Albany
A Component-Based Trilinos App

Andy Salinger
Erik Phipps, Glen Hansen, Irina Kalashnikova
Jake Ostien, Alejandro Mota, Steve Sun, Qiushi Chen,
Dave Littlewood, James Thune,
Rick Muller, Erik Nielsen, Suzie Gao,
Julien Cortial, Tim Wildey

Trilinos User’s Group Meeting
October 31, 2012
CSRI, Sandia-NM
What is Albany?

A parallel, implicit, unstructured-grid finite element code, that demonstrates the AgileComponents vision by using, maturing, and spinning-off reusable libraries and abstract interfaces, that is an friendly early adopter of cutting-edge technology from Trilinos, SierraToolKit, and Dakota, that is a model for a Trilinos-App, that demonstrates transformational analysis spanning template-based generic programming, optimization, UQ, adaptivity, and model order reduction, that serves as an attractive environment for the development of open-source application codes and research, and is the code base underlying LCM, QCAD, and FELIX applications.
What is AgileComponents?

Technical Strategy: Projects create, use, and improve a common base of modular, independent-yet-interoperable, software components

“Components” = ✓ Libraries ✓ Software Quality Tools ✓ Interfaces ✓ Demonstration Applications

White Paper: “Component-Based Scientific Application Development”

Business Strategy:

Base of Software Components ➔ Project Milestones

Leverage the Base ➔

←Grow the Base

ASC ASCR WFO LDRD BER NE

Trilinos

Dakota

Sierra
The Components Effort is Large (~100 modular pieces)
Albany’s Evolving Role

<table>
<thead>
<tr>
<th>FY08-10: A mechanism to articulate and drive AgileComponents vision:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evaluate and mature capabilities</td>
</tr>
<tr>
<td>2. Define new interfaces</td>
</tr>
<tr>
<td>3. Prototype a “Trilinos Application”</td>
</tr>
<tr>
<td>4. Demonstrate Transformation</td>
</tr>
<tr>
<td>• Optimization, UQ, Sensitivities,…</td>
</tr>
</tbody>
</table>

Disposable: migrate success into Trilinos, publications

<table>
<thead>
<tr>
<th>FY10-11: A mechanism to drive AgileComponents vision and strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LCM ➔</td>
</tr>
<tr>
<td>2. QCAD ➔</td>
</tr>
<tr>
<td>3. Embedded / System UQ Research</td>
</tr>
</tbody>
</table>

No longer fully Disposable

<table>
<thead>
<tr>
<th>FY12-13:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. NEAMS Hydride problem</td>
</tr>
<tr>
<td>5. Tpetra templated software stack maturation</td>
</tr>
<tr>
<td>6. Nuclear Waste Disposal (ended)</td>
</tr>
<tr>
<td>7. Model Order Reduction</td>
</tr>
<tr>
<td>8. LAMENT Development</td>
</tr>
<tr>
<td>9. FELIX: Finite Element Land Ice eXperiments ➔</td>
</tr>
<tr>
<td>10. Peridynamics-LCM Coupling</td>
</tr>
</tbody>
</table>
Tension from Albany’s Diverse Roles

Albany fills a role between Trilinos examples / mini-Apps ↔ Production codes Sierra/Alegra
Templated Components Orthogonalize Physics and Embedded Algorithm R&D (“TBGP”)

Legend:
- Application component/library
- Embedded Analysis component/library
- Global Data Structures
- Local Data Structures
- Generic Template Type used for Compute Phase
- Template Specializations for Seed and Extract phases:
 - Residual
 - Jacobian
 - Hessian
 - Adjoint
 - Tangent
 - PCE

Nonlinear solver
Optimization
UQ
Error estimation
Stability Analysis

Application Interface
- computeResidual()
- computeJacobian()
- computeTangent()
- computeHessian()
- computeAdjoint()
- computePCE()
- computeResponse()

Field Manager
- Scatter (Extract)
- DOF Manager
- PDE Terms
- Properties
- Source Terms
- FE Interpolation Compute Derivs
- Get Coordinates
- Gather (Seed)
- DOF Manager

Phalanx
Sacado
Stokhos
Intrepid
Shards
*Petra
Teuchos
Implementation of Hydrogen Diffusion-Mechanics Problem with automatic differentiation

- Gather coordinates, displacement and lattice concentration fields
- Interpolate fields and gradients to integration points
- Chain together Evaluators to compute Momentum and Conservation of Hydrogen Residuals
- Scatter back to the global system of equations

Blue = Hydrogen Transport
Red = Solid Mechanics (J2 Plasticity)
Purple = coupled terms
Embedded Nonlinear Analysis Tools

- Dakota / Pecos
- OptiPack
- Moocho

- NOX
- Rythmos
- LOCA
- Stokhos
- Moocho
- Anasazi

- Thyra::LinearOp (Epetra_RowMatrix)
- Thyra::LinearOpWithSolve
- Aztec, Belos
- Ifpack, ML
- Amesos

- Albany

- Response Only Model Evaluator
- Analysis Tools (black-box)
- Analysis Tools (embedded)
Albany: State of the Code

1. Size of Code
2. Funding and Release History
3. Current Projects
4. Documentation
5. Current and Future Work

Team Size:
- 22 “git push”-ers
- 6+ pair-programming contributors
1. Size of Code: Albany Code Design

Analysis Tools
- Optimization
- UQ

Application

Solvers
- Nonlinear
- Transient

Linear Solve

Linear Solvers
- Iterative
- Multi-Level

Main
- Input Parser

Nonlinear Model

Interoperability Use Case

Global Discretization

Mesh Tools
- Mesh Database
- Mesh I/O
- Load Balancing

Mesh Processing

Examples

PDE Assembly
- Field Manager
- Discretization

PDE Terms
- Problems
- Responses

Albany Code

14
Albany State of the Code

1. Albany Code Size: 140K Lines, 43K Semicolons

- **Main**
 - `src/Main*`: 8 files; 546 semicolons

- **Interoperability Use Case**
 - `src/*`: 41 files; 3650 semicolons

- **Mesh Processing**
 - `src/stk`: 16 files; 1584 semicolons

- **PDE Terms Problems Responses**
 - All `problems/evaluators/responses`: 593 files; 30681 semicolons
 - `[LCM]: 298 files; 16573 semicolons`

> >80% of Albany/src is implementation of PDEs!

- **Examples**
 - `examples`: 128 regression tests, 183 example input files
Albany State of the Code

2. Funding and Release History

<table>
<thead>
<tr>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSRF AgileComponents</td>
<td>XOM Crada</td>
<td>CSRF Shape Opt</td>
<td>ASCR Complex Systems</td>
<td>ASC Algs</td>
<td>ESRF LCM</td>
</tr>
<tr>
<td>CSRF LCM</td>
<td>QCAD LDRD</td>
<td>NEAMS</td>
<td>UFD</td>
<td>NE Waste</td>
<td>SciDAC FASTMath</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UQ GPU LDRD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Model Reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IK MOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASC ExaScale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FELIX Ice Sheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peridigm-LCM</td>
</tr>
</tbody>
</table>

Albany 0.5 GUN: Salinger Phipps

Albany 1.0 PA: Salinger Phipps Ostien

Albany 2.0 PA: 15 Authors!
Applications:
- LCM Laboratory for Computational Mechanics [ASC P&EM]
- QCAD Quantum dot design [LDRD]
- Nuclear fuels degradation [NEAMS, UFD]
- GPAM [Used Fuel Disposition] {ended}
- FELIX Ice Sheet Dycore [SciDAC-BER]
- Peridym/LCM Coupling [FY13 LDRD, WFO?]

Algorithms and Software:
- UQ System Research [ASCR] {ended}
- Templated stack maturation testbed [ASC Algs]
- Adaptivity-Solver interactions [SciDAC ASCR]
- Model Order Reduction [Truman LDRD, IK-LDRD]
Modeling of Hydride Formation in Spent Nuclear Fuel Rods: Hansen, Chen, Ostien

- Normal storage periods are ~20 years in duration
- Will issues develop that could affect safe handling of fuel if this dry storage period is increased to 100 years? 300 years?
- Degradation mechanism: Radial hydrides formed during drying process.

Temperature History Prediction

Anisotropic Damage Prediction

- **Normal storage periods are ~20 years in duration**
- **Will issues develop that could affect safe handling of fuel if this dry storage period is increased to 100 years? 300 years?**
- **Degradation mechanism:** Radial hydrides formed during drying process.
FELIX Ice Sheet Code (SciDAC-BER) 5yrs

Courtesy: Price [LANL]
Success Story: Rapid Stand-Up of a World-Class Quantum Device Design Tool

“I thought I was being ambitious in the proposal, and we finished most of the 3-year milestones in the first year.” [PI: Muller]

Sandia has world-class experimental facilities (CINT) for quantum device fabrication, for quantum computing

Quantum device computational design tool built from components:

- Nonlinear-Poisson + Schrödinger
 - 30+ Trilinos packages
 - Dakota optimization
 - Unit of computation:
 ~30 optimization runs for every design
 - GUI for Experimentalists

Workflow:
1. Solid Model
2. GUI

Nielsen: 1:30 Today!
Albany State of the Code
4. Documentation

SANDIA REPORT
SAND20XX-????
Unlimited Release
Printed ??

Albany Development: Getting Started

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
Albany 2nd Developers Meeting, October 2, 2012.

Meeting Agenda:
Albany 2nd Developers Meeting Agenda (pdf).

Overviews:
Salinger: Albany Overview (pdf).

LCM Talks:
Ostien: LCM Overview (pdf).
Sun: MultiPhysics Applications (pdf).
Chen: Constitutive Modeling (pdf).
Mota: Multiscale Coupling (pdf).
Mota: Continuum-Continuum Coupling (pdf).
Littlewood: LAMENT Material Library (pdf).

QCAD Talks:
Muller: QCAD Overview (pdf).
Gao: Schrodinger-Poisson (pdf).

New Initiatives Session:
Hansen: Progress Towards Adaptivity (pdf).
Cortial: Model Order Reduction (pdf).
Littlewood: Peridym-LCM LDRD (pdf).
Salinger/Kalashnikova: FELIX Ice Sheet Dynamics (pdf).

Developers Discussion Summary:
Albany 2nd Developers Meeting Discussion Summary (pdf).
5. Current / Future Generic Code Work

Current/Future/Desired Code Infrastructure Work:

- Software Quality:
 - Documentation (Developers guide; Doxygen)
 - SEMS improvements
 - Scalability/performance/coverage tests
 - Code refactors – scientific programming
- Internal Algorithms:
 - Sensitivities/Uncertainties of States
 - Adjoint for Distributed Parameters
 - Mixed Discretization using DOFManager (Cyr)
- Early Adopter of Libraries
 - Finish Tpetra/Thyra Branch (Kalashnikova/Cortial)
 - Early Adopter of Kokkos for New Architectures?
 - UQ on GPU (Phipps et al.)
 - MOR ROM R&D
- smAlbany? Official Trilinos DemoApp
Thanks!

Albany Questions?