
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

New Multiphysics Coupling Tools for
Trilinos: PIKE and DTK

Roger Pawlowski

Sandia National Laboratories

Roscoe Bartlett, Stuart Slattery, Mark Berrill, Kevin Clarno, and Steve Hamilton

Oak Ridge National Laboratory

Trilinos User Group Meeting

Wednesday October 29th, 2014

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAA

SAND2014-19290 PE

Driving Project

 The Consortium for Advanced Simulation of LWRs (CASL) is a DOE
program to improve modeling and simulation of nuclear reactors

 Flagship product is a “Virtual Reactor” Simulation Suite based on
code-to-code couplings

 Integrating both modern and legacy codes
 Familiar, validated codes are valued in the community

 Providing residuals for Newton-based coupling can require significant
redesign

 Production tools use simple Picard iteration

 CASL does use Newton-based solvers for research and assessment of
coupling algorithms

 New Trilinos multiphysics tools (packages) have been abstracted

A Domain Model

• Input Arguments: state time derivative, state, parameters, time

• Output Arguments: Residual, Jacobian, response functions, etc…

A Theory Manual for

Multiphysics Code

Coupling in LIME,

R. Pawlowski, R.

Bartlett, R. Schmidt,

R. Hooper, and N.

Belcourt,

SAND2011-2195 State (DOF)
Set of parameters

Time
Residual

Response Function

Extension to Multiphysics

Set of independent

parameters
Set of coupling

parameters

Transfer Function

Response Function

Split parameters into “coupling” and truly independent.

Require transfer functions:

• Can be complex nonlinear functions themselves

Response functions now dependent on z

• Can be used as coupling parameters (z) for other codes

Application Classification

Name Definition Required

Inputs

Required

Outputs

Optional

Outputs

Time

Integration

Control

Response Only

Model
(Coupling Elimination)

Internal

State Elimination

Model

Internal

Fully Implicit Time

Step Model

Internal

Transient

Explicitly Defined

ODE Model

External

Transient Fully

Implicit DAE

Model

External

or

Internal

Inputs and outputs are optionally supported by physics model  restricts

allowed solution procedures

Application Classification

Name Definition Required

Inputs

Required

Outputs

Optional

Outputs

Time

Integration

Control

Response Only

Model
(Coupling Elimination)

Internal

State Elimination

Model

Internal

Fully Implicit Time

Step Model

Internal

Transient

Explicitly Defined

ODE Model

External

Transient Fully

Implicit DAE

Model

External

or

Internal

Inputs and outputs are optionally supported by physics model  restricts

allowed solution procedures

BlackBox

Implicit (Invasive)

- Requires Advanced Solver abstractions:

- Vectors, Operators, … (Thyra)

Trilinos Implicit Multiphysics Capabilities
 Trilinos already supports Newton-based strong coupling

 Block composite linear systems: Thyra product objects and Model Evalautor

 Sensitivities: Sacado

 Blocked physics-based preconditioners: Teko (ML, MeuLu, Ifpack, Ifpack2)

 Inexact Newton, Jacobian-Fee Newton-Krylov: NOX

 Transient DAE: Rythmos

 Multiphysics FE assembly engine: Phalanx, Panzer
 DOF Manager: Fully coupled Newton with mixed basis (Intrepid), different equation

sets in different element blocks

 Basic framework for describing equation set, boundary conditions

 Provides a Thyra::ModelEvaluator for solvers

 Demonstrated on leadership class machines (Drekar)!

 See TUG 2011 (Hierarchical Toolchains for Nonlinear Analaysis, Panzer)

Physics Integration KErnels (PIKE)
 Production coupled codes are

Picard-based
 L3 milestone in PoR3 outlined the design of a

“LIME 2”

 Generalization of Coupled drivers in CASL
products

 2000 lines of c++

 Received DOE copyright for release in Trilinos

 Benefits

 Simplified and unified model interfaces

 Explicit separation of global and local
convergence

 User defined convergence test hierarchy

 User defined solvers

 Unified control via observers

 Unit testing, output summary, initialization

 Timing control

 Consistent with Trilinos coding guidelines

Tiamat: Core Simulator for Pellet
Clad Interaction
 CTF: Multiphase thermal hydraulics

 Insilico: SPN neutronics

 Peregrine: Thermal conductivity, solid mechanics
with contact

Clad heat flux

Clad Surface Temperature

Peregrine

Insilico

CTF

Example: Tiamat CPI
• Application codes are a “black box”

– Set parameters
– Call Solve
– Evaluate responses

• Jacobi and Gauss-Seidel options
available.

• Transient, steady-state, and pseudo
steady-state

• Strong coulping: All codes are subcycled
to converge state within each time step!

Power

Clad Temp

Clad Heat Flux

Fuel Temp

Fluid Temp/density

Peregrine

CTF

Insilico

Pros and Cons of Picard

 Advantages:
 Simple to implement

 Black-Box: Driver requires minimal knowledge of components (no
solutions or residuals required)

 Allows optimized/tuned solvers on individual physics

 Easy for analysts to understand

 Disadvantages:
 Linear convergence rate

 Robustness controlled by damping parameter selection

 Inner/outer tolerance selection and convergence criteria

 Sequential in physics domains (Gauss-Seidel)

11

Minimal Model Evaluator Interface
 Simplest steady-

state Model
Evaluator
interface

 Low barrier to
entry

 NO exposure to
Thyra/Epetra
Vectors or
Thyra::Model
Evaluators
 Removed high

entry barrier

namespace pike {

 class BlackBoxModelEvaluator :

 public Teuchos::Describable,

 public

 Teuchos::VerboseObject<pike::BlackBoxModelEvaluator> {

 public:

 virtual ~BlackBoxModelEvaluator();

 virtual std::string name() const = 0;

 virtual void solve() = 0;

 virtual bool isLocallyConverged() const = 0;

 virtual bool isGloballyConverged() const = 0;

 .

 .

 .

 };

}

Deprecated

in favor of

StatusTest

objects

Expanded for Parameter, Response and
Transient (support mixes pseudo SS)
virtual bool supportsParameter(const std::string& pName) const;

virtual int getNumberOfParameters() const;

virtual std::string getParameterName(const int l) const;

virtual int getParameterIndex(const std::string& pName) const;

virtual void setParameter(const int l, const Teuchos::ArrayView<const double>& p);

virtual bool supportsResponse(const std::string& rName) const;

virtual int getNumberOfResponses() const;

virtual std::string getResponseName(const int j) const;

virtual int getResponseIndex(const std::string& rName) const;

virtual Teuchos::ArrayView<const double> getResponse(const int j) const;

virtual bool isTransient() const;

virtual double getCurrentTime() const;

virtual double getTentativeTime() const;

virtual bool solvedTentativeStep() const;

virtual double getCurrentTimeStepSize() const;

virtual double getDesiredTimeStepSize() const;

virtual double getMaxTimeStepSize() const;

virtual void acceptTimeStep();

Flexibility
• Sovlers:

– pike::SolverObserver for user injection of code at specific points in the solve
– pike:AbstractSolverFactory for users to inject new solvers
– pike::Factory for aggregating solver factories

• Status Tests
– Splits convergence into local (application) and global (coupled problem)
– Also defines Abstract Factory and Factory base classes
– Follows NOX: abstract base class for StatusTest, combined into user defined

hierarchy

• Utilities: Default Solver and ME classes, Logger Wrappers

• Hierarchical Solves are supported via SolverAdapterModelEvaluator wrapper

Hierarchic Solves

• SolverAdapterModelEvaluator

allows for hierarchic solves

• Optimal data transfer

Gauss-Seidel

Solver

Physics A

Model

Evaluator

Physics A

Model

Evaluator

Physics A

Model

Evaluator

Jacobi

Solver

Solver Adapter

Model Evaluator

Follows Trilinos Coding Standards

• Describable

• VerboseObject

• ParameterList
Acceptor

• ParameterList
Validation

• TimeMonitor

• Teuchos Unit Test
Harness

• Coverage testing:
87%

The pike::MultiphysicsDistributor Class

 Creates MPI
Communicators and
provides
information for
coupled problems

 Can overlap or
segregate codes in
MPI process space

 Data Transfers: DTK
 In memory

 Rendezvous
algorithm

Data Transfer Kit (NEXT TALK: SLATTERY)
(Slattery, Wilson, Pawlowski)

 In-memory data transfers are critical for
efficiency: NO file I/O for transfers

 Determines efficient point-to-point
communication pattern for parallel transfer
between codes

 Provides both volume and interfacial:

 Volume-to-Volume: (Shared Domain)

 Point Interpolation (post-scale for conservation)

 Both mesh and Geometry based

 Surface/Interfacial: Common Refinement (Jiao and
Heath 2004)

 Spline interpolation (de Boer et al. CMAME 2007)

 Uses Rendezvous algorithm
(Plimpton et al., Journal of Parallel and
Distributed Computing 2004)

 N log(N) time complexity in parallel map generation

Aggregate

cell contrib.

to compute

average in

geometry

DTK Implements Mappings for Various Transfers
(Rendezvous used by all Mappings)

Shared Domain Map

Mesh Point

Integral Assembly Map

Mesh Geometry

Shared VolumeMap

Geometry  Point

Colors represent different

MPI processes

Pseudocode for MPD and DTK
setupDTKAdapters {

 if (mpd->transferExistsOnProcess(DREKAR_TO_INSILICO)) {

 RCP<DataTransferKit::GeometryManager<…> > drekar_geom;

 RCP<DataTransferKit::FieldContainer<…> > insilico_target_points;

 if (mpd->appExistsOnProcess(DREKAR))

 drekar_geom = drekar_me->getSourceGeom();

 if (mpd->appExistsOnProcess(INSILICO))

 insilico_target_points = insilico_me->getTargetPoints();

 dtk_map->setup(drekar_geom, insilico_target_points);

 }

}

doTransfer() {

 …

}

20

Solver Comparisons
 Picard

 Generalized Davidson eigensolver for SPN

 JFNK for thermal/subchannel solve

 Damping factor = 0.4

 Anderson
 Anderson(2)

 Mixing parameter: b = -1.0

 JFNK-based methods
 Block diagonal preconditioner on physics components:

 Diagonal blocks approximately inverted with Trilinos/ML

 Trilinos/NOX JFNK solver with Belos GMRES

 Stopping tolerance: 10-4 nonlinear, 10-5 linear

P

f

l

T

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

=

A(T)- lB(T) 0 0

0 1 0

0 0 L(T)

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Why Anderson Acceleration?

 Minimal change to “black-box” codes:

22

x = g(x)

Anderson, ACM 1965

Comparison Problem – CASL AMA
Problem 6
 Standard 17x17 PWR Fuel Assembly

 264 fuel pins
 24 guide tubes, 1 instrumentation tube
 1.26 cm pitch, 365 cm active fuel height

 3.1% enriched UO2
 water moderator w/650 ppm boron
 Zirc-4 clad

 8 spacer grids, top/bottom nozzle
 30,000 W/kg operating power

 Finite volume simplified PN (SPN) transport

 SP3 in angle, P1 scattering
 23 energy groups
 Cross sections collapsed and homogenized from 56/252 groups on 49 axial

levels per fuel pin
 290,000 mesh cells on Cartesian mesh
 13M DOFs, 524M nonzeros in matrix

 Unstructured mesh CFEM thermal diffusion
 4M mesh cells on unstructured hexahedral mesh

 Pin-by-pin subchannel flow model
 Spatially decomposed on 289 cores

Comparison of Solvers

 Watts-Bar Cycle 1 single
assembly

 Multiple Solvers:
 Picard iteration (PIKE)

 Anderson acceleration (NOX)

 JFNK (NOX)

 Modified JFNK 1 & 2 (NOX)

 Direct to steady-state

 Submitted to JCP special
issue for CASL

24

Total Runtime Comparison

 > 90% of runtime at 252 energy groups is in the online cross section
calculation

 Blind application of JFNK was terrible due to cross section
recalculation in Jacobian-vector products

 Better performance of JFNK is not enough to justify the effort
needed in refactoring legacy codes (but for new codes JFNK is the
preferable from a V&V/UQ standpoint!)

25

5-Assembly Cross Results:
3x3 Assembly with 17x17 WEC Assembly
(AMA progression problem 6 and 5-Assebly cross)

• Based on Watts Barr Unit 1 Cycle 1

• 252-group neutronics!

• Cross Layout (1445 Peregine Apps):

– 1320 fuel rods

– 120 guide tubes

– 5 instrument tube

Figure from Watts Bar Unit 2 Final Safety Analysis Report

(FSAR), Amendment 93, Section 4, ML091400651, April 30,

2009.

Figure 4.2-3

Contact Assessment for PCI
• Changed fuel pellet radius to initiate

contact at early times.

• Peregrine (and thus Tiamat)
robustly converged through contact
events.

Contact is robust

5-Assembly Cross: Power and Flux

5-Assembly Cross: Power and Flux

5-Assembly Cross
Vapor Generation and Vapor Fraction

Minimal amount of boiling

PCI Capability Demo
 “A multiple assembly

simulation of coupled
CTF/Insilico/Peregrine that
computes figures of merit
for PCI analysis.”

 Important features:
 Fully coupled feedback in

each time step

 Using 252-group neutronics

 Solid mechanics, w/ history
effects

 Significant
coordination/collaboration
between SNL, ORNL, INL,
and PNNL

5-Assembly Cross: Timings

 Similar to single
assembly layout
 One MPI core per

Peregrine pin

 Timings are
dominated by
Insilico cross
section evaluations

Summary and Future Work
 Black Box coupling is not ideal algorithmically, but is used in many

industries
 Very practical when working with Legacy code!

 Utility of PIKE is to provide a consistent set of interfaces for multiple
couplings  reuse of model evaluators and data transfer operators

 Future Work
 PIKE and DTK will be integrated/snapshotted into the next release of Trilinos
 PIKE: Finish up TransientSolver support
 Newton-based Coupling: Thyra::ProductModelEvaluator is under development

but not yet completed (currently using AMP for model composite)
 DTK: Addition/Refactoring of interfaces before Trilinos release
 DAKOTA interfaces to PIKE
 Add new solver that mimics SIERRA solution control?

 Questions

 Trilinos integration: should PIKE be a separate package? NOX?

