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Motivations

 Glaciers and ice sheets influence the global climate, and vice-versa

» Melting of land ice determines the sea level rise
melting of the Greenland ice sheet: 7 m
melting of the Antarctic ice sheet: 61 m

South Florida projection for a sea levels rise
of 5m (dark blue) and 10m (light blue)



Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)
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with:

o B 1 81% a’UJj
o=2uD — PI, Dzj(u)_Q(Z?xj+8aci)

Non linear viscosity:

1
p=5o(T) D)|"™, pe (1,2 (tipically p=~ 3)
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Viscosity is singular when ice is not deforming
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Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

—V -0 =pg
V-u=0

- Model for the evolution of the boundaries
(thickness evolution equation)

- Temperature equation

or J (kg—f) —pcu - VI + 2¢c0

'OCE 0z

- Coupling with other climate components (e.g. ocean, atmosphere)



Stokes Approximations

“Reference” model: STOKES!

0(5 2) FO, Blatter-Pattyn first order model® (3D PDE, in horizontal
velocities)

0, (5 ) Zeroth order, depth integrated models:
SIA, Shallow Ice Approximation (slow sliding regimes) ,
SSA Shallow Shelf Approximation (2D PDE) (fast sliding regimes)

~ 0(5 2) Higher order, depth integrated (2D) models: L1L2° (L1L1)...

) :— ratio between ice thickness and ice horizontal extension

'Gagliardini and Zwinger, 2008. The Cryosphere.
*Dukowicgz, Price and Lipscomb, 2010. J. Glaciol.
’Schoof and Hindmarsh, 2010. Q. J. Mech. Appl. Math.



(Numerical) Modeling Issues

« Computationally challenging, due to complexity of models, of geometries and large domains

- design of linear/nonlinear solvers, preconditioners, etc.
- mesh adaptivity especially close to the grounding line.

\|
e Boundary conditions / coupling (e.g. with ocean) s, M
- Floating/calving
- Basal friction at the bedrock,
- Subglacial hydrology,
- Heat exchange / phase change.

 Initialization / parameter estimation.

» Uncertainty quantification.




Inverse Problem

Estimation of ice-sheet initial state*
(w/ G. Stadler, UT, and S. Price, LANL)

Problem: what is the initial thermo-mechanical state of the ice sheet?

Available data/measurements:
* ice extension and surface topography
+ surface velocity _ _
+ Surface Mass Balance (SMB: accumulation/melt rate) ice-sheet
+ ice thickness H (very noisy) ‘

Fields to be estimated :
+ ice thickness H
* basal friction B

Additional information:
+ 1ce fulfills nonlinear Stokes equation
* ice is almost at thermo-mechanical equilibrium

Assumption (for now):
+ given temperature field

*Perego, Price, Stadler, JGR 2014



Inverse Problem
Estimation of ice-sheet initial state
Steady State equations and basal sliding conditions

How to prescribe ice-sheet mechanical equilibrium:
divergence flux

OH . 1 i
— = —div(UH) + 74, U = 7 /udz. At equilibrium: div (UH) = Ts

ot

Surface Mass
Balance

Boundary condition at ice-bedrock interface:

(an+5u)||=O on 1z
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Inverse Problem

Estimation of ice-sheet initial state
PDE-constraint optimization problem: cost functional

Problem: find initial conditions such that the ice is almost at thermo-mechanical
equilibrium given the geometry and the SMB, and matches available observations.

Optimization Problem:

find 8 and H that minimizes the functional J

J (B, H) :/%]u—uObS\st
0

u

1
+/230’_72_div<UH>_TSQdS

1 ,
+/ _2‘H_H()b5‘2d8
> 0g

+R (B, H)

subject to ice sheet model equations
(FO or Stokes)

surface velocity )
mismatch Common
SMB
mismatch > Proposed
thickness

mismatch

regularization terms.

U: computed depth averaged velocity
H': ice thickness

B: basal sliding friction coefficient

Ts: SMB

R(B) regularization term




Inverse Problem
Estimation of ice-sheet initial state of Greenland ice sheet

Grid and RMS of velocity and errors associated with velocity and thickness observations

Grid Velocity RMS (m/yr) Thickness RMS (km)
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Inverse Problem
Estimation of ice-sheet initial state of Greenland ice sheet

Inversion results: surface velocities

computed surface velocity observed surface velocity

lul (Mm/yr)
00

0.01




Inverse Problem
Estimation of ice-sheet initial state of Greenland ice sheet

Inversion results: surface mass balance (SMB)

SMB needed for equilibrium SMB from climate model

common .

proposed ’




Inverse Problem

Estimation of ice-sheet initial state of Greenland ice sheet
Estimated beta and change in topography.

recovered basal friction difference between recovered
and observed thickness

betalkPa yr/m)
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Inverse Problem

A4

Estimation of ice-sheet initial state
Algorithm and Software tools used

Algorithm

Basal non-uniform triangular mesh
Linear Finite Elements on tetrahedra
Quasi-Newton optimization (L-BFGS)
Nonlinear solver (Newton method)
Krylov Linear Solvers

Detalils:

Regularization terms: Tikhonov.
L-BFGS initialized with Hessian of the regularization terms.

Software Tools

Triangle

LifeVv

Rol

NOX
AztecOO/IfPack
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h

L

Sandia
National
Laboratories



Inverse Problem
Estimation of ice-sheet initial state

PDE-constraint optimization problem: gradient computation

Find (£) that minimize J(5,u)
subject to  F(u,f) =

How to compute total derivatives of the fuctional w.r.t. the parameters?

Solve State System | F(u,3) =0

Solve Adjoint System (FaN), 0u) = Ju(0u), Vo4

Total derivative g(55) = I3 (55) — <>\7FB (55»

Derivative w.r.t.

91(55):&5/VB-V55ds—/55u-)\ds
5 5



\

orting the inversion to Albany-FELIX
(w/ E. Phipps, A. Salinger, D. Ridzal and D. Kouri)

Why?
- to exploit Automatic Differentiation for computing derivatives

- to exploit Albany/Trilinos ecosystem (e.g. for UQ capabilities using Dakota)
- to extend Albany adjoint/inversion capabilities,
- to use in-house software (better maintainability)

Albany Development:
- implement distributed parameters, i.e. fields defined on the mesh or on parts of it.

- implement routines for computing derivatives of residual and responses w.r.t. the
distributed parameters.

Trilinos Development:

- couple Piro to ROL using Thyra implementation of ROL::Vector and ROL::Objective.
ROL needs reduced gradient and objective functional.

G: reduced gradient
g=/J, 3 — fT}\ J: response or objective function
/é J: residual
Matriefree B: (distributed) parameter

( ) Sandia
. m National
matrix vector product Laboratories
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Preliminary result using Albany-Piro-ROL

recovered basal friction Objective functional:

@), B) = [ Zh—uPds

+a [ |VB|? ds.
>

beta(kPa yr/m)
100
ROL algorithm:
- - Limited-Memory BFGS
= - Backtrack line-search
Inverted 2000 parameters.
1
TODOs:
01 - clean/test Piro-ROL interface
- add bound-constraints
0.01

- implement Hessian computation in order to
use Newton methods and for UQ

. Sandia
- invert for shape parameters (H National
PeP ( ) m labomories




Trilinos packages used in this calculation:

Nonlinear Vectors / Physics /
analysis tools discretization
- Piro - Teuchos - Phalanx
- ROL - Epetra - Sacado
- LOCA - EpetraExt - Intrepid
- NOX - Thyra - Shards
: Mesh
Linear solvers
- Zoltan
- Stratimikos - STK::Mesh
- Belos/AztecOO - STK::10
- Ifpack - Seacas::Exodus

(thanks Andy) - Seacas::IOSS rh) ieow

Laborataries
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