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What is PyTrilinos?

• PyTrilinos is a python interface to selected
Trilinos packages

• What packages are wrapped?
– Epetra, EpetraExt, Triutils, Galeri, AztecOO,

Amesos, IFPACK, ML, New_Package
– Outdated: NOX, LOCA
– Early stages: Anasazi, Thyra

• Is MPI supported?
– Yes, it is currently embedded in the Epetra module

if Trilinos is configured with --enable-mpi



Scripting Interfaces

• Why add a scripting interface to Trilinos?
– Interactive creation, manipulation and use of

Trilinos objects without compilation step → rapid
prototyping

– Application development: scripting languages are
good for command-and-control code that can hand
off to compiled numerical kernels

• Why python?
– Python was built from the ground up to be object

oriented → maps directly to Trilinos design
– Python was designed to be a teaching language →

clean, readable syntax
– Massive library of standard and third-party modules
– Large and growing scientific python community



What About SciPy/Numeric (NumPy)?

• SciPy is a huge collection of wrappers for
scientific libraries

• Most SciPy packages require multi-dimensional
array objects to work on → Numeric (currently
migrating to NumPy)

• SciPy’s biggest omission is PDE solvers (sparse
systems, parallel distributed data, and solvers
that can use them)

• PyTrilinos is filling these gaps
• Certain Epetra classes overlap Numeric

functionality (e.g. Epetra_MultiVector)
–  Python implementation of these classes inherit

from both the Epetra class and Numeric arrays



Building & Installing PyTrilinos

• Prerequisites include python 2.3, Numeric, and
swig (Simple Wrapper Interface Generator) 1.3.23
– Swig is the workhorse for generating wrapper code;

wrapper code is not pre-generated because of
configuration options

• Add --enable-python to invocation of
configure

• Python modules will be built for those packages
that support it



Demonstration



PyTrilinos Performance vs MATLAB

• CPU sec to fill nxn dense matrix

• CPU sec to fill nxn diagonal matrix

• CPU sec for 100 MatVecs

3.8570.04781000
0.03570.0025100
0.0004160.0000110
PyTrilinosMATLABn

0.31311.0550,000
0.60350.98100,000

0.060 0.44910,000
0.0059 0.003971000
0.000159 0.0000610
PyTrilinosMATLABn

7.15012.7201000
1.782 3.130500
0.0288 0.110100
0.0053 0.0250
PyTrilinosMATLABn



PyTrilinos Performance vs Trilinos

• Fine-grained script:

• Course-grained script:

11.281.9251,000,000
 1.2380.280100,000
 0.2410.11310,000
 0.150.0101000
PyTrilinosTrilinosn



PyTrilinos Performance

• Some Trilinos packages are designed for users to derive
classes from pure virtual base classes
– Epetra_Operator
– Epetra_RowMatrix
– NOX::Abstract::Interface . . .

• Numerical kernels (matvecs, nonlinear function
evaluations) are therefore written by users

• Using PyTrilinos, numerical kernels are therefore written in
python (fine-grained . . . bad)

• If efficiency is a consideration,
– Use array slice syntax
– Use weave
– Inefficient code is 20-100x slower



Summary

• PyTrilinos provides python access to selected Trilinos
packages
– Emerging from early stages . . . portability, completeness
– Parallelism
– Rapid prototyping
– Application development
– Unit testing
– Numeric compatibility (migrating to NumPy)

• PyTrilinos complements and supplements the SciPy
package


