
Amesos
Sparse Direct Solver Package

Tim Davis, Mike Heroux, Rob Hoekstra, Marzio Sala, Ken Stanley, Heidi Thornquist, Jim Willenbring

Trilinos Users Group
November 6th, 2007

 The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

What’s new in Amesos

	KLU / BTF version update

	Paraklete improvements

	Interface – Timing details

 The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

	KLU: 	Native. Serial unsymmetric [Davis]; v1.0
	SuperLU: 	Serial unsymmetric [Li et al.]; v3.0
	UMFPACK: 	Serial unsymmetric [Davis]; v4.4
	LAPACK:		Serial dense unsymmetric [Dongarra et al.]
	Paraklete: 	Native. Parallel unsymmetric [Davis]
	SuperLUdist: 	Parallel unsymmetric [Li et al.]; v2.0
	MUMPS: 	Parallel unsymmetric [Amestoy et al.]; v4.6.2
	ScaLAPACK: 	Parallel dense unsymmetric [Dongarra et al.]
	DSCPACK: 	Parallel Symmetric [Ragavan]; v1.0
	TAUCS:		Parallel Symmetric [Toledo et al.]; v2.2

Currently Available Solver Interfaces

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

// Create an Epetra_LinearProblem
Epetra_LinearProblem Problem(Matrix, LHS, RHS);

// Create a solver object.
Teuchos::RCP<Amesos_BaseSolver> Solver;

// Create the solver factory.
Amesos Factory;

// Specifiy the solver. SolverType can be one
// of the following values:
// - “Lapack”
// - “Klu”
// - “Umfpack”
// - “Superlu”
// - “Scalapack”
// - “Superludist”
// - “Mumps”
// - “Taucs”
// - “Dscpack”
std::string SolverType

// Create the solver using the factory.
Solver = Teuchos::rcp(Factory.Create(SolverType, Problem));

// Set solver parameters
Teuchos::ParameterList List;
List.set(“ParameterName”, ParameterValue);
Solver->SetParameters(List);

// Perform symbolic factorization
// (only need Matrix graph, not values)
Solver->SymbolicFactorization();

// Perform numeric factorization
// (Matrix values can change here)
Solver->NumericFactorization();

// Perform solve
// (LHS and RHS of Problem can change here)
Solver->Solve();
Current Amesos Factory Interface

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

KLU / BTF Version Update
	KLU / BTF 1.0 released Spring 2007
	first official release
	Integrated into Amesos for Trilinos 8.0 release

// Create an Epetra_LinearProblem
Epetra_LinearProblem Problem(Matrix, LHS, RHS);

// Create a solver object.
Teuchos::RCP<Amesos_BaseSolver> Solver;

// Create the solver factory.
Amesos Factory;

// Create the solver using the factory.
Solver = Factory.Create(“Klu”, Problem);

// Perform symbolic factorization
Solver->SymbolicFactorization();

// Perform numeric factorization
Solver->NumericFactorization();

// Perform solve
Solver->Solve();

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

	Native distributed memory sparse solver
	Tim Davis
	Memory leak fixed
	Enabled the solution of sequences of linear systems
	Integrated into Amesos for Trilinos 8.0 release
	Block triangular form (BTF) permutation
	Serial symbolic analysis
	Integration into Amesos coming soon …

Paraklete Improvements

The best User’s Manual is the one that you never have to open.

	Amesos_Time class
	rewritten for more efficiency
	allows same timing output
	ParamList.set(“Print Timing”, true);

	enables timings to be loaded into a Teuchos::ParameterList

Interface – Timing Details
--
Amesos_Klu : Time to convert matrix to Klu format = 2.3e-05 (s)
Amesos_Klu : Time to redistribute matrix = 1.6e-05 (s)
Amesos_Klu : Time to redistribute vectors = 4e-06 (s)
Amesos_Klu : Number of symbolic factorizations = 1
Amesos_Klu : Time for sym fact = 0.00015 (s), avg = 0.00015 (s)
Amesos_Klu : Number of numeric factorizations = 1
Amesos_Klu : Time for num fact = 8.8e-05 (s), avg = 8.8e-05 (s)
Amesos_Klu : Number of solve phases = 1
Amesos_Klu : Time for solve = 1.7e-05 (s), avg = 1.7e-05 (s)
Amesos_Klu : Total time spent in Amesos = 0.000255 (s)
Amesos_Klu : Total time spent in the Amesos interface = 7.8e-05 (s)
Amesos_Klu : (the above time does not include KLU time)
Amesos_Klu : Amesos interface time / total time = 0.305882
--

Teuchos::ParameterList TimingsList;
Solver->GetTiming(TimingsList);

// you can find out how much time was spent in ...
double sfact_time, nfact_time, solve_time;
double mtx_conv_time, mtx_redist_time, vec_redist_time;

// 1) The symbolic factorization
// (parameter doesn't always exist)
sfact_time = TimingsList.get("Total symbolic factorization time", 0.0);

// 2) The numeric factorization
// (always exists if NumericFactorization() is called)
nfact_time = Teuchos::getParameter<double>(TimingsList, "Total numeric factorization time");

// 3) Solving the linear system
// (always exists if Solve() is called)
solve_time = Teuchos::getParameter<double>(TimingsList, "Total solve time");

// 4) Converting the matrix to the accepted format for the solver
// (always exists if SymbolicFactorization() is called)
mtx_conv_time = Teuchos::getParameter<double>(TimingsList, "Total solve time");

// 5) Redistributing the matrix for each solve to the accepted format for the solver
mtx_redist_time = TimingsList.get("Total matrix redistribution time", 0.0);

// 6) Redistributing the vector for each solve to the accepted format for the solver
vec_redist_time = TimingsList.get("Total vector redistribution time", 0.0);
Interface - Timing Details

Amesos Summary

	KLU / BTF version update

	Paraklete improvements

	Interface – Timing details

	Check out the Trilinos Tutorial:

http://trilinos.sandia.gov/Trilinos8.0Tutorial.pdf

	See Amesos website for more info:

http://trilinos.sandia.gov/packages/amesos

 The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

UNKNOWN-0.ppt

Trilinos + Amesos

 Making AX = B as easy as it sounds

Ken Stanley, Rob Hoekstra, Marzio Sala, Tim Davis, Mike Heroux

SIAM Annual meeting, Portland

July 13, 2004, 5:00 P.M.

 The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers. In a sense, had we succeeded, there would be no need for this talk. Type AX=B and you’re done.

Amesos

Interface to sparse direct solvers

		Simple interface

		Multiple solvers

		Simplified upgrade path

		Any solver on any (Epetra) matrix

		Parameter list control

		Trilinos package

		Autotool configuration

		Nightly testing

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Trilinos Highlights

		Robust implementation of advanced parallel algorithms

		Suite of solvers

		Sixteen packages

		Autotool configuration

		Bug tracking

		Nightly testing

		Automatic documentation generation

		Revision control

		Portability – C++/C/Fortran, LAPACK/Blas, etc.

Epetra Highlights

		Distributed Sparse Matrices

		Sparse/Dense/Block Sparse

		Serial/Parallel/Replicated

		Finite Element

		Matrix Free Operators

		Distributed Vectors

		Serial/Parallel/Blocked

		Communication

		Data redistribution (matrix and vector)

		Custom communication patterns

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Calling Amesos

Epetra_LinearProblem Problem(A, x, b);

Amesos Afact;

Amesos_BaseSolver* Solver = Afact.Create(“Klu”, Problem) ;

Solver->SymbolicFactorization() ;

Solver->NumericFactorization() ;

Solver->Solve() ;

The best User’s Manual is the one that you never have to open.

Amesos Solvers

		Klu: Built-in. Serial unsymmetric [Davis]

		SuperLU: Serial unsymmetric [Li et al.]

		UMFPACK: Serial unsymmetric [Davis]

		SuperLUdist: Parallel unsymmetric [Li et al.]

		MUMPS: Parallel unsymmetric [Amestoy et al.]

		ScaLAPACK/LAPACK: Dense

		DSCPACK: Parallel Symmetric [Ragavan]

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Getting started:

Building Amesos

		Amesos User Guide:

http://software.sandia.gov/trilinos/packages/amesos

		Build Amesos

		CONFIGURE:

./configure –enable-amesos

		BUILD:

make

		TEST:

cd amesos/test

source AmesosKlu.exe

Calling Amesos

Same Structure Different Data

Epetra_LinearProblem Problem(A, x, b);

Amesos Afact;

Amesos_BaseSolver* Solver = Afact.Create(“Klu”, Problem) ;

Solver->SymbolicFactorization() ;

For () {

 // Changes to the data, but not the non-zero pattern

 Solver->NumericFactorization() ;

 Solver->Solve() ;

}

Calling Amesos

Multiple Solves

Epetra_LinearProblem Problem(A, x, b);

Amesos Afact;

Amesos_BaseSolver* Solver = Afact.Create(“Klu”, Problem) ;

Solver->SymbolicFactorization() ;

Solver->NumericFactorization() ;

For () {

 // Changes to b

 Solver->Solve() ;

}

Calling Amesos

Blocked Right Hand Sides

Epetra_Multivector x, b;

Epetra_LinearProblem Problem(A, x, b);

Amesos Afact;

Amesos_BaseSolver* Solver = Afact.Create(“Klu”, Problem) ;

Solver->SymbolicFactorization() ;

Solver->NumericFactorization() ;

Solver->Solve() ;

The best User’s Manual is the one that you never have to open.

Calling Amesos

Pivotless Re-factorization

Epetra_LinearProblem Problem(A, x, b);

Amesos Afact;

Amesos_BaseSolver* Solver = Afact.Create(“Klu”, Problem) ;

ParamList.SetParam(“Refactorize”, true);

Solver->SetParameters(ParamList)

Solver->SymbolicFactorization() ;

For () {

 // Small changes to the data, but not the non-zero pattern

 Solver->NumericFactorization() ;

 Solver->Solve() ;

}

Amesos

Switching solvers

		Afact.Create(“Klu”, Problem) ;

-> Afact.Create(“SuperLUdist”, Problem) ;

		Amesos redistributes data (serial to parallel, etc.)

		Heuristics consistent across solvers

		Parameter List

		Allows individual control over each solver

		Amesos fills in capabilities

		Transpose

		Blocked right hand sides

		Disclaimer: Amesos cannot fill in all gaps. Solvers have fundamentally different capabilities.

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Amesos

Adding third party libraries

		 Amesos User Guide: http://software.sandia.gov/trilinos/packages/amesos

		Download source from the authors’ website

		Modify make.inc

		“make”

		 Check output of example run

		Future Work

		Work with authors to Autotool their libraries

Building Amesos

with additional third party libraries

		Amesos User Guide:

http://software.sandia.gov/trilinos/packages/amesos

		Build Amesos

		CONFIGURE: (e.g. DSCPACK)

./configure –enable-amesos –enable-amesos-dscpack –with-libs=“-L/dir –ldscpack” -with-incdirs=-I/dir/SRC

		BUILD:

make

		TEST:

cd amesos/test

source Amesos_Dscpack.exe

Amesos

Future Work

		Additional third party libraries

		Allow any ordering to be used by any package

		Extended precision iterative refinement

		Enhance nightly testing

		Performance

		Memory leaks

		Check code coverage

		Work with authors to autotool their libraries

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Amesos-Paraclete

[Davis, Stanley, Heroux]

Distributed memory solver goals:

		Built into Amesos in 2005

		Simple design

		Full partial pivoting

		Allowing restrictions may improve performance

		Leverage existing technology

		Epetra support

		Amesos serial solvers

		Partitioners

		Static Pivoting

Amesos-Paraclete

Distributed memory solver overview

		Reduction to Block Triangular form

		Partition matrix

		Use enhanced Amesos serial solver for local solves

		Add Schur Complements to root node

		Use any Amesos solver on the root node

Paraclete

no pivot

Factor

Leaves

Compute

Schur Complements

Update

Root Node

Factor Root

Paraclete

pivoting strategies

		Static pivoting [Li; Demmel]

		Local pivoting

		Delayed pivoting

		Singly bordered

 form [J. Scott]

 augmented matrix

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Paraclete pivoting – static and local

		Static pivoting [Li; Demmel]

		Reorder and scale rows and columns to promote diagonal dominance

		Imperfect but works well in practice

		Can reduce need for pivoting even if it doesn’t eliminate it

		Local pivoting

		Requires no additional communication

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Paraclete pivoting

– delayed

		Delay columns

 which do not allow

 an acceptable pivot choice

		 Allow root node to grow

		Threshold pivoting reduces communication

		 Requires:

		A serial solver which supports

 delayed pivoting

		Mutable root node size

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Paraclete pivoting

Singly bordered form

		Augment matrix, adding

 columns [-I;I] to split

 and onto separate

 rows

		Allows full partial pivoting

		If and are not used

 as pivots, matrix can be

 collapsed to original size

		

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

Amesos

Interface to sparse direct solvers

		Simple interface

		SuperLU, KLU, MUMPS, UMFPACK, DSCPACK, SuperLUdist, ScaLAPACK, LAPACK

		Built-in serial solver

		Future:

		Built-in distributed memory solver

		More third party solvers

		Extended precision iterative refinement

The goal of Amesos, is to make AX = B as easy as it sounds, at least for sparse direct solvers.

2

3

A

'

333333

LU=A

3

22222222

22

1

3

æöæö

=

ç÷ç÷

è

æöæö

=

ç÷ç÷

è

ø

èø

ø

ø

è

111113111

313

3

33

L

LUUAA

LIAI

UUAA

LIAI

1113

3

2223

32

3

1

3

A

-

A

0

A

I

A

IA

A

A

11

()

subset

111111

PLUQ=A

2223

32

3

13

31

3

11

AA

A

A

A

0

A

A

0

'

333

2

1

3

-

A

SC

A

-SC

=

1

23

3

13

23

1

2

S

SC=LU

C=LU

11111111

PLUQ=A

1

2

1113

3

2

33

223

3

A

-

A

0

A

I

A

IA

A

A

33

A

11

()

subset

111111

PLUQ=A

31

A

2

3

A

