
Page 1

Maintaining the Stability of Trilinos Dev

Stable vs Experimental Code

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos User Group Meeting, October 23, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
f or the United States Department of Energy under contract DE-AC04-94AL85000.

2008-7714 P

Page 2

Motivations for Improving Stability of Trilinos Dev

• Support deep stacks of vertically integrated Trilinos packages with
production APPs

– Algorithm Integration Project
– Many others ...

• Support tighter coupling and co-development with production APPs
– SIERRA toolkit packages (STK_Mesh, STK_IO, ...)
– Replace SIERRA framework code with Trilinos code (Teuchos::ParameterList, ...)

• Support more frequent, safer, higher quality, lower risk releases of Trilinos

• Improve overall development productivity and software quality

See:
Trilinos/doc/DevGuide/TrilinosSoftwareEngineeringImprovements.doc

Page 3

Challenges of APP + Trilinos Release and Dev Integration

APP (SIERRA)
VOTD

Trilinos
Release

Trilinos
Dev

N
ew

APP (SIERRA)
Developers

APP + Trilinos
Dev Developers

Trilinos Dev
Developers

Problems
• APP developers sometimes break APP

+ Trilinos Dev New
• APP + Trilinos Dev inherits instability of

APP and Trilinos development lines

Improvements
• Make Trilinos Dev backward

compatible with Trilinos Release
=> Minimize need to refactor and ifdef

• Improve stability of Trilinos Dev
• Improve stability of APP VOTD

Page 4

SIERRA + Trilinos Integration: Opportunities and Challenges

• SIERRA Framework Developers would like to consider tighter integration
with Trilinos:
– Move new SIERRA toolkits packages into Trilinos

• STK_Mesh
• STK_IO?
=> Make these available for rapid production and other projects

– Develop the FEI through Trilinos instead of a SIERRA TPL
=> Allow FEI to be updated more frequently

– Replace SIERRA code with Trilinos code:
• Teuchos::ParameterList
• Intrepid
• Phalanx
=> Reduce duplication and increase Trilinos impact

• Challenge: Tighter integration of APP and Trilinos does not fit well
into current APP + Trilinos Release and Dev model!

Page 5

APP developed only against Trilinos Dev

Trilinos Head

APP Head

APP Y+1 & Trilinos APP Y+1 release

Testing: APP VOTD + Trilinos Dev

Supported with continuous integration testing!

Trilinos APP Y+1 release

Tril in
os APP Y+1

branch

APP Y+1

branch

Future of SIERRA + Trilinos Integration?

• All changes are tested in small batches
• Low probability of experiencing a regression
• Less computing resources for testing
• Regressions and flagged immediately by APP developers
• Can support tighter integration efforts
• Supports rapid development of new capability from top to bottom
• Requires Trilinos to be more stable
• Other issues arise as well

Page 6

Lean/Agile Software Engineering Principles

• High quality software is developed in small increments and with sufficient
testing in between sets of changes.

• High quality defect-free software is most effectively developed by not
putting defects into the software in the first place (i.e. code reviews, pair
programming etc.).

• High quality software is developed in short fixed-time iterations.

• Software should be delivered to real (or as real as we can make them)
customers is short intervals.

• Ruthlessly remove duplication in all areas.

• Avoid points of synchronization. Allow people to work as independently as
possible and have the system set up to automatically support this.

• Most mistakes that people make are due to a faulty process/system (W.
Edwards Deming).

• Automation is needed to avoid mistakes and improve software quality.

References: http://www.cs.sandia.gov/~rabartl/readingList.html

Page 7

Regression!

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

Common Approach
NOT AGILE!

Problems
• Cost of fixing defects increases the longer they exist in the code
• Difficult to sustain development productivity
• Broken code begets broken code (i.e. broken window phenomenon)
• Long time between branch and release

– Difficult to merge changes back into main development branch
– Temptation to add “features” to the release branch before a release

• High risk of creating a regression

Page 8

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

The Agile way!

Advantages
• Defects are kept out of the code in the first place
• Code is kept in a near releasable state at all times
• Shorten time needed to put out a release
• Allow for more frequent releases
• Reduce risk of creating regressions
• Decrease overall development cost

Page 9

Trilinos Framework Package Responsibilities

• Analogy: United States of America
– Federal Government vs State roles and responsibilities

• Trilinos Analogy
– Services provided by the framework (federal) for the packages (states)
– Other services packages (states) provide for themselves
=> This as been described as a one-way street! Framework => Packages

• What about package responsibilities to the framework and other packages?

• Analogy: United States of America
– Federal government imposes standards and requirements on States

• Example: States can not deny voter rights in local elections
– States have to support other states and the federal government

• Example: States have to pay taxes to support the federal government
• Example: If Florida is invaded by Cuba, all states will provide soilders

• Trilinos package developers have extra responsibilities by being in Trilinos!
=> We need a two-way street! Framework Packages

Page 10

Trilinos “Stable” vs “Experimental” Code: Defined

• “Stable” Code and Tests:
– “Stable” code meets one or more of the following criteria:

• Represents an important capability being used by an existing customer in a release of
Trilinos, or

• Represents a new capability that the authors are willing to stand behind (as defined
below) and is being targeted for the next release

– “Stable” code/tests are expected to be kept working at all times. There should be
little excuse for breaking “Stable” code on the primary development platform(s).

– “Stable” code should be developed from the start and maintained to be highly
portable.

– “Stable” code should be maintained at the highest quality as defined by
Lean/Agile software engineering principles.

• “Experimental” Code and Tests:
– By definition, all remaining code that is not “Stable” code.
– Represents fundamental research and may be developed with informal low-

quality software practices.
– Any code that has a direct and mandatory dependency on any “Experimental”

code must also be considered to be “Experimental” code.
– Developers should try to avoid depending on other “Experimental” code because

it is likely to be unstable and break frequently.
– “Experimental” code should be protected behind ifdefs with macos that must be

defined in order to be built.

Page 11

Trilinos “Stable” vs “Experimental” Code: Goals

• Allow crazy and impulsive algorithms research with “Experimental” Code
– Conducted within Trilinos
– Benefit from ready to use “Stable” building blocks
– Take advantage of everything the Trilinos environment has to offer

• Maintaining “Stable” core allows:
– Other “Experimental” research efforts can remain highly productive because their

foundation is not constantly breaking
– New requirements from “Stable” code needed to drive “Experimental” research

code development can be rapidly developed and integrated in real time

• Partitioning off “Experimental” code from “Stable” code
– Avoid the problem of a top-heavy overly strict environment which does not allow

for rapid research investigations.

• By keeping “Stable” code in a near releasable state, we allow for fast and
frequent releases of Trilinos.

• Summary: We can have our cake and eat it too!

Page 12

Trilinos “Primary Stable” vs “Secondary Stable” Code

• Sub-categorizations of “stable” code based on dependencies:
– “Primary Stable” code is “Stable” code that only depends on:

• C, and C++ compilers
• Fortran 77 compiler
• BLAS and LAPACK
• MPI

– “Secondary Stable” code is “Stable” code with additional dependencies such as:
• SWIG/Python (i.e. PyTrilinos)
• Fortran 2003+ (i.e. ForTrilinos)
• External direct sparse solvers like UMFPACK, SuperLU, etc. (i.e. Amesos adapters)
• ...

• “Stable” code in one package can only depend on “Stable” code in other
packages.

• “Stable” code should by default only build “Primary Stable” code.

• Enabling “Secondary Stable” code should require explicit configure-time
options.

Page 13

Synchronous Continuous Integration : Defined

“Synchronous Continuous Integration”: Software is integrated and tested
locally before it is checked in by performing the following in rapid
succession:

• Do a VC update
• Rebuild all affected code
• Rerun the “precheckin” test suite
• If there are *any* failing tests

– Fix the code, or
– Investigate why the code fails, or
– Do something else to make sure it is okay to check in.
– Don’t just check in broken code and/or broken tests!

• If all the affected code and tests build and pass
– Quickly check in the changes using one atomic checkin

Page 14

Asynchronous Continuous Integration : Defined

Asynchronous Continuous Integration”: Software is integrated and tested on
a CI server after it is checked in by performing the following:

• Developers do basic/incomplete testing (i.e. without doing full “synchronous
continuous integration”)

• Developers check in code
• Continuous integration (CI) server periodically runs:

– Does VC update (on a fixed schedule or when changes are detected)
– Does a full integration build and runs the integration test suite

• If the build or any tests fail
– An email notification is sent out to some group of people alerting them

• Developers fix problems ASAP!

Page 15

General Practices Related to “Stable” Code

• Stability and portability as the highest goals
• Maintained in a “done” (i.e. close-to-releasable) state

– up-to-date tests, examples, documentation
• Compiled with high warning levels and treat warnings as errors

– Portability of the software!
– Many users want to compile their codes with this and Trilinos is a problem

• Backward compatibility (one major release or more) is a high priority
• Every Trilinos developer’s responsibility to help maintain stability and integrity
• Built every night on a variety of different platforms & compilers

– High priority on fixing broken builds first and then on fixing broken tests
• 100% passing test policy for all “Stable” code on our primary development platforms!

– Primary development platforms include:
• Linux + gcc ??? (high warning levels and warnings as errors)
• Mac OSX + gcc ??? (lesser warning levels?)

• Goal of 100% passing tests on other auxiliary platforms as well
– Efforts to fix failing builds and tests on auxiliary platforms will take place in an

auxiliary development loop that runs behind the efforts on the primary development
platforms

– Examples of auxiliary platforms: Intel compilers, PGI compilers, IBM compilers, Pathscale
compilers, SUN compilers, ...

Page 16

General Practices Related to “Experimental ” Code

• Other Trilinos developers have little-to-no direct responsibility to maintain “Experimental”
code

– However, should still consider the impact their changes will have *before* they check in
– Example: Use a script to automatically change the name in all source files

• Remove “Experimental” code segments and even entire files for releases

Page 17

Promotion of “Experimental” Code to “Stable” Code

TBD

Page 18

“Stable” vs “Experimental” Code: Continuous Integration

• “Primary Stable” code
=> Use “synchronous continuous integration” before every checkin

• Steps can be skipped based on developer discretion
=> Provide driver tools to make this easy!

• “Secondary Stable” code
=> Use “synchronous continuous integration” for any “Primary Stable” code
=> Rely on “asynchronous continuous integration” for testing other “Secondary Stable” code

• Respond to failed builds/tests ASAP!
=> Or, build and test on Central Build Server to test affected “Secondary Stable” code before checkins

• “Experimental” code
=> No pre-checkin procedure for “Experimental” code
=> Use “synchronous continuous integration” for any “Primary Stable” code

Page 19

Synchronous Continuous Integration Checkin Procedure

A) Start filling out the checkin checklist message in a temporary text file
B) Do a VC update to get all current changes
C) Configure Trilinos to enable all “Primary Stable” code that depends on your code:

– Without any “Secondary Stable” or “Experimental” code enabled
– Test serial + debug (-pedantic), and mpi + optimized (high warning levels and warnings as errors)

D) Rebuild and rerun the “pre-checkin” test suite (high working levels and warnings as errors)
– If there are *any* tests fail, fix the code, investigate why the tests are failing, etc ...
– DO NOT UNDER ANY CIRCUMSTANCE EVER CHECK IN CODE THAT DOES NOT BUILD!

E) Finish filling out the checkin checklist message (while rebuilt/retest is running).
F) If the rebuild/restest passes and (i.e. all tests pass, 0 test fail), then:

– Quickly do a ‘cvs –nq update –dP’ to see if there are any new changes
• If you see changes that are worrisome, go back to step ‘B’ and repeat.

– Otherwise, go ahead and check in
• Do checkin in one global atomic checkin using the checkin with ‘cvs commit –F checkin_message’.

G) Otherwise, abort the checkin and then do either:
– Backup your changes to keep them safe (e.g. using ‘tar –czvf Trilinos.date.tar.gz Trilinos’ or

something and ‘scp’ the file to another machine).
– Or, Try to resolve the problems and get the code to build and get all of the tests to pass.

NOTE #1: Any and all of the above steps can be bypassed by the developer
NOTE #2: A tool (Cmake-based) must be available to perform all of the above steps
NOTE #3: The fallback is to rely on “asynchronous continuous integration”
NOTE #4: Changes that break down-stream code are immediately caught *before* checkin

Page 20

“Stable” vs “Experimental” Code: Daily Integration Testing

• Testing of “Primary Stable” Code
– Tested on primary testing servers
– Tested on other auxiliary platforms (as many as we can get)
– Results reported to “Primary Stable” code dashboard section
– Tested as part of APP + Trilinos Integration testing (i.e. Charon, SIERRA, Alegra, ...)

• Testing of “Secondary Stable” Code
– All “Secondary Stable” code with all dependencies tested on a central testing server
– Targeted subsets of “Secondary Stable” code tested on targeted auxiliary platforms
– Tested as part of APP + Trilinos Integration testing (i.e. Charon, SIERRA, Alegra, ...)

• Nightly testing of “Experimental” code
– Performed entirely on package teams computing resources
– Takes advantage of easy-to-create testing drivers (i.e. Cmake/CTest)
– Results posted to central dashboard separate from “Stable” code results
– Tested as part of APP + Trilinos Integration research testing (i.e. Charon, SIERRA, Alegra, ...)

Page 21

“Stable” Code: 100% Passing Test Policy

• All “Stable” code should have 100% passing tests 100% of the time on the primary
development platforms as the norm instead of the exception.

• Achieving 100% passing tests on auxiliary development platforms is also a priority but is
done in a secondary development loop.

• A failing test on any testing platform should be addressed and be made to pass or be
disabled using the following algorithm:

– Fix the test in the strongest way possible
– Or, loosen the “strength” of test to get it pass on that specific platform (i.e. by loosing a platform-

specific tolerance)
– Or, disable the test and submit a new item to the sprint or product backlog (e.g. Bugzilla bug

report) so that it can be prioritized and fixed later
– Or, remove the test and all of the associated code related to it

Page 22

Motivations for a 100% Passing Test Policy for “Stable” Code

Why is 100% passing tests important?
• Package Y (reference package):

– “Broken Window” Phenomenon
=> One broken test begets others

– Zero (0) is singularly different that 1 or X failing tests
=> People take notice of “all passed” vs “failed”

– ‘M’ failing tests is not much different that ‘N’ failing tests
– 100% passing tests clear measure of the code health
– 100% passing test suite is unbiased criteria for code checkins
– 100% passing test suite is an unbiased measure for if any code has

been broken after a checkin
– Code coverage less meaningful when there are failing tests

• Package X (up-stream package being used by Package Y)
– 100% passing test suite for Package Z provides a clear means to

determine if changes in Package X break anything.
• Package Z (down-stream package that uses Package Y)

– 100% passing test suite for Package Y gives Package Z developers
confidence that they can depend on and trust the code in Package Y.

• Bottom Line:
– 100% passing test suites help to build trust between developers
– 100% passing test suites help to avoid unnecessary communication
– 100% passing test suites help to avoid synchronization points

Package Z
(down-stream)

Package Y
(reference)

Package X
(up-stream)

Page 23

Specific Areas where Trilinos Needs Improvements

• Reduce compilation times to speed rebuilds
– Take all standard C++ headers out of Package_ConfigDefs.hpp and use only where needed
– Make greater use of forward class declarations
– Take greater advantage of the pImpl idiom for many more classes
– Use explicit instantiation for as much templated C++ code as we can (i.e. templated on Scalar)
– Exploit shared libraries (with Cmake build system)

• Create different categories of tests that get built and run for different purposes:
– “Unit” tests (i.e. TDD tests)
– “Basic integration” tests (i.e. pre-checkin tests)
– “Regression” tests (i.e. nightly tests)
– “Performance” tests
– “Scalability” tests
– “User-like” tests (i.e. backward compatibility tests)

• Improve installation testing:
– Configure, build and install Trilinos, then reconfigure Trilinos tests and examples to build against

installed Trilinos headers
• Improve the exception safety of our C++ codes (See Item 29 “Strive for exception-safe

code” in “Effective C++ 3rd Edition”)
• Improve backward compatibility (tools, processes, policies, testing, ...)
• Nightly testing on more platforms (i.e. SCICO LAN Linux compilers, Sun, ...)
• Improve release process

Page 24

Trilinos Release Process Improvements

• Things to do before the branch for the release is created:
– Implement all functionality for the upcoming release
– Keep all documentation and examples for “Stable” code up to date after each change
– Put all “Experimental” code behind ifdefs so that it will not be included in the next release.
– The “Stable” code for each package should almost always be in a releasable state

=> No reason to branch or tag individual packages separately before release branch creation
– “Stable” code produces clean tests on all of the test platforms well before the release date
– Perform at least one round of ports and acceptance tests with Trilinos Dev against all major

customer platforms and applications a few weeks before the targeted release branch date.
• Things to do after the branch for the release is created:

– Run automated scripts to automatically strip out all “Experimental” code and tests (This removes
a lot of the need for complex tarball logic).

– No changes are made to the branch except what are absolutely necessary to address serious
defects.

– Do (what should be) a final round of ports and acceptance tests against all major customer
platforms and applications.

• Resolve any new problems that have come up since the previous round of ports and tests conducted a few
weeks prior. (Experience with SIERRA + Trilinos Integration shows that very few new issues come up.)

– Change the version numbers inside of Trilinos. (NOTE: We need a more automated and uniform
way of updating version numbers.)

– Create the final tag.
– Release the code.

Page 25

Summary

• Partitioning of “Stable” and “Experimental” Code:
– “Stable” Code and Tests:

• Represents an important capability being used by an existing customer
• Expected to be kept working at all times

– “Experimental” Code and Tests:
• All remaining code that is not “Stable” code
• Represent fundamental research with informal low-quality software practices

• Goals for “Stable” and “Experimental” Code partitioning:
– Allow crazy and impulsive algorithms research with “Experimental” Code

• Benefit from ready to use “Stable” building blocks
• Take advantage of everything the Trilinos environment has to offer

– Maintaining “Stable” core allows:
• Other “Experimental” research efforts can remain highly productive because their

foundation is not constantly breaking
• New requirements from “Stable” code needed to drive “Experimental” research code

development can be rapidly developed and integrated in real time
– Partitioning off “Experimental” code from “Stable” code

• Avoid the problem of a top-heavy overly strict environment which does not allow for
rapid research investigations.

– By keeping “Stable” code in a near releasable state, we allow for fast and
frequent releases of Trilinos.

We can have our cake and eat it too!

