

Building Hierarchical Toolchains for Nonlinear Analysis

Roger Pawlowski, Eric Phipps, Andrew Salinger Sandia National Laboratories

Roscoe Bartlett

Oak Ridge National Laboratory

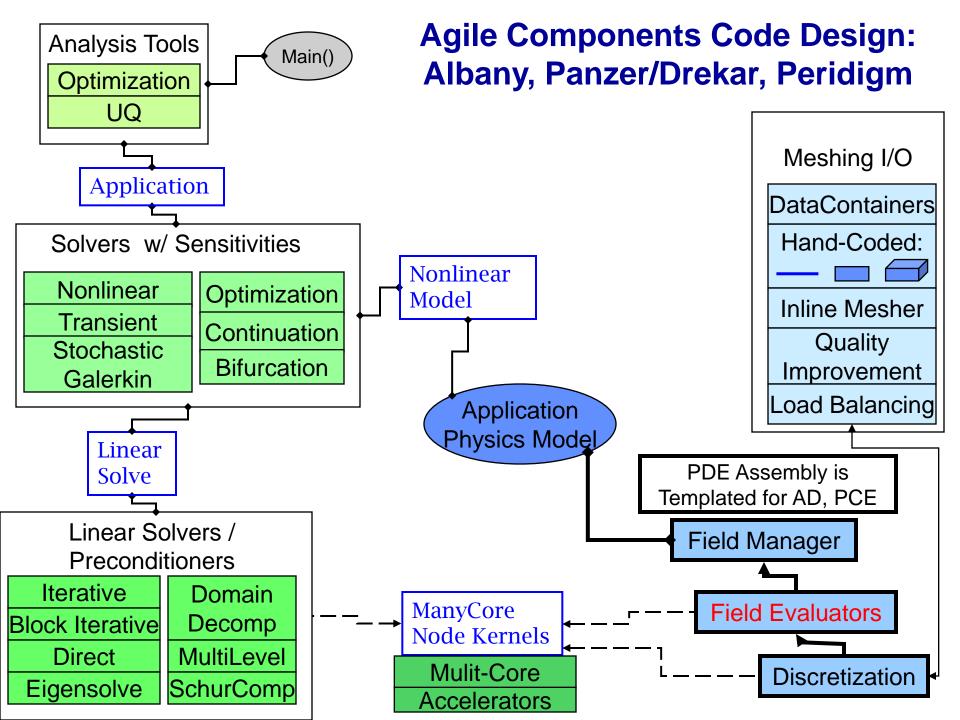
Trilinos User Group Meeting Wednesday, November 2nd, 2011

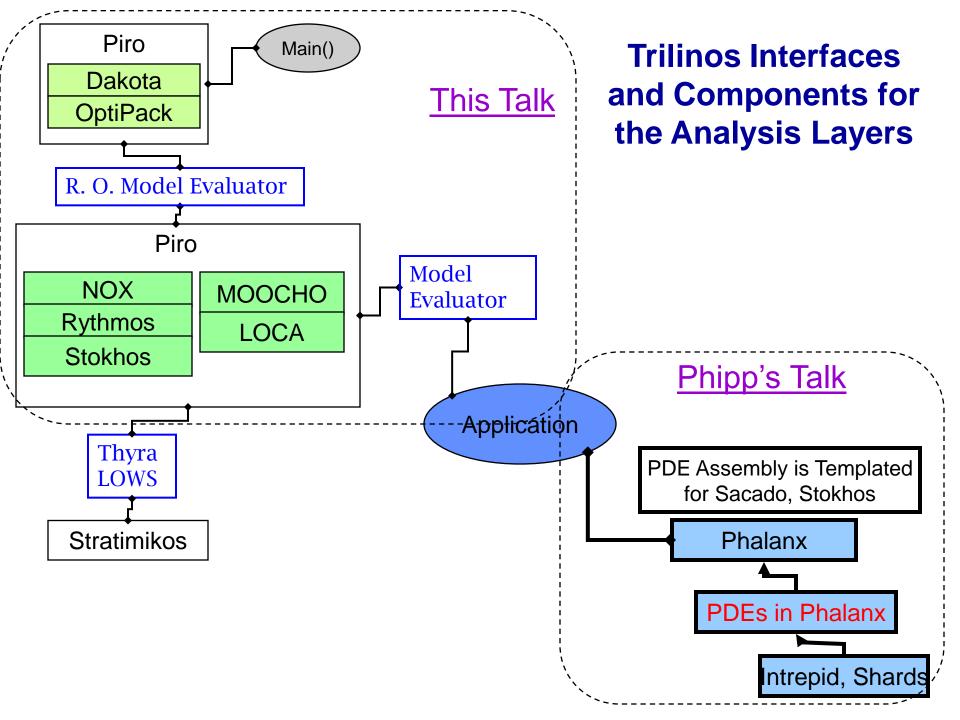
SAND2011-8253C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Embedded Nonlinear Analysis Capability Area

- Basic Capabilities:
 - TBGP Automatic Differentiation (Sacado)
 - (Globalized) Nonlinear solution methods (NOX)
 - Time Integration (Rythmos)
- Advance Analysis Capabilities:
 - (Multi-)Parameter Continuation (LOCA)
 - Stability analysis (LOCA)
 - Bifurcation analysis (LOCA)
 - Optimization (Aristos/ROL, MOOCHO, TriKota/DAKOTA)
 - Uncertainty Quantification (Stokhos TriKota/DAKOTA)
- Analysis beyond direct simulation:
 - Often a simple direct solve is not enough
 - Automate computational tasks that are often performed by application code users by trial-and-error or repeated simulation





General Physics Model

A Theory Manual for Multiphysics Code Coupling in LIME, R. Pawlowski, R. Bartlett, R. Schmidt, R. Hooper, and N. Belcourt, SAND2011-2195

$$f(\dot{x}, x, \{p_l\}, t) = 0$$

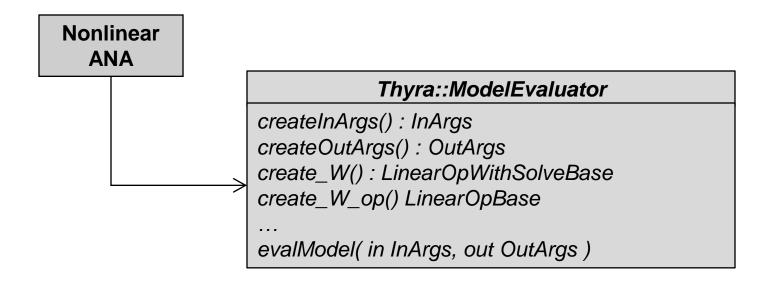
 $x \in \mathbb{R}^{n_x}$ is the vector of state variables (unknowns being solved for), $\dot{x} = \partial x/\partial t \in \mathbb{R}^{n_x}$ is the vector of derivatives of the state variables with respect to time, $\{p_l\} = \{p_0, p_1, \dots, p_{N_p-1}\}$ is the set of N_p independent parameter sub-vectors, $t \in [t_0, t_f] \in \mathbb{R}^1$ is the time ranging from initial time t_0 to final time t_f ,

$$g_j(\dot{x}, x, \{p_l\}, t) = 0$$
, for $j = 0, \dots, N_g - 1$

$$g_j(\dot{x}, x, \{p_l\}, t) : \mathbb{R}^{\left(2n_x + \left(\sum_{l=0}^{N_p-1} n_{p_l}\right) + 1\right)} \to \mathbb{R}^{n_{g_j}}$$
 is the j^{th} response function.

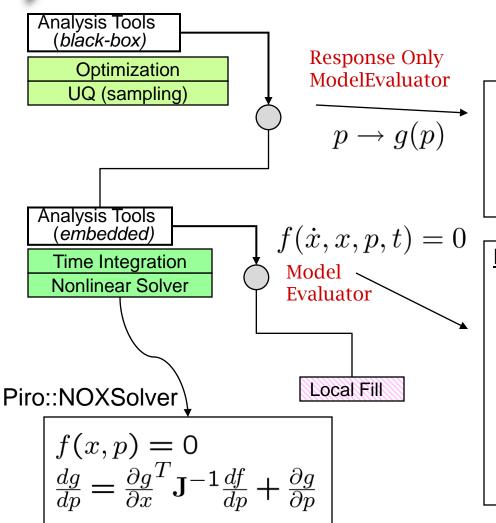
- Input Arguments: state time derivative, state, parameters, time
- Output Arguments: Residual, Jacobian, response functions, etc...

Model Evaluator : Thyra and EpetraExt Versions

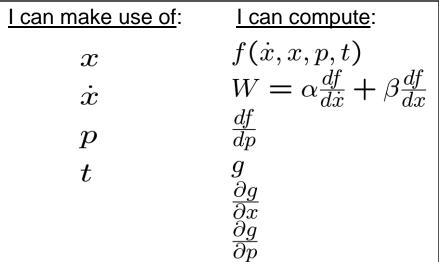


- Common interface for ANAs
 - Residuals, Jacobians, parameters, parameter sensitivities, response functions, stochastic Residuals/Jacobians
- Stateless model (All state passed in as parameters)
- Allows for efficient multiple shared calculations (e.g. automatic differentiation)
- Inputs and Outputs are extensible without requiring changes to user code

ModelEvaluator and Response Only ModelEvaluator

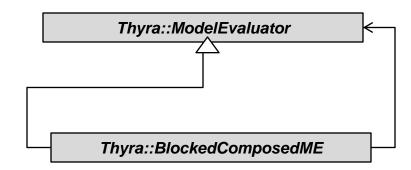


InArgs	OutArgs
I can make use of:	I can compute:
p	$egin{array}{c} g \ da \end{array}$
	$rac{ag}{dp}$



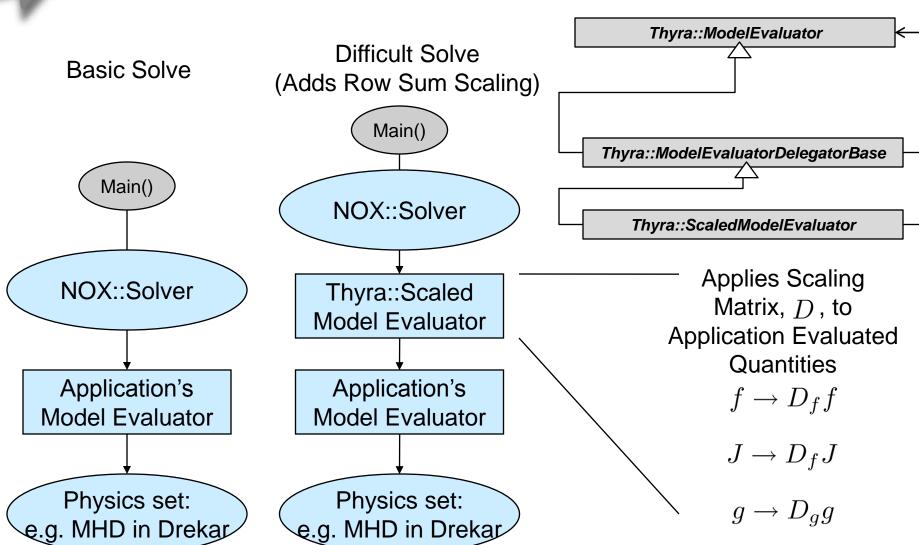
Concept

 Use inheritance and composition to wrap analysis tools as model evaluators to build a hierarchical chain.

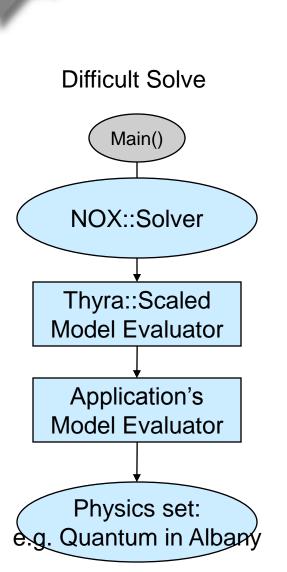


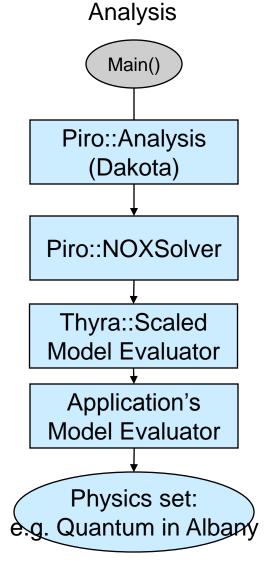
- Model Evaluator Use Cases:
 - 1. Application Interface
 - 2. PIRO "Response Only Model Evaluators" with response sensitivities:
 - Nonlinear (NOX),
 - Time Integrator (Rythmos),
 - Optimization (MOOCHO), Param.
 - Continuation/Stability/Bifurcation (LOCA)
 - 3. Decorators:
 - Default Implementation (DelegatorBase)
 - Scaled
 - Jacobian-Free Newton-Krylov (JFNK)
 - Block Composite (LIME Multiphysics)

Uses **Decorator** to better condition a poorly scaled system of equations



PIRO ROMEs Add direct support to Nonlinear Analysis Tools and Response Sensitivities





$$p \to g(p)$$

Piro::NOXSolver

$$f(x,p) = 0$$

$$\frac{dg}{dp} = \frac{\partial g}{\partial x}^T \mathbf{J}^{-1} \frac{df}{dp} + \frac{\partial g}{\partial p}$$

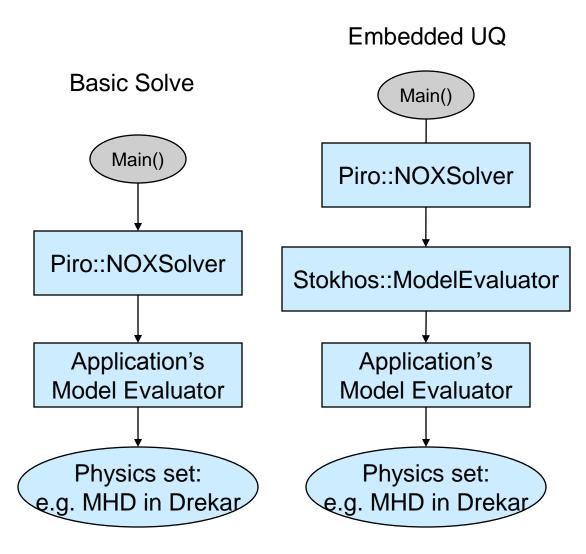
Piro::RythmosSolver

Piro::MOOCHOSolver

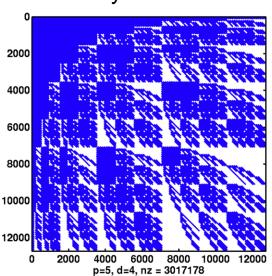
Piro::LOCASolver

Piro::Analysis (Dakota)

Embedded UQ can be Inserted as a ME Decorator

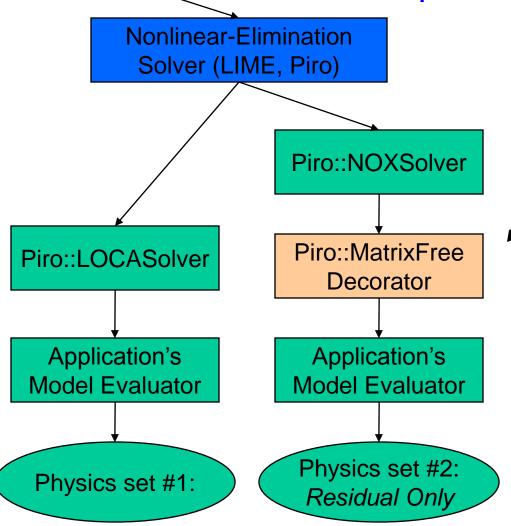


Stokhos forms a block composite system



Each point is a block corresponding to a basic solve Jacobian

Decorators and multi-physics solvers grow the capabilities with generic implementations



Main()

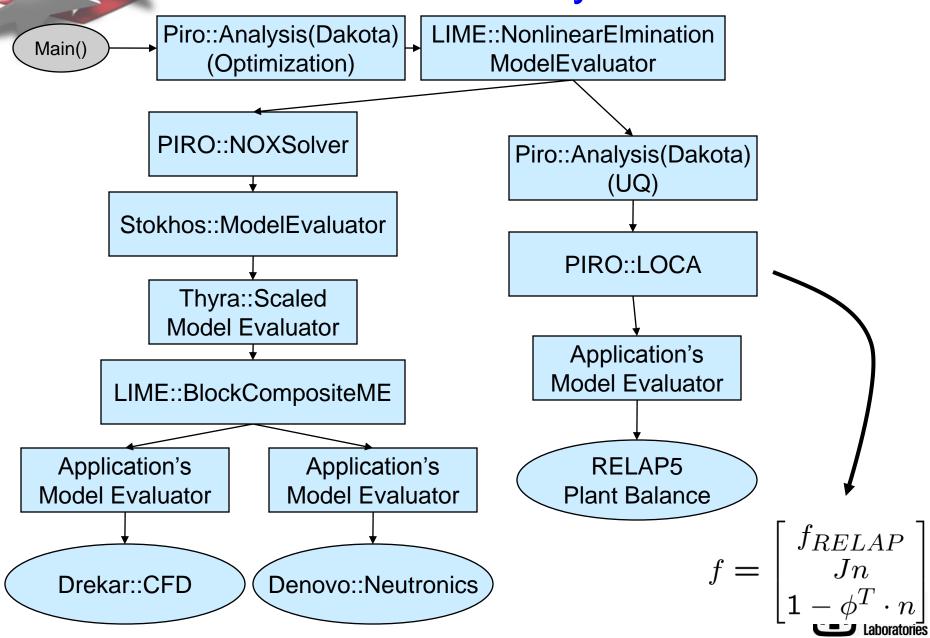
JFNK implemented as a decorator ME, implements: create_W_op()

$$\int Jv \approx \frac{F(x+\delta v) - F(x)}{\delta}$$

Multiphysics coupling examples:

- CASL: CFD/Neutronics/Plant Balance
- QCAD: Coupled Schrodinger-Poisson (nonlinear solve coupled to eigensolve

Let Go Crazy!



What's Missing?

- LIME Multiphsyics Coupling Library
 - LIME 1.0 internal to Sandia/CASL, hard coded to Epetra data structures
 - LIME 2.0 In design stages now. Will support abstract Op/Vec interface. Release Milestone in March 2012.
- Stochastic support in Thyra::ModelEvaluator
 - Currently only implemented in EpetraExt::ModelEvaluator
 - Help Eric!

Current and Future Efforts

- Update Thyra::ModelEvaluator
 - Many capabilities are EpetraExt-only
 - "Ripen" Tpetra Adapters to Thyra implementations
- Refactor/Expansion of Model Evaluator interface
 - Usability
 - expand in/out args
 - handling of statefulness
 - usability (e.g. selection of parameters by string)
 - adaptivity-enabled (reset maps / vector spaces)
- Grow library of ME capabilities
 - PIRO
 - LIME 2.0
 - Decorators
- System UQ (Phipps, Wildey)

Extra Slides

Software Integration Models

Inputs and outputs are *optionally* supported by physics model → restricts allowed solution procedures

Name	Definition	Required Inputs	Required Outputs	Optional Outputs	Time Integration Control
Response Only Model (Coupling Elimination)	p o g(p)	p	g		Internal
State Elimination Model	$p \to x(p)$	p	x	g	Internal
Fully Implicit Time Step Model	f(x,p) = 0	x, p	f	W,M,g	Internal
Transient Explicitly Defined ODE Model	$\dot{x} = f(x, p, t)$	x, p, t	f	W,M,g	External
Transient Fully Implicit DAE Model	$f(\dot{x}, x, p, t) = 0$	\dot{x},x,p,t	f	W,M,g	External or Internal

$$W = \alpha \frac{\partial f}{\partial \dot{x}} + \beta \frac{\partial f}{\partial x}$$
 $M = \text{preconditioner}$

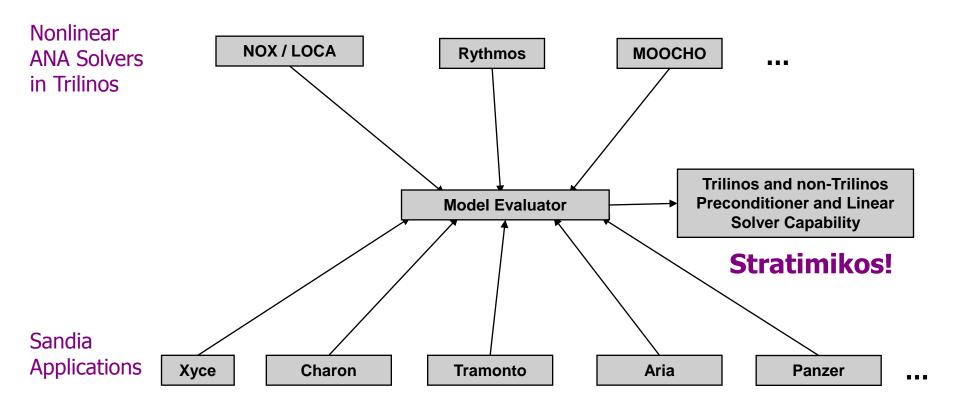
Some Examples of Nonlinear Analysis Supported by ModelEvaluator

*	
Nonlinear equations:	Solve $f(x) = 0$ for $x \in \mathbf{R}^n$
Stability analysis:	For $f(x,p)=0$ find space $p\in\mathcal{P}$ such that $\frac{\partial f}{\partial x}$ is singular
Explicit ODEs:	Solve $\dot{x} = f(x,t) = 0, t \in [0,T], \ x(0) = x_0,$ for $x(t) \in \mathbf{R}^n, t \in [0,T]$
DAEs/Implicit ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0, t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$ for $x(t) \in \mathbb{R}^n, t \in [0, T]$
Explicit ODE Forward Sensitivities:	Find $\frac{\partial x}{\partial p}(t)$ such that: $\dot{x} = f(x, p, t) = 0, t \in [0, T],$ $x(0) = x_0$, for $x(t) \in \mathbf{R}^n, t \in [0, T]$
DAE/Implicit ODE Forward Sensitivities:	Find $\frac{\partial x}{\partial p}(t)$ such that: $f(\dot{x}(t),x(t),p,t)=0,t\in[0,T],$ $x(0)=x_0,\ \dot{x}(0)=x_0'$, for $x(t)\in\mathbf{R}^n,t\in[0,T]$
Unconstrained Optimization:	Find $p \in \mathbf{R}^m$ that minimizes $g(p)$
Constrained Optimization:	Find $x \in \mathbf{R}^n$ and $p \in \mathbf{R}^m$ that: minimizes $g(x,p)$ such that $f(x,p)=0$

ODE Constrained Optimization:

Find $x(t) \in \mathbf{R}^n$ in $t \in [0,T]$ and $p \in \mathbf{R}^m$ that: minimizes $\int_0^T g(x(t), p)$ such that $\dot{x} = f(x(t), p, t) = 0$, on $t \in [0, T]$ where $x(0) = x_0$

Nonlinear Algorithms and Applications: Thyra & Model Evaluator!



Key Points

- Provide single interface from nonlinear ANAs to applications
- Provide single interface for applications to implement to access nonlinear ANAs
- Provides shared, uniform access to linear solver capabilities
- Once an application implements support for one ANA, support for other ANAs can quickly follow

