_ /
oy
-~

Stokhos: Trilinos Tools for Embedded
Stochastic-Galerkin Uncertainty
Quantification Methods

Eric Phipps
etphipp@sandia.gov
Optimization & Uncertainty Quantification Department

Trilinos User Group 2008

SAND 2008-7239 C

” Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandi
//%AV' ‘ o.%.‘ for the United States Department of Energy’s National Nuclear Security Administration ndia

clear Security Administration under Contract DE_ACO4_94AL85000. Natlonal .
Laboratories

0

Models of Uncertainty

 Predictive simulation means making a rigorous statement about the world
based on computational simulation

— Must understand uncertainty in simulation input data and its effects on simulations

» Two broad classes of uncertainty
— Aleatory or irreducible uncertainty: “inherent randomness”
* Probabilistic representations (random variables, stochastic processes)
— Epistemic or reducible uncertainty: “lack of knowledge”

» Set/knowledge representations (intervals, fuzzy sets, evidence theory)
* Probabilistic representations (Bayesian point of view)

» Two basic sources of uncertainty
— Finite-dimensional simulation parameters
» Represented through random variables/vectors with given distributions
— Infinite-dimensional correlated random fields/stochastic processes
* Realizations often smoothly varying in time/space; allows representation with small number of
random variables/vectors (e.g., Karhunen-Loeve representation)
« Assume a finite dimensional representation given by random variables/vectors
with known probability distributions

— Generating such models is a research area in its own right St

Laboratories

__ y -

4" Stochastic Galerkin Uncertainty

e a
Quantification Methods
(More Commonly Known as Polynomial Chaos Methods)

« Deterministic, steady-state problem (possibly after spatial discretization):
Find w(p) such that F(u;p) =0,p € T ¢ RM

» Stochastic problem:
Find (&) such that F(u;€) =0, £ : Q — T, density p

« Let Z be a finite-dimensional subspace of L2(T') with basis {%i : % =0,..., Npc}
orthogonal with respect to inner product

(fg) = / £ (1)9(w)p(y)dy

» Stochastic Galerkin method (Ghanem, ...):
Npc

@(€) =) uahi(§) € Z — Fi(uo,... unp.) = /r F(a(y):y)¥i(y)p(y)dy =0, 1 =0,...,Npc
=0
» Typically Z is the complete polynomial space of total degree P, basis polynomials are
tensor products of 1-D polynomials orthogonal with respect to 1-D density of each random

parameter
— Assumes independence of random parameters
— Gaussian random variables -- Hermite polynomials
— Uniform random variables -- Legendre polynomials, ...

« Exponential convergence in P when solution is sufficiently smooth mgi:al

Laboratories

-

Stochastic Galerkin Nonlinear System

» Method generates new coupled spatial-stochastic nonlinear problem

Fy Uo Stochastic | Polynomial Number of
_ F B u dimension degree terms
0=F(u) = :1 , U= :1 M P Npc
| ' 5 3 56
| FNpe | UNpc | 5 252
* Dimension grows rapidly with degree or dimension 10 ‘2 3§3§
20 3 1,771
| / 5 ~53,000
Npc = (M + P)! 100 3 ~177,000
M!'P! 5 ~96,000,000

» System Jacobian:

. Nec 1 [OF _

I = 3. nl®) = o= s [G @) n)n)p)y
6-F'Iz Npc
B, ~ kzz;) Jie(Ystphr) >

p=5, d=4, nz = 3017178

- ,/

~
= Implementing SG Methods in Nonlinear

Applications is Challenging

* Code transformation from deterministic code to SG code

— Need tools/libraries to automate computation of SG residual and Jacobian

ntri _ ;
e Ies Fo
F(u;p) =0 — F(a) = |

_F Npc

 Data structures & interfaces for forming block SG systems
— Linear, nonlinear, transient, optimization, stability, ...

 Solver algorithms for block SG systems
— Exploit new dimensions of parallelism
— “Jacobian-free” methods are key

OF;, X oF Neo
ey I~ Z Jk(¢z¢3"/’k) = (—_'l_]) = Z kaj<¢i¢j¢k)
J k=0 i

ou 7,k=0

* Trilinos provides powerful capabilities here ﬁgt"igifal

Laboratories

'

-
€

A

=& 8G Code Transformation Through

Automatic Differentiation (AD)

* Trilinos package Sacado provides AD capabilities to C++ codes
— AD data types & overloaded operators
— Replace scalar type in application with Sacado AD data types

» AD relies on known derivative formulas for all intrinsic operations plus
chain rule

» AD infrastructure provides deep interface into application code
— Access to scalar-level computations in application

« Similar approach can be used for any computation that can be done in an
operation by operation manner

— Assume inductively that SG expansions for two intermediate variables a and b

have been computed, and we wish to compute a third ¢ = %(a,b)
Npc Npc PC

Given a(¢) = Y anhi(€), b(&) = > bii(€), Findé&(€) = Y cinpi(€) such that

=0 =0 =0

/r (e(y) — e(a(y),b(y)))vi(y)p(y)dy =0, i =0,... Npc Sandia

National
Laboratories

€

~~
-

SG Projections of Intermediate Operations

» Addition/subtraction
c=atb=c =a; b
* Multiplication

c=aXb= Z Cz’l,bz = Z Z aibj’l,bi?,bj — C = Z Z aibj <¢2’Zj;)>bk>
i i i k

* Division

c=a/b=)) cbjpih; =) ahi — > > cibi{vipir) = ar(yp)
5 i i g

» Several approaches for transcendental operations
— Implemented in Fortran library by Najm, Debusschere, Ghanem, Knio

* These ideas allow the implementation of Sacado “AD” types for intrusive
stochastic Galerkin methods

— Easy transition once code is setup to use AD

Sandia
National
Laboratories

> &
L

-
Other Trilinos Tools Useful for SG Methods

 Epetra -- MPIl-based vector/matrix data structures & operator interfaces
— Used by application codes to form FE residuals, Jacobians

* Thyra -- Abstract vector, operator, and nonlinear interfaces
— Product vectors for representing block SG solution/residual vectors

N

F(u) =

Fo
F

Fp|

9

u =

Ug
(251

up

(J0)i = Y (Pithjehi) Jv;

J,k=0

— Operators implementing SG matrix-vector-product in “matrix-free” fashion

— Nonlinear interface transforming deterministic Thyra interface into SG
» AztecOO, Belos, Ifpack, ML -- Linear solvers and preconditioners
— Advanced linear solver techniques optimized for block SG structure

« Zoltan, Isorropia -- Graph partitioning & reordering
— Partitioning, reordering of block SG linear system

* NOX, LOCA, Rythmos -- Nonlinear solver & time integration algorithmga

ndia

—Use nonlinear Thyra SG interface to solve steady & transient SG problems Natonal

Laboratories

Trilinos Package Stokhos

» These ideas form the basis for a new Trilinos package called Stokhos
— Collaborative effort among the SG/PCE community to develop tools for large-scale codes

* Initial thoughts are Stokhos will provide (or push development of)
— SG vector/operator interfaces
— Nonlinear SG application interface
— Solver/preconditioner algorithms
— Intrusive propagation methods

» Currently it only has
— General facilities for intrusive propagation
— Wrappers around UQLib library of Najm, Debusschere, Ghanem & Knio

— Sacado wraps these for AD SG/PCE
» Sacado::PCE::OrthogPoly<double>

» Sacado::FEApp

— Example 1D finite element code demonstrating AD s

— Initial implementation of SG interfaces using Epetra & EpetraExt National _
Laboratories

&

=& Sacado::FEApp Demonstration of

Intrusive SG using Stokhos & Sacado

Bratu Solution (o = 1.0)

* 1-D Bratu problem: 0.8

82
8—1; 4 elattam)/Meu — g < <1
x

* Linear finite element discretization, 100
elements

« Uniform random variables for nonlinear factor
over [-1, 1] using Legendre polynomials

Bratu Continuation

» SG residual/Jacobian entries computed
through Sacado

» “Jacobian free” linear solver method using
Ifpack RILU(O) of mean block for
preconditioner

Average u

» Solution mean used as quantity of interest Sandia

National
Laboratories

V

\

Polynomial Chaos (NIPC)

Intrusive SG Compared to Non-Intrusive

Non-Intrusive Polynomial Chaos
— Dakota
— Sparse-grid quadrature

u(§) = Z u;hi(§)

1=0

(1;2) /F u(y)vi(y)p(y)dy

U; =

Error

Mean

—AD (Int)
—AD (Tay)
—AD (LS)

—NIPC

107
107%
-15 . . N .
0 % s s 12 14
Order
Std. Dev.
10° ' —AD (Int)

—AD (Tay)
—AD (LS)

—NIPC

Run Time
250 T
—NIPC
— Intrusive (total)
200 — Intrusive (solve)
— Intusive (fill)
0 150}
[
E
100}
50p
G 1/
0 100 200 300 400 500
PC
Run Time
25 T

—NIPC

— Intrusive (solve)

- ,/

~
" Results Motivate Quadrature Approach

for Element-Based Codes

NEg
F(u;p) = > Q7 fi(Puus; p)

=0
 Evaluate via quadrature for globally assembled residual

Ng
F = / F(a(y); v)b:(w)p(w)dy = 3 wiF (a(ye); v i(we)

— Requires parallel quadrature routines but only interface to global residual

» Apply quadrature for each element residual then assemble

Ng NE Ng
F, = 2_;) QT /r Fi(Pia(y); y)ei(y)p(y)dy = Z% QT (;) wie f5 (Pya(yr); yk)tbz-(yk))

— Requir;s only serial quadrature routines but needs element-level interface
— Boundary conditions add complexity

 Jacobian decomposes similarly

» Speed of quadrature residual/Jacobian fills + benefits of intrusive solve ﬁgt"igi:al

Laboratories

What We’re Working on

» SG residual/Jacobian fills
— Sparse quadrature (Dakota)
— Can the AD approach be improved?

* Linear solver/preconditioner methods for block SG linear systems
— Multi-level, incomplete factorization methods?

» Stokhos software tools
— Trilinos/Dakota integration

