Solving nonlinear problems numerically

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

Model Equations

\[
\begin{align*}
\dot{x} - v &= 0 \\
\dot{y} - w &= 0 \\
\dot{v} + \lambda x &= 0 \\
\dot{w} + \lambda y + 1 &= 0 \\
xv + yw &= 0
\end{align*}
\]

\[F(t, x, \dot{x}) = 0\]

Jacobian

\[
W = \begin{bmatrix}
\alpha & 0 & -\beta & 0 & 0 \\
0 & \alpha & 0 & -\beta & 0 \\
\beta \lambda & 0 & \alpha & 0 & \beta x \\
0 & \beta \lambda & 0 & \alpha & \beta y \\
\beta v & \beta w & \beta x & \beta y & 0
\end{bmatrix}
\]

\[W = \alpha \frac{\partial F}{\partial x} + \beta \frac{\partial F}{\partial x}\]

Sparsity pattern

\[
\begin{bmatrix}
\bullet & & & & \\
& \bullet & & & \\
& & \bullet & & \\
& & & \bullet & \\
& & & & \bullet
\end{bmatrix}
\]

```c
int i0[] = {0, 2};
int i1[] = {1, 3};
int i2[] = {0, 2, 4};
int i3[] = {1, 3, 4};
int i4[] = {0, 1, 2, 3};
double d0[] = {-alpha, beta};
double d1[] = {-alpha, beta};
double d2[] = {-beta*x[4], -alpha, -beta*x[0]};
double d3[] = {-beta*x[4], -alpha, -beta*x[1]};
double d4[] = {beta*x[2], beta*x[3],
                beta*x[0], beta*x[1]};
crsW.ReplaceGlobalValues(0, 2, d0, i0);
crsW.ReplaceGlobalValues(1, 2, d1, i1);
crsW.ReplaceGlobalValues(2, 3, d2, i2);
crsW.ReplaceGlobalValues(3, 3, d3, i3);
crsW.ReplaceGlobalValues(4, 4, d4, i4);
```
Solving nonlinear problems numerically

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

Model Equations

\[
\begin{align*}
\dot{x} - v &= 0 \\
\dot{y} - w &= 0 \\
\dot{i} + \lambda x &= 0 \\
\dot{w} + \lambda y + 1 &= 0 \\
xv + yw &= 0 \\
\end{align*}
\]

\[F(t, x, \dot{x}) = 0\]

Jacobian

\[
W = \begin{bmatrix}
\alpha & 0 & -\beta & 0 & 0 \\
0 & \alpha & 0 & -\beta & 0 \\
\beta \lambda & 0 & \alpha & 0 & \beta x \\
0 & \beta \lambda & 0 & \alpha & \beta y \\
\beta v & \beta w & \beta x & \beta y & 0 \\
\end{bmatrix}
\]

\[W = \alpha \frac{\partial F}{\partial x} + \beta \frac{\partial F}{\partial x}\]

Sparsity pattern

\[
\begin{bmatrix}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\end{bmatrix}
\]

Automatic Differentiation (Sacado)

```c
Epetra_Vector& f = *outArgs.get_f();
Epetra_Vector& f = *outArgs.get_f();
int i0[] = {0, 2};
int i1[] = {1, 3};
f[0] = -x_dot[0] + x[2];
f[2] = -x_dot[2] - x[0]*x[4];
f[4] = x[0]*x[2] + x[1]*x[3];
int i2[] = {0, 2, i0};
int i3[] = {1, 3, i1};
int i4[] = {0, 1, 2, i2};
int i5[] = {0, 2, i1};
int i6[] = {0, 1, 2, i4};
W_graph_\rightarrow InsertGlobalIndices(0, 2, i0);
W_graph_\rightarrow InsertGlobalIndices(1, 2, i1);
W_graph_\rightarrow InsertGlobalIndices(2, 3, i2);
W_graph_\rightarrow InsertGlobalIndices(3, 3, i3);
W_graph_\rightarrow InsertGlobalIndices(4, 4, i4);
srsW.ReplaceGlobalValues(0, 2, d0, i0);
srsW.ReplaceGlobalValues(1, 2, d1, i1);
srsW.ReplaceGlobalValues(2, 3, d2, i2);
srsW.ReplaceGlobalValues(3, 3, d3, i3);
srsW.ReplaceGlobalValues(4, 4, d4, i4);
```

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.
Solving nonlinear problems numerically

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

Model Equations

\[
\begin{align*}
\dot{x} - v &= 0 \\
\dot{y} - w &= 0 \\
\dot{v} + \lambda x &= 0 \\
\dot{w} + \lambda y + 1 &= 0 \\
xv + yw &= 0
\end{align*}
\]

\[F(t, x, \dot{x}) = 0\]

Jacobian

\[
W = \begin{bmatrix}
\alpha & 0 & -\beta & 0 & 0 \\
0 & \alpha & 0 & -\beta & 0 \\
\beta \lambda & 0 & \alpha & 0 & \beta x \\
0 & \beta \lambda & 0 & \alpha & \beta y \\
\beta v & \beta w & \beta x & \beta y & 0
\end{bmatrix}
\]

\[W = \alpha \frac{\partial F}{\partial x} + \beta \frac{\partial F}{\partial x}\]

Sparsity pattern

Automatic Differentiation (Sacado)

Epetra_Vector& f = *outArgs.get_f();
f[0] = -x_dot[0] + x[2];
f[2] = -x_dot[2] - x[0]*x[4];
f[4] = x[0]*x[2] + x[1]*x[3];

crsW.ReplaceGlobalValues(0, 2, d0, i0);
crsW.ReplaceGlobalValues(1, 2, d1, i1);
crsW.ReplaceGlobalValues(2, 3, d2, i2);
crsW.ReplaceGlobalValues(3, 3, d3, i3);
crsW.ReplaceGlobalValues(4, 4, d4, i4);
Solving nonlinear problems numerically

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

\[
\begin{align*}
\dot{x} - v &= 0 \\
\dot{y} - w &= 0 \\
\dot{v} + \lambda x &= 0 \\
\dot{w} + \lambda y + 1 &= 0 \\
xv + yw &= 0
\end{align*}
\]

\[\mathbf{F}(t, x, \dot{x}) = 0\]

Model Equations

\[
W = \begin{bmatrix}
\alpha & 0 & -\beta & 0 & 0 \\
0 & \alpha & 0 & -\beta & 0 \\
\beta \lambda & 0 & \alpha & 0 & \beta x \\
0 & \beta \lambda & 0 & \alpha & \beta y \\
\beta v & \beta w & \beta x & \beta y & 0
\end{bmatrix}
\]

Jacobian

\[
W = \alpha \frac{\partial \mathbf{F}}{\partial x} + \beta \frac{\partial \mathbf{F}}{\partial x}
\]

Sparsity pattern

Automatic Differentiation (Sacado)

Epetra_Vector& f = *outArgs.get_f();
f[0] = -x_dot[0] + x[2];
f[2] = -x_dot[2] - x[0]*x[4];
f[4] = x[0]*x[2] + x[1]*x[3];

crsW.ReplaceGlobalValues(0, 2, d0, i0);
crsW.ReplaceGlobalValues(1, 2, d1, i1);
crsW.ReplaceGlobalValues(2, 3, d2, i2);
crsW.ReplaceGlobalValues(3, 3, d3, i3);
crsW.ReplaceGlobalValues(4, 4, d4, i4);

Sparse Automatic Differentiation

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.
Computing Jacobians

Evaluating derivatives of model equations accurately is key for successful simulations.

There are different ways to compute Jacobians:

- **Numerical approximation:**
 - **First-order approximation:** \(\frac{\partial f}{\partial x_i} = \frac{f(x + h_i e_i) - f(x)}{h_i} \)
 - Requires \(n \) additional function evaluations.
 - Sensitive to choice of \(h_i \).
 - Higher order approximations are more accurate, but also more costly.

- **Analytic Jacobian:**
 - Implement all derivatives manually.
 - Exact results.
 - Time-consuming and error-prone.

- **Automatic differentiation:**
 - The Jacobian is computed automatically every time the function \(f \) is evaluated.
 - Exact results.
 - Uses different data types (AD double objects), functions have to be rewritten to support automatic differentiation.
 - Computational cost: approximately 5 function evaluations (reverse mode AD).
 - Mature and well designed solutions such as Sacado already exist.
Limitations of Sacado

Example: Memory use of simulation of DC bus with 1000 AC loads.

- Although the Jacobian is sparse, automatic differentiation using Sacado requires a huge amount of memory.
- The forward and reverse mode AD classes in Sacado are designed for dense derivatives and do not have any methods to directly compute sparse Jacobians.
Automatic sparse structure analysis

Analyze the structure of model equations and automatically create dependency graphs.

- Used to generate sparse Jacobian required for efficient simulations.
- Enables advanced analysis techniques such as index reduction, causalization, diagnostics, etc.
- Additional requirements:
 - Parameter/variable designation not known at compile time.
 - Sparsity pattern not known at compile time.
 - Model can be modified at runtime by the user.

Current Solutions

- **Modelica approach**: Recompile hard-wired model on the fly whenever user enters changes.
- **Extended nodal analysis approach**: Create dynamic model that is not hard-wired and that user can easily modify at runtime.
Comparison with Modelica-based approach

Nodal Analysis Approach

- System of Equations
- Simulation (or Optimization)
- Assembles system from precompiled component models
- Precompiled C++ code
- e.g. netlist

Modelica Approach

- System of Equations
- Causalization algorithm
- Tearing algorithm
- Code generation for reduced system
- System model compilation
- Generates C/C++ code
- Contains redundant equations
- Symbolical manipulations
- Text-based Modelica code
- e.g. Modelica GUI
Automatic structure analysis implementation

Operator overloading approach similar to Sacado implementation.

Class definition and operators

```cpp
class Variable
{
public:
    Variable();
    explicit Variable(double value);
    Variable(const Variable& v);
    Variable(const Variable& v);
    Variable(double value);
    Variable(size_t variableNumber);
    ~Variable();

    Variable& operator=(const double& rhs);
    Variable& operator=(const Variable& rhs);

    Variable& operator+=(const double& rhs);
    Variable& operator+=(const Variable& rhs);

    Variable& operator-=(const double& rhs);
    Variable& operator-=(const Variable& rhs);

    Variable& operator*=(const double& rhs);
    Variable& operator*=(const Variable& rhs);

    Variable& operator/=(const double& rhs);
    Variable& operator/=(const Variable& rhs);

private:
    double value_;  
    size_t variableNumber_;  
    bool isFixed_;  
    mutable DependencyMap* dependencies_;  
};
```

Mathematical functions

```cpp
// math functions
#define DEFINE_FUN_1(fun)    
    Variable fun(const Variable& x);

DEFINE_FUN_1(sin)
DEFINE_FUN_1(cos)
DEFINE_FUN_1(tan)
DEFINE_FUN_1(acos)
DEFINE_FUN_1(asin)
DEFINE_FUN_1(atan)
DEFINE_FUN_1(cosh)
DEFINE_FUN_1(sinh)
DEFINE_FUN_1(tanh)
DEFINE_FUN_1(exp)
DEFINE_FUN_1(log)
DEFINE_FUN_1(log10)
DEFINE_FUN_1(sqrt)
DEFINE_FUN_1(abs)

#undef DEFINE_FUN_1

#define DEFINE_FUN_2(fun)    
    Variable fun(const Variable& x,
                  const Variable& y);

#define DEFINE_FUN_2(fun)    
    Variable fun(double x,
                  const Variable& y);

#define DEFINE_FUN_2(fun)    
    Variable fun(const Variable& x,
                  double y);

#define DEFINE_FUN_2(fun)    
    Variable fun(double x,
                  double y);

DEFINE_FUN_2(pow)
DEFINE_FUN_2(atan2)
DEFINE_FUN_2(min)
DEFINE_FUN_2(max)

#undef DEFINE_FUN_2
```

Example

```cpp
void residualFunction(VariableVector& f, VariableVector& x, VariableVector& x_dot)
{
    f[0] = -x_dot[0] + x[2];
    f[2] = -x_dot[2] - x[0]*x[4];
    f[4] = x[0]*x[2] + x[1]*x[3];
}

int main()
{
    const size_t n = 5;
    StdVector<Variable> x(n), x_dot(n), f(n);
    for (size_t i = 0; i < n; ++i)
    {
        x[i].setVariableNumber(i);
        x_dot[i].setVariableNumber(i);
    }
    residualFunction(f, x, x_dot);
    printIncidenceMatrix(f);
}
```

Result

```
A = [1 0 1 0 0;
     0 1 0 1 0;
     1 0 1 0 1;
     0 1 0 1 1;
     1 1 1 1 0];
```

Equations Variables
Automatic Jacobian computation

Dense vs. block sparse vs. sparse.

- Sacado could be used to compute dense Jacobians on a component-by-component basis. This results in a “block sparse” Jacobians.
- For large components, the overhead can be significant and will slow down the solver.
- Sparse Jacobians maximize utilization of state-of-the-art solvers in NOX and improve simulation speed.
Automatic Jacobian computation

Dense vs. block sparse vs. sparse.

- Sacado could be used to compute dense Jacobians on a component-by-component basis. This results in a “block sparse” Jacobians.
- For large components, the overhead can be significant and will slow down the solver.
- Sparse Jacobians maximize utilization of state-of-the-art solvers in NOX and improve simulation speed.

Jacobian structure for a simple vapor compression model.
Automatic Jacobian computation

Dense vs. block sparse vs. sparse.

- Sacado could be used to compute dense Jacobians on a component-by-component basis. This results in a “block sparse” Jacobians.
- For large components, the overhead can be significant and will slow down the solver.
- Sparse Jacobians maximize utilization of state-of-the-art solvers in NOX and improve simulation speed.
Capability demonstration

Automatic Jacobian computation and simulation of a vapor compression system.

- Accuracy of Jacobian computation verified against dense numerical Jacobian (1st order finite difference).
- Preliminary scaling results show smaller overhead than for a block sparse Jacobian computation.
- All model configurations such as parameter and variable designation done at runtime.
- Redundant vapor compression system used as a test case.

Problem Size
1298 Residual equations
15 Finite elements in each evaporator model

Sparsity pattern
(Non-zero elements)

Performance comparison with dense method

0.3% non-zero entries

Runtime [s]
For the computation of sparse Jacobians using automatic differentiation, the two data types \textit{Variable} and Sacado’s \textit{DoubleAD} should be combined.

The \textit{Variable} class does not require any other files or libraries (except for \texttt{boost::foreach}, which can be replaced) and could be easily integrated.

Code not optimized. More profiling required to further improve performance scaling.

Physics based models need to support automatic differentiation. Some practices used in legacy codes need to be revised for this approach to work.

- How to incorporate look-up tables?
- How can conditional statements be handled if different branches depend on different variables?
 - Currently, dependencies for different branches are added manually.
 - This process should be automated, i.e. equations should be written in such a way that dependencies are tracked automatically.
- How to handle (eliminate?) embedded solvers in component models?

Epetra does not support \textit{DoubleAD} vectors or matrices, that means that entries need to be copied. This introduces additional overhead. Tpetra?