
PyTrilinos: A Parallel Python
Interface to Trilinos

Bill Spotz
Sandia National Laboratories

12th SIAM Conference on Parallel
Processing for Scientific Computing

San Francisco, CA 22 Feb 2006

With special thanks to
Marzio Sala, Eric Phipps, Alfred Lorber,

Mike Heroux, Jim Willenbring and Mike Phenow

Trilinos Packages

Epetra

AztecOO Amesos

IFPACK ML

NOX

LOCA

Linear Algebra
Services

Linear Solvers

Preconditioners

Eigensolvers

Nonlinear
Solvers

Continuation
Algorithms

EpetraExt Triutils

Abstract
Interfaces

Utilities Teuchos

Anasazi

Thyra TSFCore TSFCoreUtils

Kokkos Komplex

Pliris Belos

Claps Meros

TSFExtended

Didasko

= Next-GenerationPyTrilinos

What is PyTrilinos?

• PyTrilinos is a python interface to selected
Trilinos packages

• What packages are wrapped?
– Epetra, EpetraExt, Triutils, Galeri, AztecOO,

Amesos, IFPACK, ML, New_Package
– Outdated: NOX, LOCA
– Early stages: Anasazi, Thyra

• Is MPI supported?
– Yes, it is currently embedded in the Epetra module

if Trilinos is configured with --enable-mpi

Scripting Interfaces

• Why add a scripting interface to Trilinos?
– Interactive creation, manipulation and use of

Trilinos objects without compilation step → rapid
prototyping

– Application development: scripting languages are
good for command-and-control code that can hand
off to compiled numerical kernels

• Why python?
– Python was built from the ground up to be object

oriented → maps directly to Trilinos design
– Python was designed to be a teaching language →

clean, readable syntax
– Massive library of standard and third-party modules
– Large and growing scientific python community

What About SciPy/Numeric (NumPy)?

• SciPy is a huge collection of wrappers for
scientific libraries

• Most SciPy packages require multi-dimensional
array objects to work on → Numeric (currently
migrating to NumPy)

• SciPy’s biggest omission is PDE solvers (sparse
systems, parallel distributed data, and solvers
that can use them)

• PyTrilinos is filling these gaps
• Certain Epetra classes overlap Numeric

functionality (e.g. Epetra_MultiVector)
– Python implementation of these classes inherit

from both the Epetra class and Numeric arrays

Building & Installing PyTrilinos

• Prerequisites include python 2.3, Numeric, and
swig (Simple Wrapper Interface Generator) 1.3.23
– Swig is the workhorse for generating wrapper code;

wrapper code is not pre-generated because of
configuration options

• Add --enable-python to invocation of
configure

• Python modules will be built for those packages
that support it

Demonstration

PyTrilinos Performance vs MATLAB

• CPU sec to fill nxn dense matrix

• CPU sec to fill nxn diagonal matrix

• CPU sec for 100 MatVecs

3.8570.04781000
0.03570.0025100
0.0004160.0000110
PyTrilinosMATLABn

0.31311.0550,000
0.60350.98100,000

0.060 0.44910,000
0.0059 0.003971000
0.000159 0.0000610
PyTrilinosMATLABn

7.15012.7201000
1.782 3.130500
0.0288 0.110100
0.0053 0.0250
PyTrilinosMATLABn

PyTrilinos Performance vs Trilinos

• Fine-grained script:

• Course-grained script:

11.281.9251,000,000
 1.2380.280100,000
 0.2410.11310,000
 0.150.0101000
PyTrilinosTrilinosn

PyTrilinos Performance

• Some Trilinos packages are designed for users to derive
classes from pure virtual base classes
– Epetra_Operator
– Epetra_RowMatrix
– NOX::Abstract::Interface . . .

• Numerical kernels (matvecs, nonlinear function
evaluations) are therefore written by users

• Using PyTrilinos, numerical kernels are therefore written in
python (fine-grained . . . bad)

• If efficiency is a consideration,
– Use array slice syntax
– Use weave
– Inefficient code is 20-100x slower

Summary

• PyTrilinos provides python access to selected Trilinos
packages
– Emerging from early stages . . . portability, completeness
– Parallelism
– Rapid prototyping
– Application development
– Unit testing
– Numeric compatibility (migrating to NumPy)

• PyTrilinos complements and supplements the SciPy
package

