
Page 1

APP + Trilinos Integration

Status, Opportunities, and Challenges

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos User Group Meeting, October 23, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
f or the United States Department of Energy under contract DE-AC04-94AL85000.

2008-7716P

Page 2

Current Status of APP + Trilinos Integration

• Charon + Trilinos Integration:
– ASC FY07 Vertical Integration Milestone
– Automated daily integration testing done against Trilinos 7.0, 8.0, and Dev
– Charon could not upgrade to Trilinos 8.0 last year because Xyce did not upgrade
– Charon will release against Trilinos 7.0 later this quarter!
– John Shadid is building and running Charon against recent snapshots of Trilinos

Dev
– Charon was not tested against Trilinos 9.0 and there is no interest from the semi-

conductor side
– What about Xyce + Charon + Trilinos integration?
– Conclusion: Current Trilinos release process has little impact on Charon

• Xyce + Trilinos Integration:
– Ad-hoc manual integrations with Xyce + Trilinos Dev was done prior to branch of

Trilinos Release
– Testing of Xyce + Trilinos 9.0 brach was *not* done => Xyce can not build against

Trilinos 9.0 and it has consumed several weeks worth of effort!

Page 3

Current Status of APP + Trilinos Integration

• Alegra + Trilinos Integration:
– Automated testing of Alegra + Trilinos Dev was conducted before Trilinos 9.0

branch ... Several problems were resolved before Trilinos 9.0 was branched!
– Alegra switched over to Trilinos 9.0 after branch (but stopped testing against

Trilinos Dev)
– New Xyce TPL depends on Trilinos with versioning issues
– Alegra was ready to switch to Trilinos 9.0 by 10/15 but could not because Xyce

does not build against Trilinos 9.0!
– Alegra would like to do a Alegra + Xyce + Trilinos Dev daily integration to support

their work!

• Aleph + Trilinos Integration:
– They take snapshot of Trilinos Dev from time to time and build against that
– Automated testing of Aleph against Trilinos Dev Shapshot
– Aleph would be very interested to use the STK IO capabilitily that might be moved

into Trilinos?
– In this case, they would be very interested in doing daily integration with Trilinos

Dev ...

Page 4

Current Status of APP + Trilinos Integration

• Titan/VTK + Trilinos Integration:
– They currently do informal builds against snapshots of Trilinos Dev
– They have already experienced a regression between updated snapshots
– They want to move to automated daily integration testing with Trilinos Dev

• SIERRA + Trilinos Integration:
– Driven by Algorithm Integration Project

• Embedded algorithms in SIERRA
– SIERRA does *not* use the Trilinos build system, they build Trilinos with BJAM
– Developer environment built constructed with Python scripts (STANA scripts)
– Daily integration testing for all of SIERRA + Trilinos Release and Dev
– Continuous Integration testing done every two hours for Aria + Trilinos Release

and Dev
– Extensive testing and porting before the branch of Trilinos 9.0
– Upgrade to Trilinos 9.0 went very smoothly

• Transition to Trilinos 9.0 was done in less than one week (could have been done in one
day)

Page 5

SIERRA + Trilinos Integration: STANA Website

http://sierra-trac.sandia.gov/trac/sierra/wiki/Modules/Aria/SubProjects/STANA

Page 6

Lean/Agile Software Engineering Principles

• High quality software is developed in small increments and with sufficient
testing in between sets of changes.

• High quality defect-free software is most effectively developed by not
putting defects into the software in the first place (i.e. code reviews, pair
programming, etc.).

• High quality software is developed in short fixed-time iterations.

• Software should be delivered to real (or as real as we can make them)
customers is short intervals.

• Ruthlessly remove duplication in all areas.

• Avoid points of synchronization. Allow people to work as independently as
possible and have the system set up to automatically support this.

• Most mistakes that people make are due to a faulty process/system (W.
Edwards Deming).

• Automation is needed to avoid mistakes and improve software quality.

References: http://www.cs.sandia.gov/~rabartl/readingList.html

Page 7

Regression!

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

Common Approach
NOT AGILE!

Problems
• Cost of fixing defects increases the longer they exist in the code
• Difficult to sustain development productivity
• Broken code begets broken code (i.e. broken window phenomenon)
• Long time between branch and release

– Difficult to merge changes back into main development branch
– Temptation to add “features” to the release branch before a release

• High risk of creating a regression

Page 8

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

The Agile way!

Advantages
• Defects are kept out of the code in the first place
• Code is kept in a near releasable state at all times
• Shorten time needed to put out a release
• Allow for more frequent releases
• Reduce risk of creating regressions
• Decrease overall development cost

Page 9

APP Only Upgrades After Each Major Release of Trilinos

Trilinos Head

APP Head

Trilinos X release

Tril in
os X+1

branch

APP Y+1 & Trilinos X+1
release

Testing: APP VOTD + Trilinos X APP VOTD
transition
to Trilinos
X+1

Testing:
APP VOTD + Trilinos X+1

• Transition from Trilinos X to Trilinos X+1 can be difficult and open ended
• Large batches of changes between integrations
• Greater risk of experiencing real regressions
• Upgrades may need to be completely abandoned in extreme cases

Trilinos X+1 release

Page 10

APP Builds Against both Trilinos Release and Trilinos Dev

APP (SIERRA)
VOTD

Trilinos
Release

Trilinos
Dev

N
ew

APP (SIERRA)
Developers

APP + Trilinos
Dev Developers

Trilinos Dev
Developers

• APP (SIERRA) VOTD Developers only build/test against Trilinos Release
• Changes between Trilinos Release and Trilinos Dev handed through:

– Refactoring
– Minimal ifdefs (NO BRANCHES)!

• Trilinos Dev Developers work independent from APP
• Use of staggered releases of Trilinos and APP
• APP + Trilinos Dev Developers drive new capabilities

Page 11

Tril in
os X+1

branch

APP Builds Against both Trilinos Release and Trilinos Dev

Trilinos Head

APP Head

Trilinos X release

APP Y+1 & Trilinos X+1
release

Testing: APP VOTD + Trilinos X
Testing: APP VOTD + Trilinos Dev

Testing:
APP +
Tri Dev
Tri X
Tril X+1

• All changes are tested in small batches
• Low probability of experiencing a regression
• Extra computing resources to test against 2 (3) versions of Trilinos
• Some difficulty flagging regressions of APP + Trilinos Dev
• APP developers often break APP + Trilinos Dev
• Difficult for APP to have rely on Trilinos too much
• Hard to verify Trilinos for APP before APP release

Trilinos X+1 release

Testing: APP VOTD + Trilinos X+1
Testing: APP VOTD + Trilinos Dev

SIERRA + Trilinos Integration!

Page 12

Challenges of APP + Trilinos Release and Dev Integration

APP (SIERRA)
VOTD

Trilinos
Release

Trilinos
Dev

N
ew

APP (SIERRA)
Developers

APP + Trilinos
Dev Developers

Trilinos Dev
Developers

Problems
• APP developers sometimes break APP

+ Trilinos Dev New
• APP + Trilinos Dev inherits instability of

APP and Trilinos development lines

Improvements
• Make Trilinos Dev backward

compatible with Trilinos Release
=> Minimize need to refactor and ifdef

• Improve stability of Trilinos Dev
• Improve stability of APP VOTD

Page 13

SIERRA + Trilinos Integration: Opportunities and Challenges

• SIERRA Framework Developers would like to consider tighter integration
with Trilinos:
– Move new SIERRA toolkits packages into Trilinos

• STK_Mesh
• STK_IO?
=> Make these available for rapid production and other projects

– Develop the FEI through Trilinos instead of a SIERRA TPL
=> Allow FEI to be updated more frequently

– Replace SIERRA code with Trilinos code:
• Teuchos::ParameterList
• Intrepid
• Phalanx
=> Reduce duplication and increase Trilinos impact

• Challenge: Tighter integration of APP and Trilinos does not fit well
into current APP + Trilinos Release and Dev model!

Page 14

APP + Trilinos Integration: Problems with Tighter Integration

SIERRA
VOTD

Trilinos
Release

Trilinos
Dev

N
ew

STK
Mesh

Problems
• Development of STK Mesh requires

new features in Trilinos packages (i.e.
Teuchos)

• STK Mesh built against Trilinos
Release will not have some features!

Approach?
• Check out STK Mesh from Trilinos

separately to build with SIERRA?
• Ifdef STK Mesh to build against both

Trilinos Release and Trilinos Dev?

Page 15

APP + Trilinos Integration: Problems with Tighter Integration

Tril in
os X+1

branchTrilinos Head

SIERRA Head

Trilinos X release

SIERRA Y+1 & Trilinos X+1
release

Trilinos X+1 release

Activity: Develop new features of STK Mesh
(new) with new Trilinos Dev features

Test: SIERRA + STK Mesh + Trilinos Release
Test: SIERRA + STK Mesh (new) + Trilinos Dev

Any new development
of STK Mesh (new)
against Trilinos Dev
will not impact release
of SIERRA Y+1!

Activity: Develop new
features of STK Mesh
(new) with new
Trilinos Dev features

Conclusion: This will be complex and involve greater risk!

Is there another way?

Page 16

APP + Trilinos Integration: Different Collaboration Models

• APP only upgrades after each major release of Trilinos
– Little to no testing of APP + Trilinos Dev in between versions

• APP builds against both Trilinos Release and Trilinos Dev
– APP developers work against Trilinos Release
– APP + Trilinos team(s) build against Trilinos Dev
– Nightly and continuous integration testing done for both APP + Trilinos Release

and Dev
– Must handled staggered releases of Trilinos and APP

• APP developed only against Trilinos Dev
– APP developers work directly against Trilinos Dev checked out every day
– Releases best handled as combined releases of APP and Trilinos

Page 17

APP developed only against Trilinos Dev

Trilinos Head

APP Head

APP Y+1 & Trilinos APP Y+1 release

Testing: APP VOTD + Trilinos Dev

Supported with continuous integration testing!

Trilinos APP Y+1 release

Tril in
os APP Y+1

branch

APP Y+1

branch

Future of SIERRA + Trilinos Integration?

• All changes are tested in small batches
• Low probability of experiencing a regression
• Less computing resources for testing
• Regressions and flagged immediately by APP developers
• Can support tighter integration efforts
• Supports rapid development of new capability from top to bottom
• Requires Trilinos to be more stable
• Other issues arise as well

Page 18

Challenges with APP-Specific Trilinos Releases

Xyce J+1
(released against

Trilinos X)

VTK M+1
(released against

Trilinos X+1)

Multiple releases of Trilinos presents a possible problem with complex applications

Solution:
=> Provide perfect backward compatibility of Trilinos X through Trilinos SIERRA Y+1

SIERRA Y+1
(released against

Trilinos SIERRA Y+1)

Trilinos
SIERRA

Y+1?

Page 19

APP + Trilinos Continuous Integration: Solutions

• Proposed approach:
– Develop APP VOTD directly against Trilinos Dev (not against Trilinos Release)
– Create special releases of Trilinos just for these APPs
– APP-specific releases of Trilinos will only be needed for these special APPs

where tighter integration is required
– Protect development work with continuous integration server and feedback

• Improvements to Trilinos needed to support this:
– Improve the stability of “Stable” code in Trilinos Dev (see later presentation)
– Preserve perfect backward compatibility for Trilinos for some period of time

=> Allows some flexibility of what version of Trilinos gets used by customer codes
– Improve other related software engineering practices

See the talk:

“Maintaining stability of Trilinos Dev - Stable vs Experimental Code”

