follows:

[msala:epetra]> mpirun -np 2 ./ex20
Total ops: 734
Total MFLOPs for mat-vec = 6.92688

Total ops: 734
Total MFLOPs for mat-vec = 2.48021

Total ops: 246
Total MFLOPs for vec-vec = 0.500985

q dot z = 2
Total ops: 246
Total MFLOPs for vec-vec = 0.592825

q dot z = 2
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Remark 10. Operation count are serial count, and therefore keep track of local operations
only.

Remark 11. Each computational class has a Flops() method, that may be queried for the
flop count of that object.

4.3 Epetra Operator and Epetra RowMatrix Classes
Matrix-free methods are introduced in the Epetra framework using either of the following two
classes:- Epetra Operator;- Epetra RowMatrix.

Each class is a pure virtual class (specifing interfaces only), that enable the use of real-
valued double-precision sparse matrices. Epetra RowMatrix, derived from Epetra Operator,
is meant for matrices where the matrix entries are intended for row access, and it is cur-
rently implemented by Epetra CrsMatrix, Epetra VbrMatrix, Epetra FECrsMatrix, and Epe-
tra FEVbrMatrix.

Consider for example the 3-point centered difference discretization of a one dimensional
Laplacian on a regular grid. For the sake of simplicity, we avoid the issues related to intra-
process communication (hence this code can be run with one process only).

The first step is the definition of a class, here called TriDiagonalOperator, and
derived from the Epetra Operator class.

class TriDiagonalOperator : public Epetra_Operator {
public:
// .. definitions here, constructors and methods

private:
Epetra_Map Map_;
double diag_minus_one_; // value in the sub-diagonal
double diag_; // value in the diagonal
double diag_plus_one_; // value in the super-diagonal

}

As the class Epetra Operator implements several virtual methods, we have to specify all those
methods in our class. Among them, we are interested in the Apply method, which may be
coded as follows:

int Apply( const Epetra_MultiVector & X,
Epetra_MultiVector & Y ) const {

int Length = X.MyLength();
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// need to handle multi-vectors and not only vectors
for( int vec=0 ; vec<X.NumVectors() ; ++vec ) {

// one-dimensional problems here
if( Length == 1 ) {

Y[vec][0] = diag_ * X[vec][0];
break;

}

// more general case (Lenght >= 2)
// first row
Y[vec][0] = diag_ * X[vec][0] + diag_plus_one_ * X[vec][1];

// intermediate rows
for( int i=1 ; i<Length-1 ; ++i ) {

Y[vec][i] = diag_ * X[vec][i] + diag_plus_one_ * X[vec][i+1]
+ diag_minus_one_ * X[vec][i-1];

}
// final row
Y[vec][Length-1] = diag_ * X[vec][Length-1]

+ diag_minus_one_ * X[vec][Length-2];
}
return true;

}

Now, in the main function, we can define a TriDiagonalOperatr object using the specified
constructor:

TriDiagonalOperator TriDiagOp(-1.0,2.0,-1.0,Map);

and

DiagOp.Apply(x,y);

computes the discrete Laplacian on x and returns the product in y.
didasko/examples/epetra/ex21.cpp reportes the complete source code.

Remark 12. The clear disadvantage of deriving Epetra Operator or Epetra RowMatrix with
respect to use Epetra CrsMatrix or Epetra VbrMatrix, is that users must specify their commu-
nication pattern for intra-process data exchange. For this purpose, Epetra Import classes can
be used. File didasko/examples/epetra/ex22.cpp shows how to extend ex21.cpp
to the multi-process case. This example makes use of the Epetra Import class to exchange
data.
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Another use of Epetra Operator and Epetra RowMatrix is to allow support for user de-
fined matrix format. For instance, suppose that your code generates matrices in MSR format
(detailed in the Aztec documentation). You can easily create an Epetra Operator, that applies
the MSR format to Epetra MultiVectors. For the sake of simplicity, we will limit ourselves to
the serial case. In the distributed, we must also handle ghost-node updates.

As a first step, we create a class, derived from the Epetra Operator class,

class MSRMatrix : public Epetra_Operator
{

public:
// constructor
MSRMatrix(Epetra_Map Map, int * bindx, double * val) :
Map_(Map), bindx_(bindx), val_(val)

{}

˜MSRMatrix() // destructor
{}

// Apply the RowMatrix to a MultiVector
int Apply(const Epetra_MultiVector & X, Epetra_MultiVector & Y ) const
{

int Nrows = bindx_[0]-1;

for( int i=0 ; i<Nrows ; i++ ) {
// diagonal element
for( int vec=0 ; vec<X.NumVectors() ; ++vec ) {
Y[vec][i] = val_[i]*X[vec][i];

}
// off-diagonal elements
for( int j=bindx_[i] ; j<bindx_[i+1] ; j++ ) {
for( int vec=0 ; vec<X.NumVectors() ; ++vec ) {

Y[vec][bindx_[j]] += val_[j]*X[vec][bindx_[j]];
}

}
}
return 0;

} /* Apply */
... other functions ...

private:
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int * bindx_; double * val_;
}

In this sketch of code, the constructor takes the two MSR vectors, and an Epetra Map. The
complete code is reported in
didasko/examples/epetra/ex25.cpp.

4.4 Epetra LinearProblem
A linear system WnlfS3\ is defined by an Epetra LinearProblem class. The class requires an
Epetra RowMatrix or an Epetra Operator object (often an Epetra CrsMatrix or Epetra VbrMatrix),
and two (multi-)vectors l and \ . l must have been defined using a map equivalent to the
DomainMap of W , while \ using a map equivalent ot the RangeMap of W (see Section 3.2).

Linear systems may be solved either by iterative methods (typically, using AztecOO, cov-
ered in Chapter 6), or by direct solvers (typically, using Amesos, described in Chapter 10).

Once the linear problem has been defined, the user can:- scale the problem, using LeftScale(D) or RightScale(D), D being an Epe-
tra Vector of compatible size;- change l and \ , using SetRHS(&B) and SetLHS(&X);- change W , using SetOperator(&A).

Please refer to Table 6 for a summary of the methods.

4.5 Concluding Remarks on Epetra
More details about the Epetra project, and a technical description of classes and methods, can
be found in [15, 19].
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void SetPDL (ProblemDifficultyLevel PDL)
Set problem difficulty level.
void SetOperator (Epetra RowMatrix *A)
Set Operator A of linear problem AX = B using an Epetra RowMatrix.
void SetOperator (Epetra Operator *A)
Set Operator A of linear problem AX = B using an Epetra Operator.
void SetLHS (Epetra MultiVector *X)
Set left-hand side X of linear problem AX = B.
void SetRHS (Epetra MultiVector *B)
Set right-hand side B of linear problem AX = B.
int CheckInput () const
Check input parameters for existence and size consistency.
int LeftScale (const Epetra Vector &D)
Perform left scaling of a linear problem.
int RightScale (const Epetra Vector &D)
Perform right scaling of a linear problem.
Epetra Operator * GetOperator () const
Get a pointer to the operator A.
Epetra RowMatrix * GetMatrix () const
Get a pointer to the matrix A.
Epetra MultiVector * GetLHS () const
Get a pointer to the left-hand-side X.
Epetra MultiVector * GetRHS () const
Get a pointer to the right-hand-side B.
ProblemDifficultyLevel GetPDL () const
Get problem difficulty level.
bool IsOperatorSymmetric () const
Get operator symmetry bool.

Table 6. Methods of Epetra LinearProblem

45



5 Generating Linear Systems with Triutils
This Chapter presents two functionalities of Triutils, that will be extensively used in the ex-
amples of the later chapters:- the Triutils command line parser (in Section 5.1);- the Triutils matrix generator (in Section 5.2).

Some readers may choose to skip this Chapter because their application is their example.
However, it does help to find the test matrices closest to the ones in their code for several
reasons. Using well-chosen matrices, simple but sufficiently close to the final application,
one can quickly test the performances of a given set of algorithms on the problem of interest,
using a serial or a parallel environment. Several test matrices exhibit a known behavior (e.g.,
theory predicts the behavior of the condition number), and can be used to validate algorithms.
Besides, as they can be quickly generate with few code lines, experts may use them to optimize
or fix thier code. Therefore, a short code using a gallery matrix may be used to communicate
with developers.

5.1 Trilinos Util::CommandLineParser
It is possible to use the
Trilinos_Util::CommandLineParser class to parse the command line. With this
class, it is easy to handle input line arguments and shell-defined variables. For instance, the
user can write

[msala:triutils]>ex2.exe -nx 10 -tol 1e-6 -solver=cg -output

and, in the code, easily obtain the value of nx, tol, and solver, using a simple code as
follows:

int main(int argc, char *argv[])
{

Trilinos_Util::CommandLineParser CLP(argc,argv);
int nx = CLP.Get("-nx", 123);
int ny = CLP.Get("-ny", 145);
double tol = CLP.Get("-tol", 1e-12);
string solver = CLP.Get("-solver","gmres");

bool Output = CLP.Has("-output");

cout << "nx = " << nx << endl;
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cout << "ny = " << ny << " (default value)" << endl;
cout << "tol = " << tol << endl;
cout << "solver = " << solver << endl;

return 0;
}

In the command line, the user can specify a value for a given option in the following ways:- -tolerance 1e-12 (with one or more spaces)- -tolerance=1e-12 (with = sign and no spaces)

Option names must begin with one or more dashes (‘-’). Options may have at most one
value.

If option name is not found in the database, the default value is returned. If needed, the user
can also specify a default value to return when the option name is not found in the database.
The method HaveOption will query the database for an option.

File didasko/examples/triutils/ex2.cpp gives an example of the usage of
this class.

5.2 Trilinos Util::CrsMatrixGallery
The class Trilinos_Util::CrsMatrixGalleryprovides functions similar to the MAT-
LAB’s gallery function10.

A typical constructor requires the problem type and an Epetra Comm, and is followed by
a set of instructions to specify the problem. The following example creates a matrix corre-
sponding to the discretization of a 2D Laplacian on a Cartesian grid with 100 points:

Trilinos_Util::CrsMatrixGallery Gallery("laplace_2d", Comm);
Gallery.Set("problem_size",100);
Gallery.Set("map_type","linear");
Gallery.Set("exact_solution","random");

The nodes are decomposed linearly, and the exact solution is a random vector.
The next example will read a matrix stored in Harwell/Boeing format:

Trilinos_Util::CrsMatrixGallery Gallery("hb", Comm);
Gallery.Set("matrix_name","bcsstk14.rsa");
Gallery.Set("map_type","greedy");

10Many of the matrices that can be created using Trilinos Util::CrsMatrixGallery are equivalent or simiilar to
those provided by the MATLAB c

0
function gallery. In these cases, the reader is referred to the MATLAB

documentation for more details about the matrices’ properties.
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The example reads the matrix (and, if available, solution and right-hand side) from the file
bcsstk14.rsa, and partitions the matrix across the processes using a simple greedy algo-
rithm.

Once all the required parameters have been specified, the user can get a pointer to the
constructed Epetra CrsMatrix, to the exact and starting solution, and to the right-hand side
(both Epetra Vector’s):

A = Gallery.GetMatrix();
ExactSolution = Gallery.GetExactSolution();
RHS = Gallery.GetRHS();
StartingSolution = Gallery.GetStartingSolution();

An Epetra LinearProblem is defined by

Epetra_LinearProblem Problem(A,StartingSolution,RHS);

Next one may use AztecOO to solve the linear system:

AztecOO Solver(Problem);
Solver.SetAztecOption( AZ_precond, AZ_dom_decomp );
Solver.Iterate(1000,1E-9);

Using Trilinos Util::MatrixGallery, one computes the true residual and the difference between
computed and exact solution:

double residual;
Gallery.ComputeResidual(&residual);

Gallery.ComputeDiffBetweenStartingAndExactSolutions(&residual);

A list of methods implemented by Trilinos Util::CrsMatrixGallery is reported in Table 7.
The matrix can be written on a file in MATLAB format, using

string FileName = "matrix.m";
bool UseSparse = false;
Gallert.WriteMatrix(FileName,UseSparse);

If UseSparse is true, the matrix is created in sparse format (using the MATLAB command
spalloc).

To sum up, the main options reviewed here are:

problem type [string] Specifies the problem type. A list of currently available
problems is reported later in this section.
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GetMatrix()
Returns a pointer to the internally stored Epetra CrsMatrix.

GetExactSolution()
Returns a pointer to the internally stored exact solution vector (as an Epetra Vector).

GetStartingSolution()
Returns a pointer to the internally stored starting solution vector (as an Epe-
tra Vector).

GetRhs()
Returns a pointer to the internally stored right-hand side (as an Epetra Vector).

GetLinearProblem()
Returns a pointer to the internally stored Epetra LinearProblem for the VBR ma-
trix).

GetMap()
Returns a pointer to the internally stored Epetra Map.

Table 7. Methods of class Trilinos Util::CrsMatrixGallery.

49



problem size [int] Size of the problem. Note that some problems, defined on
structured meshes, allow the specification of the number of nodes
on the x-, y- and z-axis. Please refer to each problem’s description
for more details.

nx [int] Number of nodes in the x-direction (if supported by the spe-
cific problem).

ny [int] Number of nodes in the y-direction (if supported by the spe-
cific problem).

nz [int] Number of nodes in the z-direction (if supported by the spe-
cific problem).

mx [int] Number of processes in the x-direction (if supported by the
specific problem).

my [int] Number of processes in the y-direction (if supported by the
specific problem).

mz [int] Number of processes in the z-direction (if supported by the
specific problem).

map type [string] Defines the data layout across the processes. See Table 8.

exact solution [string] Defines the exact solution. See Table 9.

starting solution [string] Defines the starting solution vector. It can be: zero or
random.

A list of currently avaialble problems is reported below. We use the following notation.
IntValue always refer to a generic positive integer. The following symbolsa,b,c,d,e,f,g
always refer to double-precision values. Note that some matrices are dense, but still stored as
Epetra CrsMatrix, a sparse matrix format. The generic M m*o=p P element of a given matrix is W C�q L
(for simplicity, we suppose that indices start from 111). r represents the matrix size.

eye Creates an identity matrix. The size of the problem is set us-
ing Set("problem size", IntValue), or, alternatively, by
Set("nx", IntValue).

11It is understood that, in the actual implementation, indices start from 0.
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linear Create a linear map. Elements are divided into continuous
chunks among the processors. This is the default value.

box Used for problems defined on Cartesian grids over a square.
The domain is subdivided into mx x my subdomains.
mx and my are automatically computed if the total num-
ber or processes is a perfect square. Alternatively, mx
and my are specified via Set("mx",IntValue) and
Set("my",IntValue).

interlaced Elements are subdivided so that element i is assigned to pro-
cess i%NumProcs.

random Assign each node to a random process
greedy (only for HB matrices) implements a greedy algorithm to

decompose the graph of the HB matrix among the processes

Table 8. Available map type optins.

random Random values
constant All elements set to 1.0.
quad x Nodes are supposed to be distributed over the 1D segmentM 	 o � P , with equal spacing, and the solution is computed asJ M �&b J P .quad xy Nodes are supposed to be distributed over the squareM 	 o � Pts M 	 o � P , with equal spacing, and the solution is com-

puted as J M �nb J Pvu M �&b u�P .
Table 9. Available exact solution options.

51



cauchy Creates a particular instance of a Cauchy matrix with elementsW C�q L S �xw M mXYyp P . Explicit formulas are known for the inverse and
determinant of a Cauchy matrix. For this particular Cauchy matrix,
the determinant is nonzero and the matrix is totally positive.

cross stencil 2d Creates a matrix with the same stencil of laplace 2d, but with
arbitrary values. The stencil isWkS z{ e

b a c
d

|} d
The default values are a=5, b=c=d=e=1. The problem size is
specified as in laplace 2d.

cross stencil 3d Similar to the 2D case. The matrix stencil correspond to that of a
3D Laplace operator on a structured grid. On a given x-y plane, the
stencil is as in laplace 2d. The value on the plane below is set
using Set("f",F), and in the plane above with Set("g",G").
The default values are a=7,b=c=d=e=f=g=1. The problem size
is specified as in laplace3d.

diag Creates a diagonal matrix. The elements on the diagonal can be set
using Set("a",value). Default value is a = 1. The problem
size is set as for eye.

fiedler Creates a matrix whose element are W C�q L S I m b p I . The matrix is
symmetric, and has a dominant positive eigenvalue, and all the other
eigenvalues are negative.

hanowa Creates a matrix whose eigenvalues lie on a vertical line in the com-
plex plane. The matrix has the 2x2 block structure (in MATLAB’s
notation) WHS�~ a * eye(n/2) -diag(1:m)

diag(1:m) a * eye(n/2) � d
The complex eigenvalues are of the form a ��� bc� and

b ��� bZ� , for�c� � � r w� . The default value for a is -1.

hb The matrix is read from file. File name is specified by Set("file
name", FileName). FileName is a C++ string. The problem
size is automatically determined.
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hilbert This is a famous example of a badly conditioned matrix. The ele-
ments are defined as W C�q L S �xw M m�Y�p P .

jordblock Creates a Jordan block with eigenvalue set via
Set("a",DoubleVal). The default value is 0.1. The
problem size is specified as for eye.

kms Create the r s r Kac-Murdock-Szegö Toepliz matrix such thatW C�q L S��B� C @ L � (for real � only). Default value is ��S 	 d�� , or can be
set as Set("a",value). The inverse of this matrix is tridiagonal,
and the matrix is positive definite if and only if

	�� I � I �3� .
laplace 1d Creates the classical tridiagonal matrix with stencil [-1, 2, -1]. The

problem size is specified as for eye.

laplace 1d n As for laplace 1d, but with Neumann boundary condition. The
matrix is singular.

laplace 2d Creates a matrix corresponding to the stencil of a 2D Lapla-
cian operator on a structured Cartesian grid. The problem size
is specified using Set("problem size", IntValue). In
this case, IntValue must be a perfect square. Alternatively, one
can set the number of nodes along the x-axis and y-axis, using
Set("nx",IntValue) and Set("ny",IntValue).

laplace 2d n As for laplace 2d, but with Neumann boundary condition. The
matrix is singular.

laplace 3d Creates a matrix corresponding to the stencil of a 3D Laplacian op-
erator on a structured Cartesian grid. The problem size is speci-
fied using Set("problem size",IntValue). In this case,
IntValue must be a cube. Alternatively, one can specify the num-
ber of nodes along the axis, using Set("nx",IntValue),
Set("ny",IntValue), and Set("nz",IntValue).
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lehmer Returns a symmetric positive definite matrix, such thatW C�q L S�� CL if p���mL C otherwise
d

This matrix has three properties: is totally nonnegative, the inverse is
tridiagonal and explicitly known, The condition number is bounded
as r ���7� r�� M W P ����� r . The problem size is set as for eye.

minij Returns the symmetric positive definite matrix defined as W C�q L S����� M m!o=p P . The problem size is set as for eye.

ones Creates a matrix with equal elements. The default value is 1, and
cab be changed using Set("a",a).

parter Creates a matrix W C�q L S �xw M m b p�Y 	 d�� P . This matrix is a Cauchy and
a Toepliz matrix. Most of the singular values of A are very close to� . The problem size is set as for eye.

pei Creates the matrix W C�q L S � U�Y � if m��S�p�
if m9S p d d

The value of U can be set as Set("a",value), and it defaults to
1. This matrix is singular for U¡S 	 or

b r .

recirc 2d Returns a matrix corresponding to the finite-difference discretization
of the problem bn¢¤£�¥ Y M§¦©¨ o ¦©ª Pt«©¬ ¥ S3
on the unit square, with homogeneous Dirichlet boundary condi-
tions. A standard 5-pt stencil is used to discretize the diffusive term,
and a simple upwind stencil is used for the convective term. Here,¦©¨ S M u b®�xw� P!¯ o ¦xª S M �xw���b J P*¯
The value of

¢
can be specified using Set("diff",

DoubleValue), and that of ¯ using Set("conv",
DoubleValues). The default values are

¢ S ��	 @�° o ¯ S �
. The

problem size is specified as in laplace 3d.
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ris Returns a symmetric Hankel matrix with elements W C�q L S 	 d�� w M r bm b p�Y � d�� P , where r is problem size. The eigenvalues of A cluster
around

b � w�� and � w�� .
tridiag Creates a tridiagonal matrix. The diagonal element is set using

Set("a", a), the subdiagonal using Set("b",b), and the su-
perdiagonal using Set("c",c). The default values are a=2,
b=c=1. The problem size is specified as for eye.

uni flow 2d Returns a matrix corresponding to the finite-difference discretization
of the problem bn¢¤£�¥ Y M§¦©¨ o ¦©ª Pt«©¬ ¥ S3
on the unit square, with homogeneous Dirichlet boundary condi-
tions. A standard 5-pt stencil is used to discretize the diffusive term,
and a simple upwind stencil is used for the convective term. Here,¦x¨ S �±�
² M U P!¯ o ¦xª S ² m³r M U P!¯
that corresponds to an unidirectional 2D flow. The value of

¢
can be specified using Set("diff", DoubleValue), and that
of ¯ using Set("conv", DoubleValue), and that of U us-
ing Set("alpha", DoubleValue). The default values are¯ S � o ¢ S ��	 @�° o´UµS 	

. The problem size is specified as in
laplace3d.

Class Trilinos Util::VrbMatrixGallery, derived from Trilinos Util::CrsMatrixGallery, can
be used to generate VBR matrices. The class creates an Epetra CrsMatrix (following user’s
defined parameters, as previously specified), then “expands” this matrix into a VBR matrix.
This VBR matrix is based on an Epetra BlockMap, based on the Epetra Map used to de-
fine the Epetra CrsMatrix. The number of PDE equations per node is set with parameter
num_pde_eqns. The Epetra CrsMatrix is expanded into a VBR matrix by replicating the
matrix num_pde_eqns times for each equation.

A list of methods implemented by Trilinos Util::VrbMatrixGallery is reported in Table 10.

Trilinos Util::CrsMatrixGallery can be used in conjuction with Trilinos Util::CommandLineParser
as in the following code:

int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
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GetVrbMatrix()
Returns a pointer to the internally stored VBR matrix.
GetVrbExactSolution()
Returns a pointer to the internally stored exact solution vector (as an Epetra Vector).
GetVrbStartingSolution()
Returns a pointer to the internally stored starting solution vector (as an Epe-
tra Vector).
GetVrbRhs()
Returns a pointer to the internally stored right-hand side (as an Epetra Vector).
GetVrbLinearProblem()
Returns a pointer to the internally stored Epetra LinearProblem.
GetBlockMap()
Returns a pointer to the internally stored Epetra BlockMap.

Table 10. Methods of class Trilinos Util::VbrMatrixGallery.

#else
Epetra_SerialComm Comm;

#endif

Epetra_Time Time(Comm);

Trilinos_Util::CommandLineParser CLP(argc,argv);
Trilinos_Util::CrsMatrixGallery Gallery("", Comm);

Gallery.Set(CLP);

// get matrix
Epetra_CrsMatrix * Matrix = Gallery.GetMatrix();
Epetra_Vector * LHS = Gallery.GetLHS();
Epetra_Vector * StartingSolution = Gallery.GetStartingSolution();
Epetra_Vector * ExactSolution = Gallery.GetExactSolution();
Epetra_LinearProblem * Problem = Gallery.GetLinearProblem();

// various computatons...

// check that computed solution (in StartingSolution)
// is close enough the ExactSolution
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double residual, diff;

Gallery.ComputeResidual(&residual);
Gallery.ComputeDiffBetweenStartingAndExactSolutions(&diff);

if( Comm.MyPID()==0 )
cout << "||b-Ax||_2 = " << residual << endl;

if( Comm.MyPID()==0 )
cout << "||x_exact - x||_2 = " << diff << endl;

#ifdef HAVE_MPI
MPI_Finalize() ;

#endif

return 0 ;

}

This program can be executed with the following command line:

[msala:triutils]> mpirun -np 4 ex1.exe -problem_type=laplace_2d \
-problem_size=10000

Matrix gallery option names shall be specified with an additional leading dash (“-”). Options
values will be specified as usual.

Remark 13. Most of the examples reported in the following chapters use both
Trilinos Util::CommandLineParser and Trilinos Util::CrsMatrixGallery to define the distributed
matrix. The user is encouraged to test a given method using matrices with different numerical
properties.
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6 Iterative Solution of Linear Systems with AztecOO
The AztecOO [18] package extends the Aztec library [37]. Aztec is the legacy iterative solver
at the Sandia National Laboratories. It has been extracted from the MPSalsa reacting flow
code [34, 32], and it is currently installed in dozens of Sandia’s applications. AztecOO extends
this package, using C++ classes to enable more sophisticated uses.

AztecOO is intended for the iterative solution of linear systems of the formW�l¶Sk\�o (1)

when W ·¹¸ G»º
G is the linear system matrix, l the solution, and \ the right-hand side.
Although AztecOO can live independently of Epetra, in this tutorial it is supposed that W is an
Epetra RowMatrix, and both l and \ are Epetra Vector or Epetra MultiVector objects.

The Chapter reviews the following topics:- Outline the basic issued of the iterative solution of linear systems (in ¼ 6.1);- Present the basic usage of AztecOO (in ¼ 6.2);- Define one-level domain decomposition preconditioners (in ¼ 6.3);- Use of AztecOO problems as preconditioners to other AztecOO problems (in ¼ 6.4).

6.1 Theoretical Background

Our aim is to briefly present the vocabulary and notation required to define the main features
available to users. The Section is neither exhaustive, nor complete. Readers are referred to the
existing literature for a comprehensive presentation (see, for instance, [4, 2, 28]).

One can distinguish between two different aspects of the iterative solution of a linear sys-
tem. The first one in the particular acceleration technique for a sequence of iterations vectors,
that is a technique used to construct a new approximation for the solution, with information
from previous approximations. This leads to specific iteration methods, generally of Krylov
type, such as conjugate gradient or GMRES. The second aspect is the transformation of the
given system to one that is solved more efficiently by a particular iteration method. This
is called preconditioning. A good preconditioner improves the convergence of the iterative
method, sufficiently to overcome the extra cost of its construction and application. Indeed,
without a preconditioner the iterative method may even fail to converge in practice.

The convergence of iterative methods depends on the spectral properties of the linear sys-
tem matrix. The basic idea is to replace the original system (1) by the left preconditioned
system, ½ @BA W lµS ½ @BA \
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or the right preconditioned system W ½ @BA ½ l¾SV\
using the linear transformation

½ @BA , called preconditioner, in order to improve the spectral
properties of the linear system matrix. In general terms, a preconditioner is any kind of trans-
formation applied to the original system which makes it easier to solve.

From a modern perspective, the general problem of finding an efficient preconditioner is
to identify a linear operator

½
with the following properties:

1.
½ @BA W is near to the identity matrix

2. The cost of applying the preconditioner is relatively low.

3. Preconditioning is scalable.

The role of the
½

in the iterative method is simple. At each iteration, it is necessary to
solve an auxiliary linear system

½Z¿ 6 SÁÀ 6 for
¿ 6 given À 6 . It is unnecessary to explicitly

invert
½

.
It should be stressed that computing the inverse of

½
is not mandatory; actually, the role

of
½

is to “preconditioning” the residual at step Â , À 6 , through the solution of the additional
system

½Z¿ 6 SjÀ 6 . This system
½Z¿ 6 SÃÀ 6 should be much easier to solve than the original

system.
The choice of

½
varies from “black-box” algebraic techniques for general matrices to

“problem dependent” preconditioners that exploit special features of a particular class of prob-
lems. Although problem dependent preconditioners may be very powerful, there is still a
practical need for efficient preconditioning techniques for large classes of problems. Even
the “black-box” preconditioners require parameters, and suitable parameter settings do vary.
Between these two extrema, there is a class of preconditioners which are “general-purpose”
for a particular – although large – class of problems. These preconditioners are sometimes
called “gray-box” preconditioners; users supply a little information about the matrix and the
problem to be solved.

The AztecOO preconditioners include Jacobi, Gauss-Seidel, polynomial and domain de-
composition based methods [35]. Furthermore preconditioners can be given to an AztecOO
Krylov accelerator, by using the Trilinos packages IFPACK and ML, covered in ¼ 7 and 9,
respectively.

6.2 Basic Usage
First we delineate the steps required to apply AztecOO to a linear system. To solve a linear
system with AztecOO, one must create an Epetra_LinearProblem object (see ¼ 4.4)
with the command
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Epetra_LinearProblem Problem(&A,&x,&b);

A is an Epetra matrix, and both x and b are Epetra vectors12. Second create an AztecOO
object,

AztecOO Solver(Problem);

Next specify how to solve the linear system. All AztecOO options are set using two vectors,
one of integers and the other of doubles, as detailed in the Aztec’s User Guide [37].

To choose among the different AztecOO parameters, the user can create two vectors, usu-
ally called options and params, set them to the default values, and then override with the
desired parameters. Here’s how to set default values:

int options[AZ_OPTIONS_SIZE];
double params[AZ_PARAMS_SIZE];
AZ_defaults(options, params);

Solver.SetAllAztecOptions( options );
Solver.SetAllAztecParams( params );

The latter two functions copy the values of options and params to variables internal to the
AztecOO object.

Alternatively, it is possible to set specific parameters without creating options and
params, using the AztecOO methods SetAztecOption() and SetAztecParams().
For instance,

Solver.SetAztecOption( AZ_precond, AZ_Jacobi );

to specify a point Jacobi preconditioner. (Please see to the Aztec documentation [18] for more
details about the various Aztec settings.)

Finally solve the linear system, say with a maximum of
� ��� 	 iterations and the residual

error norm threshold
�(	 @�Ä :

Solver.Iterate(1550,1E-9);

The complete code is in didasko/examples/aztec/ex1.cpp.
Note that the matrix must be in local form (that is, the command A.FillComplete()

must have been invoked before solving the linear system). The same AztecOO linear system
solution procedure applies in serial and in parallel. However for some preconditioners, the
convergence rate (and the number of iterations) depends on the number of processor.

When Iterate() returns, one can query for the number of iterations performed by the
linear solver using Solver.NumIters(), while Solver.TrueResidual() gives the
(unscaled) norm the residual.

12At the current stage of development, AztecOO does not take advantage of the Epetra MultiVectors. It accepts
Multi Vectors, but it will solve the linear system corresponding to the first multivector only. The Belos package
implements block Krylov subspace methods that are significantly more efficient for linear systems with multiple
simultaneous right-hand sides.
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6.3 Overlapping Domain Decomposition Preconditioners

A one level overlapping domain decomposition preconditioners
½

takes the form½ @BA S ÅÆ CED AÈÇ ]CÊÉW @BAC Ç C o (2)

The number of subdomains is Ë , Ç C is a rectangular Boolean matrix that restricts a global
vector to the subspace defined by the interior of the m th subdomain, and ÉW C approximatesW C S Ç C W Ç ]C d (3)

( ÉW C may equal W C ). Typically, ÉW C differs from W C when incomplete factorizations are used in
(2) to apply ÉW @BAC , or when a matrix different from W is used in (3).

(3), The specification starts with

Solver.SetAztecOption( AZ_precond, AZ_dom_decomp );

Next if an incomplete factorization of W C will be used, then specify its parameters:

Solver.SetAztecOption( AZ_subdomain_solve, AZ_ilu );
Solver.SetAztecOption( AZ_graph_fill, 1 );

On the other hand, exact subdomain solves 13 are specified like this:

Solver.SetAztecOption( AZ_subdomain_solve, AZ_lu );

The default amount of overlap is
	
; this is equivalent to “block” Jacobi preconditioning

with block size equal to the size of the subdomain. If amount of overlap is one ( � ),

Solver.SetAztecOption( AZ_overlap, 1 );

then the “block” is augmented by all distance one ( � ), neighbors in the sparse matrix graph.

Remark 14. Two-level domain decomposition schemes [35] are available through AztecOO
in conjunction with ML. Please see ¼ 9.5.

Remark 15. The IFPACK Trilinos package (see ¼ 7) computes different incomplete factoriza-
tions.

13AztecOO must be configured with the option --enable-aztecoo-azlu, and the package Y12M is
required.
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Consider for example a Laplace equation descretized with the � -point stencil over a regular
Cartesian grid on a square. If Ì is the mesh size, then the condition number of the unprecon-
ditioned system is Í M Ì P @ Q . In theory [35] if Î is the size of each (square) subdomain, a one
level Schwarz preconditioner with minimal overlap yields a preconditioned linear system with
condition number Í M Ì�Î P @BA . The AztecOO preconditioner delivers the Table 11 gives the
estimated condition numbers for the corresponding AztecOO preconditioner.

The corresponding source code is contained in
didasko/examples/aztecoo/ex3.cpp
The code uses the Trilinos Util CrsMatrixGallery class to create the matrix. The command to
estimate the condition number with ÌÏS �xw
Ð�	 and ÎÑS �xwÒ is

mpirun -np 9 ex3.exe -problem_type=laplace_2d \
-problem_size=900 -map_type=boxÌÏS �xwÒ�	 ÌÏS �xwÐ	 ÌÏS �xw��x�	Î¾S �xw
Ò 40.01 83.80 183.41Î¾S �xw©� 51.46 106.01 223.22Î¾S �xw
Ð 79.19 150.40 311.26Î¾S �xw
� - 191.06 403.29

Table 11. Condition number for one-level domain decomposition
preconditioner on a square.

6.4 AztecOO Problems as Preconditioners
Preconditioners fall into two categories. In the first category are preconditioners that are a
function of the entires of the coefficient matrix. Examples include Jacobi, Gauss-Seidel, in-
complete factorizations, and domain decomposition preconditioners. The second category
contains preconditioners such as polynomial preconditioners that are defined by the action of
the matrix on some set of vectors. For example only category two preconditioners apply in
matrix free mode. The topic of this section is another type of category two preconditioner,
preconditioning one Krylov subspace method by another Krylov subspace method,

AztecOO accepts Epetra Operator objects as preconditioners. That is any class, derived
from an Epetra Operator implementing the method ApplyInverse() may also be used
as a preconditioner, using SetPreOperator(). AztecOO itself can be used to define a
preconditioner for AztecOO; the class AztecOO Operator (which takes an AztecOO object in
the construction phase) is derived from Epetra Operator.

File didasko/examples/aztecoo/ex2.cpp shows how to use an AztecOO solver
in the preconditioning phase. The main steps are sketched here.
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First, we have to specify the linear problem to be solved (set the linear operator, the solu-
tion and the right-hand side), and create an AztecOO object:

Epetra_LinearProblem A_Problem(&A, &x, &b);
AztecOO A_Solver(A_Problem);

Now, we have to define the preconditioner. For the sake of clarity, we use the same Epe-
tra Matrix A in the preconditioning phase. However, the two matrices may differ.

Epetra_CrsMatrix P(A);

(This operation is in general expensive as it involves the copy constructor. It is used here for
the sake of clarity.) Then, we create the linear problem that will be used as a preconditioner.
This takes a few steps to explain. Note that all the P prefix identifies preconditioner’ objects.

1. Create the linear system solve at each preconditioning step, and and we assign the linear
operator (in this case, the matrix A itself)

Epetra_LinearProblem P_Problem;
P_Problem.SetOperator(&P);

2. As we wish to use AztecOO to solve the preconditioner step recursively, we have to
define an AztecOO object:

AztecOO P_Solver(P_Problem);

3. Specify a particular preconditioner:

P_Solver.SetAztecOption(AZ_precond, AZ_Jacobi);
P_Solver.SetAztecOption(AZ_output, AZ_none);
P_Solver.SetAztecOption(AZ_solver, AZ_cg);

4. Create an AztecOO Operator, to set the Aztec’s preconditioner with and set the users
defined preconditioners:

AztecOO_Operator
P_Operator(&P_Solver, 10);
A_Solver.SetPrecOperator(&P_Operator);

(Here 10 is the maximum number of iterations of the AztecOO solver in the precondi-
tioning phase.)

5. Solve the linear system:

int Niters=100;
A_Solver.SetAztecOption(AZ_kspace, Niters);
A_Solver.SetAztecOption(AZ_solver, AZ_gmres);
A_Solver.Iterate(Niters, 1.0E-12);
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AZ_cg Conjugate Gradient method (intended for symmetric posi-
tive definite matrices).

AZ_cg_condnum AZ_cg that also estimates the condition number
of the preconditioned linear system (returned in
params[AZ_condnum])

AZ_gmres restarted Generalized Minimal Residual method
AZ_gmres_condnum AZ_gmres that also estimates the condition num-

ber of the preconditioned linear operator (returned in
params[AZ_condnum])

AZ_cgs Conjugate Gradient Squared method
AZ_tfqmr Transpose-Free Quasi Minimal Residual method
AZ_bicgstab Bi-Conjugate Gradient with Stabilization method
AZ_lu Serial sparse direct linear solver available if AztecOO is

configured with --enable-aztecoo-azlu

Table 12. options[AZ solver] Choices

6.5 Concluding Remarks on AztecOO
The following methods are often used:- NumIters() returns the total number of iterations performed on this problem;- TrueResidal() returns the true unscaled residual;- ScaledResidual() returns the unscaled residual;- SetAztecDefaults() can be used to restore default values in the options and

params vectors.

NumIters() is useful in performance optimization. A less costly preconditioner is vi-
able if NumIters() is “small”, and a more costly preconditioner may be worthwhile if
NumIters() is “large”. Many iterative methods with right preconditioning apply the resid-
ual error norm threshold to the preconditioned residual,

½ @BA À , instead of ÀÓS Ô b W J .
TrueResidal() will always return the unscaled residual norm.
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7 Incomplete Factorizations with IFPACK
IFPACK provides a suite of object-oriented algebraic preconditioners for the solution of pre-
conditioned iterative solvers. IFPACK offers a variety of overlapping (one-level) Schwarz
preconditioners. The package uses Epetra for basic matrix-vector calculations, and accepts
user matrices via an abstract matrix interface. A concrete implementation for Epetra matrices
is provided. The package separates graph construction from factorization, improving perfor-
mance in a substantial manner with respect to other factorization packages.

In this Chapter we discuss the use of IFPACK objects as preconditioners for AztecOO
solvers. Specifically we present:- Parallel distributed memory issues (in Section 7.2).- Incomplete factorizations and set the notation (in Section 7.1).- How to compute incomplete Cholesky factorizations (in Section 7.3).- IFPACK’s RILU-type factorizations (in Section 7.4).

7.1 Theoretical Background

The aim of this section is to define concepts associated with incomplete factorization methods
and establish our notation. This section is not supposed to be exhaustive, nor complete on this
subject. The reader is referred to the existing literature for a comprehensive presentation.

A broad class of effective preconditioners is based on incomplete factorization of the linear
system matrix. Such preconditioners are often referred to as incomplete lower/upper (ILU)
preconditioners. ILU preconditioning techniques lie between direct and iterative methods
and provide a balance between reliability and numerical efficiency. ILU preconditioners are
constructed in the factored form

½ S ÉÕ ÉÖ , with ÉÕ and ÉÖ being lower and upper triangular
matrices. Solving with

½
involves two triangular solutions.

ILU preconditioners are based on the observation that, although most matrices W admit
an LU factorization W×S ÕØÖ

, where
Õ

is (unit) lower triangular and
Ö

is upper triangular,
the factors

Õ
and

Ö
often contain too many nonzero terms, making the cost of factorization

too expensive in time or memory use, or both. One type of ILU preconditioner is ILU(0),
which is defined as proceeding through the standard LU decomposition computations, but
keeping only those terms in ÉÕ that correspond to nonzero terms in the lower triangle of W and
similarly keeping only those terms in ÉÖ that correspond to nonzero terms in the upper triangle
of W . Although effective, in some cases the accuracy of the ILU(0) may be insufficient to
yield an adequate rate of convergence. More accurate factorizations will differ from ILU(0)
by allowing some fill-in. The resulting class of methods is called ILU( � ), where � is the level-
of-fill. A level-of-fill is attributed to each element that is processed by Gaussian elimination,

65



and dropping will be based on the level-of-fill. The level-of-fill should be indicative of the
size of the element: the higher the level-of-fill, the smaller the elements.

Other strategies consider dropping by value – for example, dropping entries smaller than
a prescribed threshold. Alternative dropping techniques can be based on the numerical size
of the element to be discarded. Numerical dropping strategies generally yield more accurate
factorizations with the same amount of fill-in as level-of-fill methods. The general strategy is
to compute an entire row of the ÉÕ and ÉÖ matrices, and then keep only a certain number of
the largest entries. In this way, the amount of fill-in is controlled; however, the structure of
the resulting matrices is undefined. These factorizations are usually referred to as ILUT, and
a variant which performs pivoting is called ILUTP.

When solving a single linear system, ILUT methods can be more effective than ILU( � ).
However, in many situations a sequence of linear systems must be solved where the pattern of
the matrix W in each system is identical but the values of changed. In these situations, ILU( � )
is typically much more effective because the pattern of ILU( � ) will also be the same for each
linear system and the overhead of computing the pattern is amortized.

7.2 Parallel Incomplete Factorizations

Parallel direct sparse solvers that compute the complete factorization W�S ÕØÖ
are effective

on parallel computers. However, the effective scalability of these solvers is typically limited
to a speedup of order ten, regardless of the number of processors used. Also, it is typically the
factorization (constructing

Õ
and

Ö
) that exhibits the best parallel speedup. The forward and

back triangular solves typically exhibit very poor parallel speedup.
The situation for ILU preconditioners is even worse. Complete factorizations can scale

well because of very important graph properties that can be determined at low cost. ILU
factorizations do not have the same properties, so predicting fill-in across the parallel machine
is not practically possible. Also, because ILU preconditioners require repeated forward and
back solves, they are more affected by the poor scalability of these operations.

Because ILU preconditioners do not scale well on parallel computers, a common practice
is to perform local ILU factorizations. In this situation, each processor computes a factor-
ization of a subset of matrix rows and columns independently from all other processors. This
additional layer of approximation leads to a block Jacobi type of preconditioner across proces-
sors, where each block is solved using an ILU preconditioner. The difficulty with this type of
preconditioner is that it tends to become less robust and require more iterations as the number
of processors used increases. This effect can be offset to some extent by allowing overlap.
Overlap refers to having processors redundantly own certain rows of the matrix for the ILU
factorization. Level-1 overlap is defined so that a processor will include rows that are part of
its original set. In addition, if row m is part of its original set and row m of W has a nonzero entry
in column p , then row p will also be included in the factorization on that processor. Other
levels of overlap are computed recursively. IFPACK supports an arbitrary level of overlap.
However, level-1 is often most effective. Seldom more than 3 levels are needed.
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7.3 Incomplete Cholesky Factorizations

Recall that if a matrix is symmetric positive definite, it admits a Cholesky factorization of
the form WeS ÕÙÕ ] , where

Õ
is lower triangular. Ifpack CrsIct is a class for constructing

and using incomplete Cholesky factorizations of an Epetra CrsMatrix. It is built in part on
top of the ICT preconditioner developed by Edmond Chow at Lawrence Livermore National
Laboratory [26]. Specific factorizations depend on several parameters:- Maximum number of entries per row/column. The factorization will contain at most this

number of nonzero elements in each row/column;- Diagonal perturbation. By default, the factorization will be computed on the input ma-
trix. However, it is possible to modify the diagonal entries of the matrix to be factorized,
via functionsSetAbsoluteThreshold() and SetRelativeThreshold(). Re-
fer to the IFPACK’s documentation for more details.

It is easy to have IFPACK compute the incomplete factorization. First, define an If-
pack CrsIct object,

Ifpack_CrsIct * ICT = NULL;
ICT = Ifpack_CrsIct(A,DropTol,LevelFill);

where A is an Epetra CrsMatrix (already FillComplete’d), and DropTop and LevelFill
are the drop tolerance and the level-of-fill, respectively. Then, we can set the values and
compute the factors,

ICT->InitValues(A);
ICT->Factor();

IFPACK can compute the estimation of the condition number�±� rÚ� M Õ C Ö CÛPÝÜßÞ M ÕØÖ P @BA*à Þ7á o
where à S M � o � o d(d#d o � P ] . (More details can be found in the IFPACK documentation.) This
estimation can be computed as follows:

double Condest;
ICT->Condest(false,Condest);

Please refer to file didasko/examples/ifpack/ex1.cpp for a complete example of
incomplete Cholesky factorization.
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7.4 RILUK Factorizations
IFPACK implements various incomplete factorization for non-symmetric matrices. In this
Section, we will consider the Epetra CrsRiluk class, that can be used to produce RILU factor-
ization of a Epetra CrsMatrix. The class required an Ifpack OverlapGraph in the construction
phase. This means that the factorization is split into two parts:

1. Definition of the level filled graph;

2. Computation of the factors.

This approach can significantly improve the performances of code, when an ILU precondi-
tioner has to be computed for several matrices, with different entries but with the same sparsity
pattern. An Ifpack IlukGraph object of an Epetra matrix A can be constructed as follows:

Ifpack_IlukGraph Graph =
Ifpack_IlukGraph(A.Graph(),LevelFill,LevelOverlap);

Here, LevelOverlap is the required overlap among the subdomains.
A call to ConstructFilledGraph() completes the process.

Remark 16. An Ifpack IlukGraph object has two Epetra CrsGraph objects, containing theÕ C and
Ö C graphs. Thus, it is possible to manually insert and delete graph entries in

Õ C andÖ C via the Epetra CrsGraphInsertIndices and RemoveIndices functions. However, in this case
FillComplete must be called before the graph is used for subsequent operations.

At this point, we can create an Ifpack CrsRiluk object,

ILUK = Ifpack_CrsRiluk(Graph);

This phase defined the graph for the incomplete factorization, without computing the actual
values of the

Õ C and
Ö C factors. Instead, this operation is accomplished with

int initerr = ILUK->InitValues(A);

The ILUK object can be used with AztecOO simply setting

solver.SetPrecOperator(ILUK);

where solver is an AztecOO object. The example in
didasko/examples/ifpack/ex2.cpp shows the use of the Ifpack CrsRiluk class.

The application of the incomplete factors to a global vector,
¿ S M Õ C Ö @BAC P À , results in

redundant approximation for any element of
¿

that correspond to rows that are part of more
than one local ILU factor. The OverlapMode defines how those redundant values are man-
aged. OverlapMode is an Epetra CombinedMode enum, that can assume the following values:
Add, Zero, Insert, Average, AbxMax. The default is to zero out all the values of¿

for rows that were not part of the original matrix row distribution.
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7.5 Concluding Remarks on IFPACK
More documentation on the IFPACK package can be found in [16, 14].
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8 The Teuchos Utility Classes
Teuchos (pronounced “te-fos”) is a collection of portable C++ tools that facilitate the develop-
ment of scientific codes. Only a few of the many tools in Teuchos are mentioned in this section.
For more details on all of the capabilities provided by Teuchos, please refer to the online doc-
umentation (http://software.sandia.gov/trilinos/packages/teuchos).

Teuchos classes have been divided between a “standard” build and an “extended” build.
The “standard” build contains the general purpose templated tools like BLAS/LAPACK wrap-
pers, parameter lists, a command-line parser, serial dense matrices, timers, flop counters, and
a reference-counted pointer class. These tools are built by default when Teuchos is enabled
using the configure option --enable-teuchos. The “extended” build contains more spe-
cial purpose tools like XML parsing and MPI communicators, which can be included in the
Teuchos library by using the configure option --enable-teuchos-extended.

In this Chapter, we will present the following “standard” build classes:- Teuchos::ScalarTraits class (Section 8.1): The ScalarTraits class provides a
basic interface to scalar types (float, double, complex

�
float â , complex

�
double â ) that

is used by the templated computational classes within Teuchos. It is the mechanism by
which Teuchos’ capabilities can be extended to support arbitrary precisions.- Teuchos::SerialDenseMatrix class (Section 8.2): The SerialDenseMatrix is
a templated version of the Epetra_SerialDenseMatrix class that is most often
used to interface with the templated BLAS/LAPACK wrappers.- Teuchos::BLAS class (Section 8.3): The BLAS class provides templated wrappers
for the native BLAS library and can be extended to support arbitrary precision compu-
tations.- Teuchos::LAPACK class (Section 8.4): The LAPACK class provides templated wrap-
pers for the native LAPACK library.- Teuchos::ParameterList class (Section 8.5): ParameterList is a container that
can be used to group all the parameters required by a given piece of code.- Teuchos::RefCountPtr class (Section 8.6): RefCountPtr is a smart reference-
counted pointer class, which provides a functionality similar to the garbage collector of
Java.- Teuchos::TimeMonitor class (Section 8.7): TimeMonitor is a timing class that
starts a timer when it is initialized and stops it when the destructor is called on the class.- Teuchos::CommandLineProcessor class (Section 8.8): CommandLineProces-
sor is a class that helps parse command line input arguments from (argc,argv[]).
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8.1 Teuchos::ScalarTraits
The ScalarTraits class provides a basic interface to scalar types (float, double, complex

�
float â ,

complex
�

double â ) that is used by the templated computational classes within Teuchos. This
interface includes a definition of the magnitude type and methods for obtaining random num-
bers, representations of zero and one, the square root, and machine-specific parameters. The
Teuchos classes that utilize this scalar traits mechanism are Teuchos::SerialDenseMatrix,
Teuchos::BLAS, and Teuchos::LAPACK.

ScalarTraits enables the extension of Teuchos’ computational capabilities to any scalar
type that can support its basic interface. In particular, this interface can be used for arbitrary
precision scalar types. An interface to the arbitrary precision library ARPREC [3] is avail-
able if Teuchos is configured with --enable-teuchos-arprec. Teuchos must also be
configured with the local ARPREC library paths (--with-libs, --with-incdirs, and
--with-libdirs). To obtain more information on ARPREC or download the source code,
see http://crd.lbl.gov/ ã dhbailey/mpdist/.

Remark 17. To enable complex arithmetic (complex
�

float â or complex
�

double â ) support
in ScalarTraits or any dependent classes, configure Teuchos with --enable-teuchos-complex.

8.2 Teuchos::SerialDenseMatrix
Teuchos::SerialDenseMatrix is a templated version of the SerialDenseMatrix class
in Epetra (Chapter 3). It is most useful for interfacing with the templated BLAS and LA-
PACK wrappers, which will be discussed in Sections 8.3 and 8.4. However, by enabling the
simple construction and manipulation of small dense matrices, the SerialDenseMatrix class
has also been used as an independent tool in many Trilinos packages.

Teuchos::SerialDenseMatrix provides a serial interface to a small dense matrix
of templated scalar type. This means a SerialDenseMatrix object can be created for any scalar
type supported by Teuchos::ScalarTraits (Section 8.1). Boundschecking can be enabled for
this class by configuring Teuchos with --enable-teuchos-abc. An exception will be
thrown every time a matrix bound is violated by any method. This incurs a lot of overhead for
this class, so boundschecking is only recommended as a debugging tool.

To use the Teuchos::SerialDenseMatrix class, include the header:

#include "Teuchos_SerialDenseMatrix.hpp"

Creating a double-precision matrix can be done in several ways:

// Create an empty matrix with no dimension
Teuchos::SerialDenseMatrix<int,double> Empty_Matrix;
// Create an empty 3x4 matrix
Teuchos::SerialDenseMatrix<int,double> My_Matrix( 3, 4 );
// Basic copy of My_Matrix
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Teuchos::SerialDenseMatrix<int,double> My_Copy1( My_Matrix ),
// (Deep) Copy of principle 3x3 sub-matrix of My_Matrix

My_Copy2( Teuchos::Copy, My_Matrix, 3, 3 ),
// (Shallow) Copy of 2x3 sub-matrix of My_Matrix

My_Copy3( Teuchos::View, My_Matrix, 2, 3, 1, 1 );

The matrix dimensions and strided storage information can be obtained:

int rows = My_Copy3.numRows(); // number of rows
int cols = My_Copy3.numCols(); // number of columns
int stride = My_Copy3.stride(); // storage stride

Matrices can change dimension:

Empty_Matrix.shape( 3, 3 ); // size non-dimensional matrices
My_Matrix.reshape( 3, 3 ); // resize matrices and save values

Filling matrices with numbers can be done in several ways:

My_Matrix.random(); // random numbers
My_Copy1.putScalar( 1.0 ); // every entry is 1.0
My_Copy2(1,1) = 10.0; // individual element access
Empty_Matrix = My_Matrix; // copy My_Matrix to Empty_Matrix

Basic matrix arithmetic can be performed:

Teuchos::SerialDenseMatrix<int,double> My_Prod( 3, 2 );
// Matrix multiplication ( My_Prod = 1.0*My_Matrix*My_CopyˆT )
My_Prod.multiply( Teuchos::NO_TRANS, Teuchos::TRANS,

1.0, My_Matrix, My_Copy3, 0.0 );
My_Copy2 += My_Matrix; // Matrix addition
My_Copy2.scale( 0.5 ); // Matrix scaling

The pointer to the array of matrix values can be obtained:

double* My_Array = My_Matrix.values(); // pointer to matrix values
double* My_Column = My_Matrix[2]; // pointer to third column values

The norm of a matrix can be computed:

double norm_one = My_Matrix.normOne(); // one norm
double norm_inf = My_Matrix.normInf(); // infinity norm
double norm_fro = My_Matrix.normFrobenius(); // frobenius norm

Matrices can be compared:
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// Check if the matrices are equal in dimension and values
if (Empty_Matrix == My_Matrix) {
cout<< "The matrices are the same!" <<endl;

}
// Check if the matrices are different in dimension or values
if (My_Copy2 != My_Matrix) {
cout<< "The matrices are different!" <<endl;

}

A matrix can be sent to the output stream:

cout<< My_Matrix << endl;

This section presents examples of all the methods in the Teuchos::SerialDenseMatrix
class and can be found in didasko/examples/teuchos/ex1.cpp. There is also a
specialization of this class for serial dense vectors that includes additional creation, accessor,
arithmetic, and norm methods (Teuchos::SerialDenseVector).

8.3 Teuchos::BLAS
The Teuchos::BLAS class provides templated wrappers for the native BLAS library. This
class has been written to facilitate the interface between C++ codes and BLAS, which are
written in Fortran. Unfortunately, the interface between C++ and Fortran function calls is not
standard across all computer platforms. The Teuchos::BLAS class provides C++ wrappers
for BLAS kernels that are specialized during the Teuchos configuration. This insulates the rest
of Teuchos and its users from the details of the Fortran to C++ translation.

The Teuchos::BLAS class provides C++ wrappers for a substantial subset of the BLAS
kernels (Figure 1). The native BLAS library implementations of those kernels will be used
for the standard scalar types (float, double, complex

�
float â , complex

�
double â ). How-

ever, Teuchos::BLAS also has a templated version of each of these kernels. Paired with
Teuchos::ScalarTraits (Section 8.1), the Teuchos::BLAS class can be extended
to provide arbitrary precision computations. To use the Teuchos::BLAS class, include the
header:

#include "Teuchos_BLAS.hpp"

Creating an instance of the BLAS class for double-precision kernels looks like:

Teuchos::BLAS<int, double> blas;

This instance provides the access to all the BLAS kernels listed in Figure 1:

const int n = 10;
double alpha = 2.0;
double x[ n ];
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for ( int i=0; i<n; i++ ) { x[i] = i; }
blas.SCAL( n, alpha, x, 1 );
int max_idx = blas.IAMAX( n, x, 1 );
cout<< "The index of the maximum magnitude entry of x[] is the "

<< max_idx <<"-th and x[ " << max_idx-1 << " ] = "<< x[max_idx-1]
<< endl;

This is a small usage example, but its purpose is to illustrate that any of the supported
BLAS kernels is a method of the Teuchos::BLAS class. This example can be found in
didasko/examples/teuchos/ex2.cpp.

BLAS Kernel Description
ROTG Computes a Givens plane rotation
SCAL Scale a vector by a constant
COPY Copy one vector to another
AXPY Add one scaled vector to another
ASUM Sum the absolute values of the vector entries
DOT Compute the dot product of two vectors
NRM2 Compute the 2-norm of a vector
IAMAX Determine the index of the largest magnitude entry of a vector
GEMV Add a scaled matrix-vector product to another scaled vector
TRMV Replaces a vector with its upper/lower-triangular matrix-vector product
GER Updates a matrix with a scaled, rank-one outer product
GEMM Add a scaled matrix-matrix product to another scaled matrix
SYMM Add a scaled symmetric matrix-matrix product to another scaled matrix
TRMM Add a scaled upper/lower-triangular matrix-matrix product to another scaled matrix
TRSM Solves an upper/lower-triangular linear system with multiple right-hand sides

Figure 1. BLAS kernels supported by Teuchos::BLAS

8.4 Teuchos::LAPACK
The Teuchos::LAPACK class provides templated wrappers for the native LAPACK library.
This class has been written to facilitate the interface between C++ codes and BLAS, which
are written in Fortran. Unfortunately, the interface between C++ and Fortran function calls
is not standard across all computer platforms. The Teuchos::LAPACK class provides C++
wrappers for LAPACK routines that are specialized during the Teuchos configuration. This
insulates the rest of Teuchos and its users from the details of the Fortran to C++ translation.

Teuchos::LAPACK is a serial interface only, as LAPACK functions are. Users inter-
ested in the parallel counterpart of LAPACK, ScaLAPACK, can use the Amesos package; see
Chapter 10.
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The Teuchos::LAPACK class provides C++ wrappers for a substantial subset of the
LAPACK routines (Figure 2). The native LAPACK library implementations of those kernels
will be used for the standard scalar types (float, double, complex

�
float â , complex

�
double â ).

Unlike Teuchos::BLAS, the Teuchos::LAPACK class does not have a templated version
of these routines at this time, so it cannot offer arbitrary precision computations.

To use the Teuchos::LAPACK class, include the header:

#include "Teuchos_LAPACK.hpp"

Creating an instance of the LAPACK class for double-precision routines looks like:

Teuchos::LAPACK<int, double> lapack;

This instance provides the access to all the LAPACK routines listed in Figure 2:

Teuchos::SerialDenseMatrix<int,double> My_Matrix(4,4);
Teuchos::SerialDenseVector<int,double> My_Vector(4);
My_Matrix.random();
My_Vector.random();

// Perform an LU factorization of this matrix.
int ipiv[4], info;
char TRANS = ’N’;
lapack.GETRF( 4, 4, My_Matrix.values(), My_Matrix.stride(), ipiv, &info );

// Solve the linear system.
lapack.GETRS( TRANS, 4, 1, My_Matrix.values(), My_Matrix.stride(),

ipiv, My_Vector.values(), My_Vector.stride(), &info );

This small example illustrates how easy it is to use the Teuchos::LAPACK class. Fur-
thermore, it also exhibits the compatibility of the Teuchos::SerialDenseMatrix and
Teuchos::SerialDenseVector classes with the Teuchos::LAPACK class. This ex-
ample can be found in didasko/examples/teuchos/ex3.cpp.
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LAPACK Routine Description
POTRF Computes Cholesky factorization of a real symmetric positive definite (SPD) matrix.
POTRS Solves a system of linear equations where the matrix has been factored by POTRF.
POTRI Computes the inverse of a real SPD matrix after its been factored by POTRF.
POCON Estimates the reciprocal of the condition number (1-norm) of a real SPD matrix

after its been factored by POTRF.
POSV Computes the solution to a real system of linear equations where the matrix is SPD.
POEQU Computes row and column scaling or equilibrating a SPD matrix and reduce

its condition number.
PORFS Improves the computed solution to a system of linear equations where the matrix is SPD.
POSVX Expert SPD driver: Uses POTRF/POTRS to compute the solution to a real system of

linear equations where the matrix is SPD. The system can be equilibrated (POEQU) or
iteratively refined (PORFS) also.

GELS Solves and over/underdetermined real linear system.
GETRF Computes an LU factorization of a general matrix using partial pivoting.
GETRS Solves a system of linear equations using the LU factorization computed by GETRF.
GETRI Computes the inverse of a matrix using the LU factorization computed by GETRF.
GECON Estimates the reciprocal of the condition number of a general matrix in either

the 1-norm or ä -norm using the LU factorization computed by GETRF.
GESV Computes the solution of a linear system of equations.
GEEQU Computes row and column scaling for equilibrating a linear system, reducing its

condition number.
GERFS Improves the computes solution to a system of linear equations and provides error

bounds and backward error estimates for the solution [ Use after GETRF/GETRS ].
GESVX Expert driver: Uses GETRF/GETRS to compute the solution to a real system of linear

equations, returning error bounds on the solution and a condition estimate.
GEHRD Reduces a real general matrix to upper Hessenberg form by orthogonal similarity

transformations
HSEQR Compute the eigenvalues of a real upper Hessenberg matrix and, optionally, the

Schur decomposition.
GEES Computes the real Schur form, eigenvalues, and Schur vectors of a real nonsymmetric

matrix.
GEEV Computes the eigenvalues and, optionally, the left and/or right eigenvectors

of a real nonsymmetric matrix.
ORGHR Generates a real orthogonal matrix which is the product of the elementary reflectors

computed by GEHRD.
ORMHR Overwrites the general real matrix with the product of itself and the elementary

reflectors computed by GEHRD.
TREVC Computes some or all of the right and/or left eigenvectors of a real upper

quasi-triangular matrix.
TREXC Reorders the real Schur factorization of a real matrix via orthogonal similarity

transformations.
LARND Returns a random number from a uniform or normal distribution.
LARNV Returns a vector of random numbers from a chosen distribution.
LAMCH Determines machine parameters for floating point characteristics.
LAPY2 Computes åæ + ç�æ safely, to avoid overflow.

Figure 2. LAPACK routines supported by Teuchos::LAPACK
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8.5 Teuchos::ParameterList
The Teuchos::ParameterList class is a C++ container of

�
key, value â pairs, where

the key is a character string (std::string) and the value can be almost any type of C++
object. The ability to hold almost any type of C++ object as a value in the same list makes this
class very useful for storing parameters. This parameter list can then be passed to an object,
like an iterative linear solver, which will use the information to define its behavior.

The Teuchos::ParameterList is currently being used by several Trilinos packages.
For instance, all Amesos objects (see Chapter 10) and the smoothed aggregation precondi-
tioning object ML_Epetra::MultiLevelPreconditioner (see Section 9.4) are con-
figured through a Teuchos::ParameterList.

Remark 18. The parameter list stores a copy of the input object if it passed by reference. If
the list is passed a pointer to an object, only the pointer is copied and not the object that it
points to.

To use the Teuchos::ParameterList class, include the header:

#include "Teuchos_ParameterList.hpp"

Creating an empty parameter list looks like:

Teuchos::ParameterList My_List;

Setting parameters in this list can be easily done:

My_List.set("Max Iters", 1550);
My_List.set("Tolerance", 1e-10);
My_List.set("Solver", "GMRES");

The templated “set” method should cast the input value to the correct data type. However,
in the case where the compiler is not casting the input value to the expected data type, an
explicit cast can be used with the “set” method:

My_List.set("Tolerance", (float)(1e-10));

A hierarchy of parameter lists can be constructed using Teuchos::ParameterList.
This means another parameter list is a valid value in any parameter list. To create a sublist in
a parameter list and obtain a reference to it:

Teuchos::ParameterList& Prec_List = My_List.sublist("Preconditioner");

Now this parameter list can be filled with values:

Prec_List.set("Type", "ILU");
Prec_List.set("Drop Tolerance", 1e-3);

The parameter list can be queried about the existence of a parameter, sublist, or type:

77



// Has a solver been chosen?
bool solver_defined = My_List.isParameter("Solver");
// Has a preconditioner been chosen?
bool prec_defined = My_List.isSublist("Preconditioner");
// Has a tolerance been chosen and is it a double-precision number?
bool tol_double = My_List.template isType<double>("Tolerance");
// Has a drop tolerance been chosen and is it a double-precision number?
bool dtol_double = Teuchos::isParameterType<double>(Prec_List,

"Drop Tolerance");

The last two methods for checking the parameter type are equivalent. There is some question
as to whether the syntax of the first type-checking method (isType) is acceptable to older
compilers. Thus, the second type-checking method (isParameterType) is offered as a
portable alternative.

Parameters can be retrieved from the parameter list in quite a few ways:

// Get method that creates and sets the parameter if it doesn’t exist.
int its = My_List.get("Max Iters", 1200);
// Get method that retrieves a parameter of a particular type.
float tol = My_List.template get<float>("Tolerance");

In the above example, the first “get” method is a safe way of obtaining a parameter when
its existence is indefinite but required. The second “get” method should be used when the
existense of the parameter is definite. This method will throw an exception if the parameter
doesn’t exist. The safest way to use the second “get” method is in a try/catch block:

try {
tol = My_List.template get<float>("Tolerance");
}
catch (exception& e) {
tol = 1e-6;
}

The second “get” method uses a syntax that may not be acceptable to older compilers. Op-
tionally, there is another portable templated “get” function that can be used in the place of the
second “get” method:

try {
tol = Teuchos::getParameter<float>(My_List, "Tolerance");
}
catch (exception& e) {
tol = 1e-6;
}

A parameter list can be sent to the output stream:
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cout<< My_List << endl;

For this parameter list, the output would look like:

Max Iters = 1550
Preconditioner ->
Drop Tolerance = 0.001 [unused]
Type = ILU [unused]

Solver = GMRES [unused]
Tolerance = 1e-10

It is important to note that misspelled parameters (with additional space characters, capitaliza-
tions, etc.) may be ignored. Therefore, it is important to be aware that a given parameter has
not been used. Unused parameters can be printed with method:

My_List.unused( cout );

This section presents examples of all the methods in the Teuchos::ParameterList
class and can be found in didasko/examples/teuchos/ex4.cpp.

8.6 Teuchos::RefCountPtr
The Teuchos::RefCountPtr class is a templated class for implementing automatic garbage
collection in C++ using smart, reference-counted pointers. Using this class allows one client
to dynamically create an object and pass the object around to other clients without fear of
memory leaks. No client is required to explicitly call delete because object will be deleted
when all the clients remove their references to it. The type of garbage collection performed
by Teuchos::RefCountPtr is similar to those found in Perl and Java.

To use the Teuchos::RefCountPtr class, include the header:

#include "Teuchos_RefCountPtr.hpp"

The data type used with Teuchos::RefCountPtr should not be a built-in data type
(like int or double), this creates unnecessary overhead. Instead, it should be used to man-
age dynamic objects and data members that need to be shared with many clients. This means
that the data type will most likely be a C++ class. Consider the class hierarchy:

class A {
public:
A() {}
virtual ˜A(){}
virtual void f(){}

};
class B1 : virtual public A {};
class B2 : virtual public A {};
class C : public B1, public B2 {};
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Creating a reference-counted pointer to a dynamically allocated object (of type A) can be
done several ways:

// Create a reference-counted NULL pointer of type A.
RefCountPtr<A> a_null_ptr;
// Create a reference-counted pointer of non-const type A.
RefCountPtr<A> a_ptr = rcp(new A);
// Create a reference-counted pointer of const type A.
RefCountPtr<const A> ca_ptr = rcp(new A);
// Create a const reference-counted pointer of non-const type A.
const RefCountPtr<A> a_cptr = rcp(new A);
// Create a const reference-counted pointer of const type A.
const RefCountPtr<const A> ca_cptr = rcp(new A);

The Teuchos::RefCountPtr class can also perform implicit conversions between a
derived class (B1) and its base class (A):

RefCountPtr<B1> b1_ptr = rcp(new B1);
RefCountPtr<A> a_ptr1 = b1_ptr;

Other non-implicit type conversions like static, dynamic, or const casts can be taken care of
by non-member template functions:

RefCountPtr<const C> c_ptr = rcp(new C);
// Implicit cast from C to B2.
RefCountPtr<const B2> b2_ptr = c_ptr;
// Safe cast, type-checked, from C to A.
RefCountPtr<const A> ca_ptr1 = rcp_dynamic_cast<const A>(c_ptr);
// Unsafe cast, non-type-checked, from C to A.
RefCountPtr<const A> ca_ptr2 = rcp_static_cast<const A>(c_ptr);
// Cast away const from B2.
RefCountPtr<B2> nc_b2_ptr = rcp_const_cast<B2>(b2_ptr);

Using a reference-counted pointer is very similar to using a raw C++ pointer. Some of the
operations that are common to both are:

RefCountPtr<A>
a_ptr2 = rcp(new A), // Initialize reference-counted pointers.
a_ptr3 = rcp(new A); // ""

A *ra_ptr2 = new A, // Initialize non-reference counted pointers.
*ra_ptr3 = new A; // ""

a_ptr2 = rcp(ra_ptr3); // Assign from a raw pointer (only do this once!)
a_ptr3 = a_ptr2; // Assign one smart pointer to another.
a_ptr2 = rcp(ra_ptr2); // Assign from a raw pointer (only do this once!)
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a_ptr2->f(); // Access a member of A using ->
ra_ptr2->f(); // ""
*a_ptr2 = *a_ptr3; // Dereference the objects and assign.
*ra_ptr2 = *ra_ptr3; // ""

However, a reference-counted pointer cannot be used everywhere a raw C++ pointer can. For
instance, these statements will not compile:

// Pointer arithmetic ++, --, +, - etc. not defined!
a_ptr1++; // error
// Comparison operators ==, !=, <=, >= etc. not defined!
a_ptr1 == ra_ptr1; // error

Because the two are not equivalent, the Teuchos::RefCountPtr class provides a way of
getting the raw C++ pointer held by any RefCountPtr<A> object:

A* true_ptr = a_ptr1.get();

These are just some of the basic features found in the Teuchos::RefCountPtr class.
A more extensive tutorial of this powerful tool is “in the works” and will be made available to
Teuchos users as soon as it is finished. The examples presented in this section can be found in
didasko/examples/teuchos/ex5.cpp.

8.7 Teuchos::TimeMonitor
The Teuchos::TimeMonitor class is a container that manages a group of timers. In this
way, it can be used to keep track of timings for various phases of the code. Internally, this class
holds an array of Teuchos::Time objects. The Teuchos::Time class defines a basic
wall-clock timer that can start(), stop(), and return the totalElapsedTime().

To use the Teuchos::TimeMonitor class, include the header:

#include "Teuchos_TimeMonitor.hpp"

To create a timer for the TimeMonitor to manage, call:

RefCountPtr<Time> FactTime = TimeMonitor::getNewTimer("Factorial Time");

The getNewTimer method creates a new reference-counted Teuchos::Time object and
adds it to the internal array. To avoid passing this timer into each method that needs timing,
consider putting it in the global scope (declare it outside of main(argc, argv[])). Now,
when we want to time a part of the code, the appropriate timer should be used to construct a
local TimeMonitor:

Teuchos::TimeMonitor LocalTimer(*FactTime);

This timer will be started during the construction of LocalTimer and stopped when the
destructor is called on LocalTimer.

To obtain a summary from all the timers in the global TimeMonitor, use:
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TimeMonitor::summarize();

Information from each timer can also be obtained using the methods from Teuchos::Time.
This section presents examples of all the methods in the Teuchos::TimeMonitor class
and can be found in didasko/examples/teuchos/ex6.cpp.

8.8 Teuchos::CommandLineProcessor
Teuchos::CommandLineProcessor is a class that helps to parse command line input
arguments and set runtime options. Additionally, a CommandLineProcessor object can pro-
vide the user with a list of acceptable command line arguments, and their default values.

To use the Teuchos::CommandLineProcessor class, include the header:

#include "Teuchos_CommandLineProcessor.hpp"

Creating an empty command line processor looks like:

Teuchos::CommandLineProcessor My_CLP;

To set and option, it must be given a name and default value. Additionally, each option can
be given a help string. Although it is not necessary, a help string aids a users comprehension
of the acceptable command line arguments. Some examples of setting command line options
are:

// Set an integer command line option.
int NumIters = 1550;
My_CLP.setOption("iterations", &NumIters, "Number of iterations");
// Set a double-precision command line option.
double Tolerance = 1e-10;
My_CLP.setOption("tolerance", &Tolerance, "Tolerance");
// Set a string command line option.
string Solver = "GMRES";
My_CLP.setOption("solver", &Solver, "Linear solver");
// Set a boolean command line option.
bool Precondition;
My_CLP.setOption("precondition","no-precondition",

&Precondition,"Preconditioning flag");

There are also two methods that control the strictness of the command line processor. For
a command line processor to be sensitive to any bad command line option that it does not
recognize, use:

My_CLP.recogniseAllOptions(false);

Then, if the parser finds a command line option it doesn’t recognize, it will throw an excep-
tion. To prevent a command line processor from throwing an exception when it encounters a
unrecognized option or when the help string is printed, use:
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My_CLP.throwExceptions(false);

Finally, to parse the command line, argc and argv are passed to the parse method:

My_CLP.parse( argc, argv );

The --help output for this command line processor is:

Usage: ./ex7.exe [options]
options:
--help Prints this help message
--pause-for-debugging Pauses for user input to allow

attaching a debugger
--iterations int Number of iterations

(default: --iterations=1550)
--tolerance double Tolerance

(default: --tolerance=1e-10)
--solver string Linear solver

(default: --solver="GMRES")
--precondition bool Preconditioning flag
--no-precondition (default: --precondition)

This section presents examples of all the methods in the Teuchos::CommandLineProcessor
class and can be found in didasko/examples/teuchos/ex7.cpp.
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9 Multilevel Preconditioners with ML
The ML package defines a class of preconditioners based on multilevel methods [6, 36]. While
theoretically ML preconditioners apply to any linear system, the range of applicability of the
methods is limited at this time, primarily to certain linear elliptic partial differential equations
descretized with linear shape functions. The ML package provides multilevel solvers and
preconditioners based on geometric and algebraic coarsening schemes. Please contact the
developers for information on the status of special purpose methods, such as those for the
incompressible Navier-Stokes equations and Maxwell’s equations.

This Chapter will present:- A multilevel preconditioning framework (in Section 9.1);- How to use ml objects as AztecOO preconditioners (in Section 9.2);- The ML Epetra::MultiLevelOperator class (in Section 9.3);- How to define black-box preconditioners using the ML Epetra::MultiLevelPreconditioner
Class (in Section 9.4);- How to implement two level domain decomposition methods with aggregation based
coarse matrix (in Section 9.5).

9.1 A Multilevel Preconditioning Framework
For certain combinations of iterative methods and linear systems, the error at each iteration
projected onto the eigenfunctions has components that decay at a rate proportional to the cor-
responding eigenvalue (or frequency). Multilevel methods exploit this property [6] by project-
ing the linear system onto a hierarchy of increasingly coarsened “meshes” so that each error
component rapidly decays on at least one coarse “mesh.” The linear system on the coarsest
“mesh”, called the coarse grid problem, is solved exactly. The iterative method is called the
smoother, as a reflection of its diminished role as a way to damp out the high frequency error.
The grid transfer (or interpolation) operators are called restriction ( è ) and prolongation ( é )
operators.

Multilevel methods are characterized by the sequence of coarse spaces, the definition of the
operator each coarse space, the specification of the smoother, and the restriction and prolonga-
tion operators. Geometric multigrid (GMG) methods are multilevel methods that require the
user to specify the underlying grid, and in most cases a hierarchy of (not necessarily nested)
coarsens grids. Both the automatic generation of a grid-hierarchy for GMG and the specifica-
tion of the ML, designed for unstructured problems, are beyond the scope of the tutorial.

Algebraic multigrid (AMG) (see [6, Section 8]) method development has been motivated
by the demand for multilevel methods that are easier to use. In AMG, both the matrix hierarchy
and the prolongation operators are constructed just from the stiffness matrix. Recall that to use

84



Aztec00 or IFPACK, a user must supply a linear system, a select a preconditioning strategy.
In AMG, the only additional information required from the user is to specify a coarsening
strategy.

Readers that are unfamiliar with multigrid methods are strongly advised to review [6]
before using ML.

A multilevel method for (1) depends on the number of coarsen grid levels, and operators
for each level. Levels are numbered from the coarsest level,

	
, to the finest. The pre- and post-

smoothers are denoted êtë Aíìî and êXë Q ìî respectively. è î @BA q î is the restriction operator from level� to � b�� , and é î q î @BA is a prolongator from � b�� to � . In AMG, the operators on the coarse
meshes ï î are defined by ï î @BA S�è î @BA q î ï î é î q î @BA d
The AMG coarse grid operators may be less sparse than the corresponding GMG coarse grid
operators, defined by assembling the coefficient matrix on the coarse grid. These pieces com-
bine into a multigrid solver.

Recursive Definition of the V-cycle Scheme MGM( J , Ô , Number of Levels)

if �%â 	J S3ê9ë Aíìî M J o´Ô P��S�è î @BA q î M Ô b ï î J P¦ SkðMGM( ¦ , � , � b�� )J S J Yyé î q î @BA ¦J S3ê9ë Q ìî M J o´Ô PelseJ Skï @BAî Ô
Remark 19. The tutorial only discussed AMG methods. The interested reader is referred to
[38] for information on GMG methods in ML.

9.2 ML Objects as AztecOO Preconditioners
ML may be used as a “black-box” multilevel preconditioner, using aggregation procedures
to define the multilevel hierarchy. In order to use ML as a preconditioner, we need to define
an AztecOO Solver, as outlined in Section 6. ML requires the user to define a structure that
stores internal data. The convention in ML is to call the structure ml_handle. Next define
the maximum number of levels, the amount of diagnostic information written to the screen,
which varies from none (

	
) to extremely verbose (

��	
), and creaste the ML handle structure:

ML *ml_handle;
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int N_levels = 10;
ML_Set_PrintLevel(3);
ML_Create(&ml_handle,N_levels);

Next construct an ML preconditioner for an Epetra matrix. Additionally, ML requires a
structure that stores information about the aggregates at each level called ML Aggregate:

EpetraMatrix2MLMatrix(ml_handle, 0, &A);
ML_Aggregate *agg_object;
ML_Aggregate_Create(&agg_object);

The multilevel hierarchy is constructed with the instruction

N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_handle,
0,
ML_INCREASING,
agg_object);

Here, 0 is the index of the finest level, and the index of coarser levels will be obtained by
incrementing this value. Please see [29] for more information on the input parameters.

Next define the smoother, such as symmetric Gauss-Seidel, and initialize the solver:

ML_Gen_Smoother_SymGaussSeidel(ml_handle, ML_ALL_LEVELS,
ML_BOTH, 1, ML_DEFAULT);

ML_Gen_Solver (ml_handle, ML_MGV, 0, N_levels-1);

Finally, use this ML hierarchy to create an Epetra Operator, set the preconditioning oper-
ator of our AztecOO solver, and then call Iterate() as usual:

ML_Epetra::MultiLevelOperator MLop(ml_handle,comm,map,map);
solver.SetPrecOperator(&MLop);
solver.Iterate(Niters, 1e-12);

The entire code is reported in
didasko/examples/ml/ex1.cpp. The output is reported below.

[msala:ml]> mpirun -np 2 ./ex1.exe
**************************************************************
* ML Aggregation information *
==============================================================
ML_Aggregate : ordering = natural.
ML_Aggregate : min nodes/aggr = 2
ML_Aggregate : max neigh selected = 0
ML_Aggregate : attach scheme = MAXLINK
ML_Aggregate : coarsen scheme = UNCOUPLED
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ML_Aggregate : strong threshold = 0.000000e+00
ML_Aggregate : P damping factor = 1.333333e+00
ML_Aggregate : number of PDEs = 1
ML_Aggregate : number of null vec = 1
ML_Aggregate : smoother drop tol = 0.000000e+00
ML_Aggregate : max coarse size = 1
ML_Aggregate : max no. of levels = 10
**************************************************************
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
ML_Aggregate_CoarsenUncoupled : current level = 0
ML_Aggregate_CoarsenUncoupled : current eps = 0.000000e+00
Aggregation(UVB) : Total nonzeros = 128 (Nrows=30)
Aggregation(UC) : Phase 0 - no. of bdry pts = 0
Aggregation(UC) : Phase 1 - nodes aggregated = 28 (30)
Aggregation(UC) : Phase 1 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 1 - nodes aggregated = 28
Aggregation(UC_Phase2_3) : Phase 1 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 2a- additional aggregates = 0
Aggregation(UC_Phase2_3) : Phase 2 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 2 - boundary nodes = 0
Aggregation(UC_Phase2_3) : Phase 3 - leftovers = 0 and singletons = 0
Aggregation time = 1.854551e-03

Gen_Prolongator : max eigen = 1.883496e+00
ML_Gen_MGHierarchy : applying coarsening
ML_Gen_MGHierarchy : Gen_RAP
RAP time for level 0 = 5.319577e-04
ML_Gen_MGHierarchy : Gen_RAP done
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
ML_Aggregate_CoarsenUncoupled : current level = 1
ML_Aggregate_CoarsenUncoupled : current eps = 0.000000e+00
Aggregation(UVB) : Total nonzeros = 46 (Nrows=8)
Aggregation(UC) : Phase 0 - no. of bdry pts = 0
Aggregation(UC) : Phase 1 - nodes aggregated = 6 (8)
Aggregation(UC) : Phase 1 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 1 - nodes aggregated = 6
Aggregation(UC_Phase2_3) : Phase 1 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 2a- additional aggregates = 0
Aggregation(UC_Phase2_3) : Phase 2 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 2 - boundary nodes = 0
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Aggregation(UC_Phase2_3) : Phase 3 - leftovers = 0 and singletons = 0
Aggregation time = 1.679042e-03

Gen_Prolongator : max eigen = 1.246751e+00
ML_Gen_MGHierarchy : applying coarsening
ML_Gen_MGHierarchy : Gen_RAP
RAP time for level 1 = 4.489557e-04
ML_Gen_MGHierarchy : Gen_RAP done
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
Aggregation total setup time = 8.903003e-02 seconds
Smoothed Aggregation : operator complexity = 1.390625e+00.

*******************************************************
***** Preconditioned CG solution
***** Epetra ML_Operator
***** No scaling
*******************************************************

iter: 0 residual = 1.000000e+00
iter: 1 residual = 1.289136e-01
iter: 2 residual = 4.710371e-03
iter: 3 residual = 7.119470e-05
iter: 4 residual = 1.386302e-06
iter: 5 residual = 2.477133e-08
iter: 6 residual = 6.141025e-10
iter: 7 residual = 6.222216e-12
iter: 8 residual = 1.277534e-13

Solution time: 0.005845 (sec.)
total iterations: 8

Residual = 6.99704e-13

9.3 The ML Epetra::MultiLevelOperator Class

As with other Trilinos packages, ML can be compiled and run independently from Epetra.
It accepts input matrix in formats different from the Epetra RowMatrix or Epetra Operator.
However, as part of the Trilinos project, ML can be used to define a preconditioner oper-
ator for Epetra_LinearProblem objects (see for instance [15]). This means that, in
a C++ framework, ML can be defined as an Epetra_Operator object, applied to an
Epetra_MultiVector object, and used as a preconditioner for AztecOO. This can be
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done in two ways:- By defining an ML_Epetra::MultiLevelOperatorobject, derived from the Epe-
tra Operator class. The constructor of this object requires already filled ML Struct and
ML Aggregate structures. ML must have been configure with the option
--enable-epetra.- By defining an ML_Epetra::MultiLevelPreconditionerobject, derived from
the Epetra RowMatrix class. Basically, the constructor of this object demands for an
Epetra RowMatrix pointer and a Teuchos parameter list, that contains all the user’s de-
fined parameters. ML must have been configure with options
--enable-epetra --enable-teuchos.

The first approach, described in Section 9.3, is more general, and can be applied to geo-
metric and algebraic multilevel preconditioner, but it requires a deeper knowledge of the ML
package. This is because the user has to explicitly construct the ML hierarchy, define the
aggregation strategies, the smoothers, and the coarse grid solver. The second approach, pre-
sented in Section 9.4, instead, although limited to algebraic multilevel preconditioners, allows
the use of ML as a black-box preconditioner. This class automatically constructs all the com-
ponents of the preconditioner, following the parameters specified in a Teuchos parameters’
list.

Next we walk through how to write some code to construct an ML preconditioner for an
Epetra_RowMatrix W . The ML_Epetra::MultiLevelOperator class is defined in
the header file ml_MultiLevelOperator.h. Users must include it, and along with some
subset of ml_config.h,AztecOO.h, Epetra_Operator.h,Epetra_MultiVector.h
and Epetra_LinearProblem.h. Check the Epetra and AztecOO documentation may be
helpful on this topic.

The next steps proceed exactly as in ¼ 9.2:

ML *ml_handle;
int N_levels = 10;
ML_Set_PrintLevel(3);
ML_Create(&ml_handle,N_levels);
EpetraMatrix2MLMatrix(ml_handle, 0, &A);
ML_Aggregate *agg_object;
ML_Aggregate_Create(&agg_object);
N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_handle,

0,
ML_INCREASING,
agg_object);

ML_Gen_Smoother_SymGaussSeidel(ml_handle, ML_ALL_LEVELS,
ML_BOTH, 1, ML_DEFAULT);

ML_Gen_Solver (ml_handle, ML_MGV, 0, N_levels-1);
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ML_Epetra::MultiLevelOperator MLop(ml_handle,comm,map,map);

At this point, our example diverges from ¼ 9.2. Instead of using ML to solve the linear
system W J SÑÔ , where J and Ô are Epetra_MultiVector, use the ML operator as the
precondition for an Aztec00 linear system, and solve it:

Epetra_LinearProblem Problem(A,&x,&b);
AztecOO Solver(Problem);
Solver.SetPrecOperator(&MLop);
Solver.SetAztecOption( AZ_solver, AZ_gmres );
Solver.Iterate(Niters, 1e-12);

9.4 The ML Epetra::MultiLevelPreconditioner Class
An alternative to the ML Epetra::MultiLevelOperator (that is also in the namespace ML Epetra)
is the MultiLevelPreconditioner class. Replace the header file
ml_MultiLevelOperator.hdiscussed in section 9.3 by ml_MultiLevelPreconditioner.h.

Table 13 reports the aggregation schemes currently available in ML. A graphical compar-
ison of Uncoupled and METIS is reported in Figure 3, for a Laplacian operator over a square
descretized with a a

�
point stencil.

Figure 3. Aggregates for Uncoupled (left) and METIS (right) for
a 16x16 Cartesian grid.

A very simple fragment of code using this class is reported below. The reader may refer to
file $ML_HOME/examples/ml_example_MultiLevelPreconditioner.cpp for
a more complex example. To run example, first configure ML --enable-triutils.
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Uncoupled For a
�
,
�
,or
Ò

dimensional structured Cartesian grid with aÒ
,
�

or
��ñ

point stencil respectively, construct aggregates of
optimal size such that each aggregate resides on one proces-
sor.

MIS Maximal independent set based coarsening with aggregates
allowed to reside on multiple processes. The scheme mini-
mizes the number of iterations, but the cost per iteration is
high.

METIS Use a serial graph partitioner to create aggregates resid-
ing on one processor. The number of nodes in each
aggregate is specified with the option aggregation:
nodes per aggregate. ML must be configured with
--with-ml metis.

ParMETIS Use a parallel graph partitioner to create aggregates that
may reside on multiple processors. ML must be configured
with --with-ml parmetis3x. The number of aggre-
gates is specified by option aggregation: global
number.

Table 13. ML Epetra::MultiLevelPreconditioner Coarsening
Schemes

Jacobi Point-Jacobi. Damping factor is specified using
smoother: damping factor, and the number
of sweeps with smoother: sweeps

Gauss-Seidel Point Gauss-Seidel.
Aztec Use AztecOO’s built-in preconditioning functions as

smoothers. Or, use approximate solutions with AztecOO as
smoothers. The AztecOO vectors options and params
can be set using smoother: Aztec options and
smoother: Aztec params.

Table 14. ML Epetra::MultiLevelPreconditioner Smoothers
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Jacobi Use Jacobi as a solver.
Gauss-Seidel Use Gauss-Seidel as a solver.
Amesos_KLU Use Amesos’s KLU sequential solver.
Amesos_UMFPACK Use UMFPACK.
Amesos_Superludist Use SuperLU DIST.
Amesos_MUMPS Use MUMPS.

Table 15. ML Epetra::MultiLevelPreconditioner Coarsest Grid
Exact Solvers To use Amesos, ML must be configured with
--enable-amesos and Amesos also be configured as needed.

#include "ml_include.h"
#include "ml_MultiLevelPreconditioner.h"
#include "Teuchos_ParameterList.hpp"

...

// A is an Epetra_RowMatrix derived class object
// solver is an AztecOO object

Teuchos::ParameterList MList;

// default values for smoothed aggregation
ML_Epetra::SetDefaults("SA",MLList);
MLList.set("max levels",6);
MLList.set("increasing or decreasing","decreasing");
MLList.set("aggregation: type", "MIS");
MLList.set("coarse: type","Amesos_KLU");

ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

solver.SetPrecOperator(MLPrec);
solver.SetAztecOption(AZ_solver, AZ_gmres);
solver.Iterate(Niters, 1e-12);

...
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delete MLPrec;

The general procedure is as follows. First, the user defines a Teuchos parameters’ list. Second
input parameters are set via method set(ParameterName,ParameterValue), where
ParameterName is a string defining the parameter, and ParameterValue is the specified
parameter, that can be any C++ object or pointer. This list is passed to the constructor, together
with a pointer to the matrix, and a boolean flag. If this flag is set to false, the constructor will
not compute the multilevel hierarchy until when MLPrec->ComputePreconditioner()
is called. The hierarchy can be destroyed using MLPrec->Destroy(). For instance, the
user may define a code like:

// A is still not filled with numerical values
ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(A, MLList, false);

// compute the elements of A
...
// now compute the preconditioner
MLPrec->ComputePreconditioner();

// solve the linear system, and refill A
...
MLPrec->Destroy(); // destroy previous preconditioner,
MLPrec->ComputePreconditioner(); // and build a new one

In this fragment of code, the user defines the ML preconditioner, but does not create the
preconditioner in the construction phase. This is of particular interest, for example, when ML
is used in conjunction with nonlinear solvers (like NOX [25]).

We point out that the input parameter list is copied in the construction phase, hence later
changes to MLList will not affect the preconditioner. Should one need to modify parameters
in the MLPrec’s internally stored parameter list, proceed as follows:

ParameterList & List = MLPrec->GetList();

and then directly modify List.

All ML options can have a common prefix, specified by the user in the construction phase.
For example, suppose that we require ML: to be the prefix. The constructor will be

MLLIst.set("ML: aggregation: type", "METIS");
ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(*A,

MLList,
true,
Prefix);
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where Prefix is a char array containing ML: .
Note that spaces are important: Do not include leading or trailing spaces, and separate

words by just one space! Misspelled parameters will not be used, and can be detected calling
method PrintUnused() after the construction of the multilevel hierarchy.

For a detailed list of all the parameters, we refer to the ML user’s guide. Here, we report
the most used parameters in Tables 13, 14 and 15.

9.5 Two-Level Domain Decomposition Preconditioners with ML
The idea of two level domain decomposition based on aggregation is to use a graph partitioner
to partition the local or global graph into subgraphs, and then treat each subgraph as a large
aggregate.

The example contained herein uses the graph decomposition library METIS to create the
coarse-level matrix. If you don’t have METIS, or just do not want to re-configure ML, you
may run the example you will be limited to use only one aggregate per process. There are
three changes to the Trilinos configuration. One flag tells the package (ML) to look for an
external library, and the other two flag tells the compiler where to find the include direc-
tories and external library. Configure ML with the flags --with-ml_metis, and with
--with-incdirs and --with-ldflags set to the locations of the METIS include files
and library. Please type configure --help in the ML subdirectory for more information.

Two-level domain decomposition methods are effective for the iterative solution of many
different kinds of linear systems. For some classes of problems, a very convenient way to
define the coarse grid operator is to use an aggregation procedure. This is very close to what
presented in Section 9.2. The main difference is that only two level methods are considered,
and that the coarse grid remains of (relatively) small size. The idea is to define a small number
of aggregates on each process, using a graph decomposition algorithm (as implemented in the
library METIS, for instance)14. This can be done as follows.

The linear system matrix A, here coded as an Epetra CrsMatrix15, corresponds to the de-
scretization of a 2D Laplacian on a Cartesian grid. x and b are the solution vector and the
right-hand side, respectively.

The AztecOO linear problem is defined as

Epetra_LinearProblem problem(&A, &x, &b);
AztecOO solver(problem);

At this point, we can create the Teuchos parameters’ list, with the following parameters:

ParameterList MLList;

14Aggregation schemes based on ParMETIS are also available. Please refer to the help of the ML configure
for more details.

15Epetra VbrMatrix and Epetra RowMatrix can be used as well.
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ML_Epetra::SetDefaults("DD",MLList);

MLList.set("max levels",2);
MLList.set("increasing or decreasing","increasing");

MLList.set("aggregation: type", "METIS");
MLList.set("aggregation: nodes per aggregate", 16);
MLList.set("smoother: pre or post", "both");
MLList.set("coarse: type","Amesos_KLU");
MLList.set("smoother: type", "Aztec");

The last option tells ML to use the Aztec preconditioning function as a smoother. Aztec
requires an integer vector options and a double vector params. Those can be defined as
follows:

int options[AZ_OPTIONS_SIZE];
double params[AZ_PARAMS_SIZE];
AZ_defaults(options,params);
options[AZ_precond] = AZ_dom_decomp;
options[AZ_subdomain_solve] = AZ_icc;
MLList.set("smoother: aztec options", options);
MLList.set("smoother: aztec params", params);

Note that all Aztec preconditioners can be used as smoothers for ML. At this point we can
create the ML preconditioner as

ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

and check that no options have been misspelled, using

MLPrec->PrintUnused();

AztecOO solver is called using

solver.SetPrecOperator(MLPrec);

solver.SetAztecOption(AZ_solver, AZ_cg_condnum);

int Niters = 500;
solver.SetAztecOption(AZ_kspace, 160);

solver.Iterate(Niters, 1e-12);

Finally, some (limited) information about the preconditioning phase are obtained using
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cout << MLPrec->GetOutputList();

The entire code is reported in
didasko/examples/ml/ex2.cpp.
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10 Interfacing Direct Solvers with Amesos
The Amesos package provides an object-oriented interface to several direct sparse solvers.
Amesos will solve (using a direct factorization method) the linear systems of equations (1)
where W is stored as an Epetra RowMatrix object, and l and \ are Epetra MultiVector ob-
jects.

The Amesos package has been designed to face some of the challenges of direct solution
of linear systems. In fact, many solvers have been proposed in the last years, and often each
of them requires different input formats for the linear system matrix. Moreover, it is not un-
common that the interface changes between revisions. Amesos aims to solve those problems,
furnishing a clean, consistent interface to many direct solvers.

Using Amesos, users can interface their codes with a (large) variety of direct linear solvers,
sequential or parallel, simply by a code instruction of type

AmesosProblem.Solver();

Amesos will take care of redistributing data among the processors, if necessary.
All the Amesos classes are derived from a base class mode, Amesos_BaseSolver.

This abstract interface provides the basic functionalities for all Amesos solvers, and allows
users to choose different direct solvers very easily – by changing an input scalar parameter.
See Section 10.1 for more details.

In this Chapter, we will suppose that matrix W in equation (1) is defined as an Epe-
tra RowMatrix, in principle with nonzero entries on all the processes defined in the Epe-
tra Comm communicator in use. l and \ , instead, are Epetra MultiVector, defined on the
same communicator.

Amesos contains several classes:- Amesos_Lapack: Interface to serial dense solver LAPACK.- Amesos_KLU: Interface to Amesos’s internal solver KLU. KLU is a serial, unblocked
code ideal for getting started, and for very sparse matrices, such as circuit matrices.- Amesos_Umfpack: Interface to Tim Davis’s UMFPACK [8]. UMFPACK is a serial
solver.- Amesos_Superludist: Interface to Xiaoye S. Li’s SuperLU solver suite, including
SuperLU, SuperLU DIST 1.0 and SuperLU DIST 2.0 [27]. SuperLU is a serial solvers,
while SuperLU DIST is a parallel solver.- Amesos_Mumps: Interface to MUMPS 4.3.1 [1]16. MUMPS is a parallel direct solver;

16At present, MUMPS is the only Amesos class that can take advantage of the symmetry of the linear system
matrix.
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- Amesos_Scalapack: Interface to ScaLAPACK [5], the parallel version of LAPACK17.

If the supported packages is serial, and one is solving with more than one process, matrix
and right-hand side are shipped to process 0, solved, then the solution is broadcasted to the
distributed solution vector l . For parallel solvers, instead, various options are supported,
depending on the package at hand:- The Amesos Superludist interface can be used over all the processes, as well as on a

subset of them. The matrix is kept in distributed form over the processes of interest;- Amesos Mumps can keep the matrix in a distributed form over all the processes, or
the matrix can be shipped to processor 0. In both cases, all the processes in the MPI
communicator will be used.

This Chapter, we will cover:- The Amesos BaseSolver interface to various direct solvers, presented (in Section 10.1).

10.1 Amesos BaseSolver: A Generic Interface to Direct Solvers
All Amesos objects are constructed from the function class Amesos. Amesos allows a code
to delay the decision about which concrete class to use to implement the Amesos BaseSolver
interface. The main goal of this class is to allow the user to select any supported (and enabled
at configuration time) direct solver, simply changing an input parameter. Another remarkable
advantage of Amesos BaseSolver is that, using this class, users does not have to include the
header files of the 3-part libraries in their code18.

An example of use of this class is as follows. First, the following header files must be
included:

#include "Amesos.h"
#include "AmesosClassType.h"

Then, let A be an Epetra RowMatrix object (for instance, and Epetra CrsMatrix). We need to
define a linear problem,

Epetra_LinearProblem * Amesos_LinearProblem =
new Epetra_LinearProblem;

Amesos_LinearProblem->SetOperator( A ) ;

and to create an Amesos parameter list (which can be empty):

Teuchos::ParameterList ParamList ;

17Note that Amesos does not contain interfaces to LAPACK routines. Other Trilinos packages already offer
those routines (Epetra and Teuchos).

18Using Amesos BaseSolver, 3-part libraries header files are required in the compilation of Amesos only.
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Now, let Choice be an string, with one of the following values:- AMesos Klu;- Amesos Umfpack;- Amesos Mumps;- Amesos Superludist;- Amesos Scalapack.

We can construct an Amesos_BaseSolver object as follows:

Amesos_BaseSolver * A_Base;
Amesos A_Factory;

A_Base = A_Factory.Create(Choice, *Amesos_LinearProblem,
ParamList );

assert(A_Base!=0);

Symbolic and numeric factorizations are computed using methods

A_Base->SymbolicFactorization();
A_Base->NumericFactorization();

The numeric factorization phase will check whether a symbolic factorization exists or not. If
not, method SymbolicFactorization() is invoked. Solution is computed (after setting
of LHS and RHS in the linear problem), using

A_Base->Solve();

The solution phase will check whether a numeric factorization exists or not. If not, method
SymbolicFactorization() is called.

Users must provide the nonzero structure of the matrix for the symbolic phase, and the
actual nonzero values for the numeric factorization. Right-hand side and solution vectors
must be set before the solution phase, for instance using

Amesos_LinearProblem->SetLHS(x);
Amesos_LinearProblem->SetRHS(b);

A common ingredient to all the Amesos classes is the Teuchos parameters’ list. This ob-
ject, whose definition requires the input file Teuchos_ParameterList.hpp, is used to
specify the parameters that affect the 3-part libraries. Here, we simply recall that the parame-
ters’ list can be created as
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Teuchos::ParameterList AmesosList;

and parameters can be set as

AmesosList.set(ParameterName,ParameterValue);

Here, ParameterName is a string containing the parameter name, and ParameterValue
is any valid C++ object that specifies the parameter value (for instance, an integer, a pointer to
an array or to an object).

For a detailed list of parameters we refer to [30].
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11 Solving Nonlinear Systems with NOX
NOX is a suite of solution methods for the solution of nonlinear systems of typeò M J P S 	 o (4)

where ò M J P S _`a  A M J A o d(d#d o J G P... G M J A o d#d(d o J G P
g#hi

is a nonlinear vector function, and the Jacobian matrix of
ò

, ó , is defined byó C�q L S�ô ò Cô J L M J P d
NOX aims to solver (4) using Newton-type methods. NOX uses an abstract vector and

“group” interface. Current implementation are provided for Epetra/AztecOO objects, but also
for LAPACK and PETSc. It provides various strategies for the solution of nonlinear systems,
and it has been designed to be easily integrated into existing applications.

In this Chapter, we will- Outline the basic issued of the solution of nonlinear systems (in Section 11.1);- Introduce the NOX package (in Section 11.2);- Describe how to introduce a NOX solver in an existing code (in Section 11.3);- Present Jacobian-free methods (in Section 11.6).

11.1 Theoretical Background
Aim of this Section is to briefly present some aspects of the solution of nonlinear systems,
to establish a notation. The Section is not supposed to be exhaustive, nor complete on this
subject. The reader is referred to the existing literature for a rigorous presentation.

To solve system of nonlinear equations, NOX makes use of Newton-like methods. The
Newton method defines a suite õ J î©ö that, under some conditions, converges to J , solution
of (4). The algorithm is as follows: given J F , for ��S � o d(d(d until convergence, solveó î M J î @BA P M J î b J î @BA P S b ò M J î @BA P o ó î M J î @BA P S ~ ô òô J M J î @BA P � d (5)

Newton method introduces a local full linearizion of the equations. Solving a system of linear
equations at each Newton step can be very expensive if the number of unknowns is large,
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and may not be justified if the current iterate is far from the solution. Therefore, a departure
from the Newton framework consists of considering inexact Newton methods, which solve
system (5) only approximatively.

In fact, in practical implementation of the Newton method, one or more of the following
approximations are used:

1. The Fréchet derivative ó î for the Newton step is not recomputed at every Newton step;

2. The equation for the Newton step (5) is solved only inexactly;

3. Defect-correction methods are employed, that is, ó î is numerically computed using low-
order (in space) schemes, while the right-hand side is built up using high-order methods.

For a given initial guess, “close enough” to the solution of (4), the Newton method with
exact linear solves converges quadratically. In practice, the radius of convergence is often
extended via various methods. NOX provides, among others, line search techniques and trust
region strategies.

11.2 Creating NOX Vectors and Group
NOX is not based on any particular linear algebra package. Users are required to supply
methods that derive from the abstract classes NOX::Abstract::Vector (which provides
support for basic vector operations as dot products), and NOX::Abstract::Group (which
supports the linear algebra functionalities, evaluation of the function ÷ and, optionally, of the
Jacobian ó ).

In order to link their code with NOX, users have to write their own instantiation of those
two abstract classes. In this tutorial, we will consider the concrete implementations provided
for Epetra matrices and vectors. As this implementation is separate from the NOX algorithms,
the configure option --enable-nox-epetra has to be specified (see Section 1.2)19.

11.3 Introducing NOX in an Existing Code
Two basic steps are required to implement a NOX::Epetra interface. First, a concrete class
derived from NOX::Epetra::Interface has to be written. This class must define the
following methods:

1. A method to compute u S ò M l P for a given J . The syntax is

computeF(const Epetra_Vector & x, Epetra_Vector & y,
FillType flag)

19Other two concrete implementation are provided, for LAPACK and PETSc. The user may wish to
configure NOX with --enable-nox-lapack or --enable-nox-petsc. Examples can be com-
piled with the options --enable-nox-lapack-examples, --enable-nox-petsc-examples, and
-enable-nox-epetra-exemples.
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with x and y two Epetra Vectors, and flag an enumerated type that tells why this
method was called. In fact, NOX has the ability to generate Jacobians based on numer-
ical differencing. In this case, users may want to compute an inexact (and hopefully
cheaper)

ò
, since it is only used in the Jacobian (or preconditioner).

2. A function to compute the Jacobian, whose syntax is

computeJacobian(const Epetra_Vector & x,
Epetra_Operator * Jac)

This method is optional optional method. It should be implemented when users wish to
supply their own evaluation of the Jacobian. If the user does not wish to supply their own
Jacobian, they should implement this method so that it throws an error if it is called. This
method should update the Jac operator so that subsequent Epetra Operator::Apply()
calls on that operator correspond to the Jacobian at the current solution vector x.

3. A method which fills a preconditioner matrix, whose syntax is

computePrecMatrix(const Epetra_Vector & x,
Epetra_RowMatrix & M)

It should only contain an estimate of the Jacobian. If users do not wish to supply their
own Preconditioning matrix, they should implement this method such that if called, it
will throw an error.

4. A method to apply the user’s defined preconditioner. The syntax is

computePreconditioner(const Epetra_Vector & x, Epetra_Operator & M)

The method should compute a preconditioner based upon the solution vector x and store
it in the Epetra Operator M. Subsequent calls to the Epetra Operator::Apply method will
apply this user supplied preconditioner to epetra vectors.

Then, the user can construct a NOX::Epetra::Group, which contains information
about the solution technique. All constructors require:- A parameter list for printing output and for input options, defined as NOX::Parameter::List.- An initial guess for the solution (stored in an Epetra Vector object);- an operator for the Jacobian and (optionally) and operator for the preconditioning phase.

Users can write their own operators. In particular, the Jacobian can be defined by the
user as an Epetra Operator,
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Epetra_Operator & J = UserProblem.getJacobian(),

created as a NOX matrix-free operator,

NOX::Epetra::MatrixFree & J = MatrixFree(userDefinedInterface,
solutionVec),

or created by NOX using a finite differencing,

NOX::Epetra::FiniteDifference & J = FIXME...

At this point, users have to create an instantiation of the NOX::Epetra::Interface
derived object,

UserInterface interface(...),

and finally construct the group,

NOX::Epetra::Group group(printParams, lsParams, interface).

11.4 A Simple Nonlinear Problem
As an example. define

òjø ¸ Qúù ¸ Q byò M J P S¶û J Q A Y J QQ b®�J Q b J Q Aeü d
With this choice of

ò
, the exact solutions of (4) are the intersections of the unity circle and

the parabola J Q b J Q A . Simple algebra shows that one solution lies in the first quadrant, and has
coordinates U�S _a � � b®�� o � � b®�� gi o
the other being the reflection of U among the J Q axis.

Code didasko/examples/nox/ex1.cpp applies the Newton method to this prob-
lem, with J F S M 	 d�� o 	 d�� P as a starting solution. The output is approximatively as follows:

[msala:nox]> mpirun -np 1 ./ex1.exe
*****************************************************
-- Nonlinear Solver Step 0 --
f = 5.590e-01 step = 0.000e+00 dx = 0.000e+00
*****************************************************
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*****************************************************
-- Nonlinear Solver Step 1 --
f = 2.102e-01 step = 1.000e+00 dx = 3.953e-01
*****************************************************

*****************************************************
-- Nonlinear Solver Step 2 --
f = 1.009e-02 step = 1.000e+00 dx = 8.461e-02
*****************************************************

*****************************************************
-- Nonlinear Solver Step 3 --
f = 2.877e-05 step = 1.000e+00 dx = 4.510e-03 (Converged!)
*****************************************************

*****************************************************
-- Final Status Test Results --
Converged....OR Combination ->

Converged....F-Norm = 2.034e-05 < 2.530e-04
(Length-Scaled Two-Norm, Relative Tolerance)

??...........Number of Iterations = -1 < 20
*****************************************************

-- Parameter List From Solver --
Direction ->

Method = "Newton" [default]
Newton ->
Linear Solver ->

Max Iterations = 400 [default]
Output ->
Achieved Tolerance = 8.6e-17 [unused]
Number of Linear Iterations = 2 [unused]
Total Number of Linear Iterations = 6 [unused]

Tolerance = 1e-10 [default]
Rescue Bad Newton Solve = true [default]

Line Search ->
Method = "More’-Thuente"
More’-Thuente ->
Curvature Condition = 1 [default]
Default Step = 1 [default]
Interval Width = 1e-15 [default]
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Max Iters = 20 [default]
Maximum Step = 1e+06 [default]
Minimum Step = 1e-12 [default]
Optimize Slope Calculation = false [default]
Recovery Step = 1 [default]
Recovery Step Type = "Constant" [default]
Sufficient Decrease = 0.0001 [default]
Sufficient Decrease Condition = "Armijo-Goldstein" [default]

Output ->
Total Number of Failed Line Searches = 0 [unused]
Total Number of Line Search Calls = 3 [unused]
Total Number of Line Search Inner Iterations = 0 [unused]
Total Number of Non-trivial Line Searches = 0 [unused]

Nonlinear Solver = "Line Search Based"
Output ->

2-Norm of Residual = 2.88e-05 [unused]
Nonlinear Iterations = 3 [unused]

Printing ->
MyPID = 0 [default]
Output Information = 2
Output Precision = 3 [default]
Output Processor = 0 [default]

Computed solution :
Epetra::Vector

MyPID GID Value
0 0 0.786
0 1 0.618

Exact solution :
Epetra::Vector

MyPID GID Value
0 0 0.786
0 1 0.618

11.5 A 2D Nonlinear PDE

In this Section, we consider the solution of the following nonlinear PDE problem:

� b�£�¥ Y ý à 4 S 	
in þÿS M 	 o � PØs M 	 o � P¥ S 	
on ô þ d (6)
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For the sake of simplicity, we use a finite difference scheme ona Cartesian grid, with constant
mesh sizes Ì ¨ and Ì ª . Using standard procedures, the discrete equation at node M m*o=p P readsb�¥ C @BA q L Y �
¥ C�q L b ¥ C � A q LÌ Q¨ Y bn¥ C�q L @BA Y �
¥ C�q L b ¥ C�q L � AÌ Qª b ý à#4 � q L S 	 d

In example didasko/examples/nox/ex2.cpp, we build the Jacobian matrix as an
Epetra CrsMatrix, and we use NOX to solve problem (6) for a given value of ý . The exam-
ple shows how to use NOX for more complex cases. The code defines a class, here called
PDEProblem, which contains two main methods: One to compute

ò M J P for a given J , and
the other to update the entries of the Jacobian matrix. The class contains all the problem def-
initions (here, the number of nodes along the x-axis and the y-axis and the value of ý ). In
more complex cases, a similar class may have enough information to compute, for instance,
the entries of ó using a finite-element approximation of the PDE problem.

The interface to NOX, here called SimpleProblemInterface, accepts a PDEProblem as a
constructor,

SimpleProblemInterface Interface(&Problem);

Once a NOX::Epetra:Interface object has been defined, the procedure is almost identical to
that of the previous Section.

11.6 Jacobian-free Methods
In Section 11.5, the entries of the Jacobian matrix have been explicitly coded. Sometimes, it
is not always possible nor convenient to compute the exact entries of ó . For those cases, NOX
can automatically build Jacobian matrices based on finite difference approximation, that is,ó C�q L S ò C M ¥ YÿÌ L à L#P b ò C M J PÌ L o
where à L is the j-unity vector. Sophisticated schemes are provided by NOX, to reduce the
number of function evaluations.

11.7 Concluding Remarks on NOX
The documentation of NOX can be found in [25].

A library of continuation classes, called LOCA [31, 33], is included in the NOX distribu-
tion. LOCA is a generic continuation and bifurcation analysis package, designed for large-
scalr applications.The algorithms are designed with minimal interface requirements over that
needed for a Newton method to read an equilibrium solution. LOCA is built upon the NOX
package. LOCA provided functionalities for single parameter continuation and multiple con-
tinuation. Also, LOCA provides a stepper class that repeatedly class the NOX nonlinear solver
to compute points along a continuation curve. We will not cover LOCAL in this tutorial. The
interested reader is referred to the LOCA documentation.
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12 Partitioning and Load Balancing using Zoltan

In order to get good parallel performance, the data distribution (layout) is important. Poor data
distribution can both cause high communication between processes and also load imbalance,
that is, some processes have more work than others.

The Zoltan library [10, 9] was developed at Sandia to assist scientific computing applica-
tions with load balancing and parallel data management. Zoltan is not a Trilinos package, and
must be obtained separately. The Trilinos package EpetraExt provides an interface between
Epetra and Zoltan, which is described in this chapter. Note that Zoltan may be used indepen-
dently of Epetra or Trilinos. Zoltan contains a collection of load-balancing algorithms with a
single, data-structure neutral interface.

12.1 Background

In parallel linear algebra applications, the most critical part is to distribute the matrices. The
vectors are often distributed to conform with the appropriate matrices, though not always.
Matrices can be partitioned either along rows, columns, or by a 2-dimensional block decom-
position. We limit our discussion to 1-dimensional data distributions (which are best supported
in Epetra). In this case, partitioning dense matrices is easy. For a matrix with r rows and with

� processes, simply give each process r w � rows. For sparse matrices, the situation is more
complicated. To achieve load-balance, one may wish that each process obtains approximately
the same number of rows, or alternatively, similar number of nonzero entries. Additionally,
the communication cost when applying the matrix should be small. Specifically, for iterative
solvers, the communication cost in a matrix-vector product should be minimized.

A common abstraction of this problem is graph partitioning. This model assumes the
matrix is symmetric, so the sparsity pattern of the matrix can be represented by an undirected
graph. The graph partitioning problem is to partition the vertices into � sets such that the
number of edges between sets are minimized. The number of cut edges approximates the
communication cost in the parallel computation. Although graph partitioning is NP-hard to
solve exactly, there are several fast algorithms that work well in practice. Zoltan provides a
common interface to graph partitioners (and other algorithms). At present, the most widely
used software for graph partitioning, are the METIS and ParMETIS [23, 24] packages from
University of Minnesota.

Recently, it has been shown [7] that hypergraph partitioning is a more accurate model
for parallel matrix-vector communication cost. Work is currently underway to provide such
advanced partitioning capability in future versions of Zoltan and EpetraExt. Hypergraph par-
titioning also applies to rectangular matrices, not just square matrices.
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12.2 Installing Zoltan and Configuration

Zoltaan is not a Trilinos package and must be obtained separately. Zoltan is freely available
under the LGPL license, and can be obtained from the Zoltan home page at

http://www.cs.sandia.gov/Zoltan.
(If you have access to the Trilinos developers cvs repository, you may also get Zoltan from

the Trilinos3PL module.) Zoltan versions 1.5x are compatible with Trilinos 4.0.
We suggest that you install Zoltan together with other 3rd party software for Trilinos. It is

helpful to define a shell variable TRILINOS_3PL for this location, see section ?? for details.
After you download Zoltan, you must uncompress and untar the Zoltan.tar.gz file and
then follow the instructions. Zoltan has not been autotool’ed so you must manually configure
Zoltan to your machine. (Sample configuration files for common platforms are included in the
Utilities/Config directory.)

Before you compile Zoltan, you need to know if you have the ParMetis library installed.
ParMetis can be downloaded from
http://www-users.cs.umn.edu/ ã karypis/metis/parmetis. Version 3.1 is
recommended, though other versions will work, too. It is a good idea to put the ParMetis
library in the TRILINOS_3PL as well. You should not build more than one version of
ParMetis; multiple versions may cause problems. After building ParMetis, you need to put the
correct path (for your system) in the relevant Zoltan configuration file in the Utilities/Config
directory. Then you can finally make Zoltan by typing make zoltan. (See the Zoltan doc-
umentation for more details.)

After you have built Zoltan, you may decide to copy the libzoltan.a file over to your
TRILINOS_3PL/LINUX_MPI/libdirectory (or any other name of your choice). You may
also need to copy the header files in the Zoltan include directory to
TRILINOS_3PL/LINUX_MPI/include. Alternatively, leave the library and the header
files where they are and add these directory to the include path and library path in the Trilinos
configure.

Next you need to configure Trilinos to use EpetraExt with Zoltan. You do this with a
command of the type

./configure --prefix=${TRILINOS_HOME}/LINUX_MPI \
--enable-mpi --with-mpi-compilers \
--enable-epetraext --enable-epetraext-zoltan \
--with-trilinos3pldir=${TRILINOS_3PL} \
--with-ldflags="-L${TRILINOS_3PL}/LINUX_MPI/lib" \
--with-incdirs="-I${TRILINOS_3PL}/LINUX_MPI/include"

Then type make and make install as usual.
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12.3 Load-balancing with Zoltan via EpetraExt
Sparse matrix computations can be load-balanced through the class
EpetraExt::Zoltan_CrsGraph. This is a transform that takes an Epetra CrsGraph as
input and creates a new Epetra CrsGraph that is better load-balanced. In order to redistribute
data, one needs the map of the load-balanced graph. This can be used to create an importer or
exporter.

For example, say we have a Epetra CrsMatrix that we want to load-balance. (The same
procedure should work with VBR matrices, since only the graph is used for load balancing.)
First create a transform:

EpetraExt::Zoltan_CrsGraph ZoltanTrans;

Next apply the transform to the graph of the matrix:

Epetra_CrsMatrix A;
Epetra_CrsGraph & BalGraph = ZoltanTrans(const_cast<Epetra_CrsGraph&>

(A.Graph()));

The const cast is necessary, even though normally the input graph does not change. Now we
can create an exporter to export data from the old distribution to the new distribution:

Epetra_Export exporter(A.Graph().RowMap(), BalGraph.RowMap());
Epetra_CrsMatrix BalA(Copy, BalGraph);
BalA.Export(A, exporter, Insert);

For a complete example, see didasko/examples/epetraext/ex1.cpp. There
are other (higher-level) ways to do the data rebalancing. For example, if you have a Lin-
earProblem, use EpetraExt::LinearProblem_GraphTrans.

Note that currently the only load-balancing method in Zoltan supported by the EpetraExt
is graph partitioning via ParMETIS. More options may be added in the future.

12.4 Load-balancing with Zoltan in other ways
Many applications use Zoltan for load-balancing directly, without going through EpetraExt.
This allows a full choice of algorithms and options, while the EpetraExt interface only sup-
ports Zoltan with ParMETIS graph partitioning. Zoltan is written in ANSI C, and a light-
weight C++ interface will be included in future Zoltan releases. For Trilinos users, there is
already a fairly sophisticated C++ interface to Zoltan in EpetraExt. The relevant classes are
Zoltan::LoadBalance,Zoltan::QueryObject, and Zoltan::MigrationObject.
See the doxygen documentation in EpetraExt for a description on how to use these classes.

110



References
[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUMPS home page.

http://www.enseeiht.fr/lima/apo/MUMPS, 2003.

[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994.

[3] David H Bailey, Yozo Hida, Xiaoye S. Li, and Brandon Thompson. Arprec: An arbitrary
precision computation package. Technical Report LBNL-53651, 2002.

[4] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the solution of linear systems : building
blocks for iterative methods. SIAM, Philadelphia, PA, USA, 1994.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Jemmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM Pub., 1997.

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. o, Philadelphia,
PA, USA, 2nd edition, 2000.

[7] U. Catalyurek and C. Aykanat. Hypergraph-partitioning-based decomposition for paral-
lel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, 1999.

[8] Tim Davis. UMFPACK home page. http://www.cise.ufl.edu/research/sparse/umfpack,
2003.

[9] K. Devine, B. Hendrickson, E. Boman, M. St.John, and C. Vaughan. Zoltan: A dy-
namic load-balancing library for parallel applications; user’s guide. Technical Re-
port SAND99-1377, Sandia National Laboratories, 1999. Newest version available at
www.cs.sandia.gov/zoltan.

[10] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay
Vaughan. Zoltan data management services for parallel dynamic applications. Com-
puting in Science and Engineering, 4(2):90–97, 2002.

[11] Free Software Foundation. Autoconf Home Page.
http://www.gnu.org/software/autoconf, 2004.

[12] Free Software Foundation. Automake Home Page.
http://www.gnu.org/software/automake, 2004.

[13] Free Software Foundation. Libtool Home Page. http://www.gnu.org/software/libtool,
2004.

111



[14] M. A. Heroux. IFPACK User Guide, 1.0 edition, 2001.

[15] M. A. Heroux. Epetra Reference Manual, 2.0 edition, 2002.
http://software.sandia.gov/trilinos/packages/epetra/doxygen/latex/EpetraReferenceManual.pdf.

[16] M. A. Heroux. IFPACK Reference Manual, 2.0 edition, 2003.
http://software.sandia.gov/trilinos/packages/ifpack/doxygen/latex/IfpackReferenceManual.pdf.

[17] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu, Tamara
Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger,
Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan Williams. An Overview
of Trilinos. Technical Report SAND2003-2927, Sandia National Laboratories, 2003.

[18] Michael A. Heroux. AztecOO Users Guide. Technical Report SAND2004-3796, Sandia
National Laboratories, 2004.

[19] Michael A. Heroux, Robert J. Hoekstra, and Alan Williams. Epetra Users Guide. Tech-
nical Report SAND2003-XXX, Sandia National Laboratories, 2003.

[20] Michael A. Heroux and James M. Willenbring. Trilinos Users Guide. Technical Report
SAND2003-2952, Sandia National Laboratories, 2003.

[21] Michael A. Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Developers
Guide. Technical Report SAND2003-1898, Sandia National Laboratories, 2003.

[22] Michael A. Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Developers
Guide Part II: ASCI Software Quality Engineering Practices Version 1.0. Technical
Report SAND2003-1899, Sandia National Laboratories, 2003.

[23] G. Karypis. Metis Home Page. http://www-users.cs.umn.edu/ ã karypis/metis/.

[24] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular
graphs. SIAM Review, 41(2):278–300, 1999.

[25] Tamara G. Kolda and Roger P. Pawlowski. Nox home page.
http://software.sandia.gov/nox, 2004.

[26] Na Li, Yousef Saad, and Edmond Chow. Crout versions of ILU for general sparse matri-
ces. SIAM J. Sci. Comput., 25:716–728, 2004.

[27] Xiaoye Li and James Demmel. SuperLU home page. http://crd.lbl.gov/ xi-
aoye/SuperLU/, 2003.

[28] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston, 1996.

112



[29] Marzio Sala, Jonathan J. Hu, and Ray. S. Tuminaro. Ml 3.0 smoothed aggregation user’s
guide. Technical Report SAND2004-2195, Sandia National Laboratories, 2004.

[30] Marzio Sala and Ken Stanley. Amesos 1.0 reference guide. Technical Report
SAND2004-2188, Sandia National Laboratories, 2004.

[31] A. G. Salinger, N. M. Bou-Rabee, R. P. Pawlowski, E. D. Wilkes, E. A. Burroughs, R. B.
Lehoucq, and L. A. Romero. LOCA: A library of continuation algorithms - Theroy and
implementation manual. Technical report, Sandia National Laboratories, Albuquerque,
New Mexico 87185, 2001. SAND 2002-0396.

[32] A. G Salinger, K. D. Devine, G. L. Hennigan, H. K. Moffat, S. A Hutchinson, and J. N.
Shadid. MPSalsa: A finite element computer program for reacting flow problems part 2
- user’s guide. Technical Report SAND96–2331, Sandia National Laboratories, 1996.

[33] A. G. Salinger, R. B. Lehoucq, R. P. Pawlowski, and J. N. Shadid. Computational bifur-
cation and stability studies of the 8:1 thermal cavity problem. Internat. J. Numer. Meth.
Fluids, 40(8):1059–1073, 2002.

[34] John N. Shadid, Harry K. Moffat, Scott A. Hutchinson, Gary L. Hennigan, Karen D.
Devine, and Andrew G. Salinger. MPSalsa: A finite element computer program for
reacting flow problems part 1 - theoretical development. Technical Report SAND95–
2752, Sandia National Laboratories, 1995.

[35] B. Smith, P. Bjørstad, and William Gropp. Domain Decomposition. Cambridge, 1st
edition, 1996.

[36] C. Tong and R. Tuminaro. ML2.0 Smoothed Aggregation User’s Guide. Technical
Report SAND2001-8028, Sandia National Laboratories, Albq, NM, 2000.

[37] Ray S. Tuminaro, Michael A. Heroux, Scott. A. Hutchinson, and J. N. Shadid. Offi-
cial Aztec User’s Guide, Version 2.1. Sandia National Laboratories, Albuquerque, NM
87185, 1999.

[38] Ray S. Tuminaro and Jonathan Hu. Ml home page. http://www.cs.sandia.gov/ tumi-
naro/ML Description.html, 2004.

113


