
Building an Open-source Multiphysics PDE

Research Tool using Trilinos

R. P. Pawlowski, E. C. Cyr, J. N. Shadid, and T. M. Smith

Sandia National Laboratories

Trilinos User Group Meeting

Wednesday, November 2nd, 2011

Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energy's National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2011-8330C

Thanks to:

• Chris Baker (ORNL)

• Ross Bartlett (ORNL)

• Todd Coffey (SNL)

• Debbie Fixel (SNL)

• Rick Garcia (SNL)

• Gary Hennigan (SNL)

• Zeses Karoutas (Westinghouse Electric Company)

• Paul Lin (SNL)

• Bill Rider (SNL)

• Sal Rodriguez (SNL)

• Andrew Salinger (SNL)

• Greg Sjaardema (SNL)

• Dan Turner (SNL)

• Alan Williams (SNL)

Outline

• Introduction

– Motivation

– History

• An example driving application: CASL GTRF

Challenge Problem

• Code Design and Algorithms

• GTRF Results

• A Users(?) Perspective on Trilinos

• Conclusions

Focus

• Question:

– If I need to build a multiphysics simulation

capability, how much can we leverage Trilinos

and how much do I have to develop?

• “Power User Session”: This talk is about

pushing the Trilinos open source software

stack to it’s limits.

• Hope to Convey: With the right tools in

place, you can make significant progress

very quickly on very complex physics with

advanced software designs!

Motivation
Mathematical /Computational Motivation: Achieving Scalable Predictive

Simulations of Complex Highly Nonlinear Multi-physics PDE Systems

• Multiphysics systems are characterized by a myriad of complex, interacting,

nonlinear multiple time- and length-scale physical mechanisms.

– Dominated by short dynamical time-scales

– Widely separated time-scales stiff system response

– Evolve a solution on a long time scale relative to component time scales

– Balance to produce steady-state behavior.

• Our approach:

– Stable and higher-order accurate implicit formulations and discretizations

– Robust, scalable and efficient prec. for fully-coupled Newton-Krylov methods

– Integrate sensitivity and error-estimation to enable UQ capabilities.

e.g. Nuclear Fission / Fusion Reactors; Conventional /Alternate

Energy Systems; High Energy Density Physics; Electro-

magnetic Launch; Astrophysics; etc ….

History
• Research on Discretizations and Implicit Solution Technology for

Large-scale PDE Simulation

– Funding: DOE/SC/ASCR, NNSA/ASC, AFRL

– Reacting flows, CFD, MHD, Aerosol, Semiconductor Drift Diffusion

• Foundational solvers work that contributed to many Trilinos packages

• Current simulation tool (Charon) will not meet our needs for FY12+:

– ASCR funding requires new technology that doesn’t easily fit the

framework

– ASC Target Problems are more complex

– Export control restrictions

– TPL dependencies on commercial software (e.g. Chemkin)

– Monolithic framekwork

• Redesign for future research and production efforts in a

collection of Trilinos packages

Research Requirements
A Research Tool for DOE/OS: ASCR/AMR, ASCR/UQ

• Formulations: fully coupled fully implicit Newton-Krylov, semi-

implicit, FCT

• Compatible discretizations:

– Mixed basis for DOFs within element block

– Arbitrary element types (not restricted to nodal basis)

• Multiphysics:

– Fully coupled systems composed of different equation sets in different

element blocks

– Preconditioning: Approximate block factorization/physics based

• Supports advanced analysis techniques:

– Supports Template-based Generic Programming

– Adjoint-based error analysis

– Stability, bifurcation, embedded (SAND) optimization, embedded uncertainty

quantification (Stokhos/PCE)

• Open-source (collaborations)

• Exascale integration (Tpetra, Kokkos::MDArray)

Production Requirements

Production Quality Software (ASC, CASL)

• Strict and extensive unit testing (TDD), system testing,

automated nightly and CI testing

• Application is a library (for multiphysics coupling)

• Integration with legacy code components

• NOT restricted to any mesh database or I/O format

• Control over granularity of assembly process (efficiency vs

flexibility)

• Production Applications:

– ASC: Semiconductor Device (Next-generation Charon) for

QASPR

– CASL: Drekar CFD component for VERA simulator

DOE / NNSA

Rapid Development of New Physics
(Single driver and collection of interchangeable physics models)

Semiconductor

Drift Diffusion

Multi-phase

Chemically

Reacting Aerosol

NGNP Reactor

Chemicurrent

CFD and

MHD

Our Philosophy

• Leverage all of Trilinos

• Where appropriate, generalize your application code into

Trilinos packages!

– Object-oriented, lightweight, flexible components that can be swapped out

according to bleeding edge research in Trilinos (Exascale)!

• Relevant Trilinos packages:

– Trilinos/Phalanx: (Template-based Generic Programming Tools)

• Developed in 2009

– Trilinos/Panzer: General Finite Element Assembly Engine

• Started Oct 2010

– Drekar (Trilinos package in external repository)

• Started late December 2010

• A Target application: CASL Grid-to-Rod Fretting:

– Code V&V, Initial demonstration runs, and VUQ analysis

– Due June 30th 2011

Challenge Problem:

Grid-to-Rod Fretting
• Cladding failure can occur as

the result of flow induced

vibration

• Mixing vanes on spacer grid are

used to produce turbulence to

improve heat transfer between

rod and fluid

• High-fidelity, FSI to predict gap,

turbulent flow excitation, rod

vibration and wear

Spring

Spacer grid cell

FuelCycle 1

FuelCycle 2

FuelCycle 3

Cladding

Spacer grid

Fuel rod

CFD

computational

domain

over bar denotes

spatial filtering in

LES

Governing Equations
(Unsteady Single-phase, Isothermal, Incompressible Flow)

• Navier-Stokes with spatially filtered LES

Continuity

Momentum

(molecular and eddy viscosity)

• Wall Adapting Local Eddy-

viscosity model (WALE)
– Nicoud, F. and Ducros, F.,

“Subgrid-Scale Stress

Modelling on the Square of

the Velocity Gradient

Tensor,” Flow Turbulence

and Combustion, Vol. 62,

1999, pp. 183-200.

• Modified Smagorinsky

eddy-viscosity model
– Filter width is based on the

square of the deviatoric

stress tensor

– Requires only "local data" to

construct.

– Recovers the proper near-

wall scaling for the eddy

viscosity so that it inherently

decays to zero as the wall is

approached without using a

dynamic procedure or wall

model

Spatial Discretization

• Stabilized Galerkin Finite Element 2nd order (2nd-8th available)

• PSPG allows equal order interpolation of velocity and

pressure

• SUPG operator to limit oscillations in high grid Re flows.

• Future work will extend to full VMS-LES models

– T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the

variational multiscale method, Comput. Vis. Sci. Vol. 3, 2000, pp. 47-59.

Galerkin SUPG

Galerkin PSPG

Problem Description

(3x3 Rod Bundle)
• Isothermal

• Fluid: Water
– T: 394K

– Viscosity: 2.32x10-4 Pa

sec

– Density: 924 kg/m3

• Re ~ 2x10^5

• Symmetry on sides

• No slip (v=0) on rods

• Inflow on bottom
– 5 m/sec

• Outflow on top:

Geometry
(Hexahedral Elements)

Code Design

Element Level Fill

Material Models

Derivatives

Variable Manager

Discretization Library

Remeshing

UQ Solver

Nonlinear Solver

Time Integration

Optimization

Objective Function

Local Fill

Mesh Database

Mesh Tools

I/O Management

Input File Parser

Utilities

UQ (non-invasive)

Parameter Studies

Solution Control

Mesh I/O

Optimization

Geometry Database

Discretizations

Derivative Tools

Sensitivities

UQ / PCE
Propagation

Constraints

Error Estimates

Continuation

Constrained Solves

Sensitivity Analysis

Stability Analysis

Agile Components (A. Salinger):

Trilinos has a coordinated integration

effort (ASC) to support all aspects of a

simulation!
V&V, Calibration

Parameter List

Feature Extraction

Verification Tools

Visualization

PostProcessing

Data Reduction

Adaptivity

Model Reduction

Memory Management
System Models

MultiPhysics Coupling

OUU, Reliability

Computational Steering

Communicators

MultiCore

Parallelization Tools

Partitioning

Load Balancing

Analysis Tools
(non-invasive)

Physics Fill

Composite Physics

Data Structures

Direct Solvers

Linear Algebra

Architecture-
Dependent Kernels

Preconditioners

Iterative Solvers

Eigen Solver

System UQ

Analysis Tools
(invasive)

Matrix Partitioning

Inline Meshing

MMS Source Terms

Grid Transfers

Mesh Quality

Mesh Database

Solution Database

Runtime Compiler

Preconditioners

Software Design
(Composition of Trilinos Packages)

I/O

Assembly

Nonlinear Analysis

(Nonlinear solvers,

Time Integration,

Optimization,

Stability/Bifurcation)

Linear/Eigen Solvers

Mesh Database
Utilities

(Memory

Management,

Parameters, etc.)

Linear Algebra

Problem Description

• Drekar is a Trilinos package

• Building Drekar enables 32

Trilinos packages!

• TPLs: Boost, (Optionally:

netcdf, HDF5)

Models

Drekar::CFD PIRO

Stratimikos

Panzer

Teuchos
Panzer::STK

Introducing Drekar
(Named for the Viking Longship)

• A light-weight front end

“Trilinos package” that

provides Stabilized Galerkin

CFD and MHD physics

• Provides mathematical

kernels to evaluate the

discretized PDEs using

TBGP concepts

• Panzer/Drekar package

dependencies:

– 10 required

– 9 optional

• Indirect dependencies: 32

enabled packages

(including Drekar itself)

Panzer and Drekar
Trilinos Discretization Tool Stack

(Pawlowski,Cyr, Shadid, Smith)

Thyra Model

Evaluator

SEACAS

(I/O, Partitioning)

STK

(Mesh Database)

Shards

(Cell Topology)

Sacado

(AD)

Stokhos

(UQ)

Intrepid

(FE Basis/IR)

Phalanx

(TBGP) Panzer
• Multiphysics

Assembly Engine:
• Fully coupled

Multiphysics

• Compatible

discretizations

• Multiple Equation sets

• Arbitrary BCs

• DOF Manager
• Mapping DOFs

• ConnectionManager

FEI

(DOF Mapping

Strategy)

Equation Set Factory

Evaluator Factory

PIRO

(Solvers)

NOX

Rythmos

MOOCHO

LOCA

LIME

Drekar::CFD
Input ParameterList

BC Factory

Assembly Engine

• The assembly engine is the core of the

multiphysics support

– Supplies the residuals, Jacobians, etc. required for

fully-coupled/implicit solution methods

– Supplies physics specific preconditioner operators

• This was discussed in the talk on Panzer this

morning!

Graph-based Assembly Process
(Notz, Pawlowski, Sutherland; submitted to TOMS)

• Phalanx package

• Graph-based equation

description

– Automated dependency

tracking (Topological sort to

order the evaluations)

– Each node is a point of

extension that can be

swapped out

– Easy to add equations

– Easy to change models

– Easy to test in isolation

• Ideal for multiphysics

– More equations adding

more nodes to graph

– Reuse fields

• Multi-core research:

– Spatial decomposition

(Kokkos::MDArray)

– Algorithmic decomposition

• Forward solves using implicit methods (Newton-based):

– Requires Jacobian or Jacobian vector product (JFNK):

• SAND: PDE Const. Optimization, Stability Analysis, Bifurcation

Analysis:

– Parameter sensitivities

– Hessian

• Concept: Template-Based Generic Programming

– Decouple the physics description from the requirements of the

solution/analysis capabilities

– The key: in c++, template the scalar type and overload math

operators using expression templates

Find such that where

Solution Algorithm Complexity

Generic Programming Example:

Templating the Scalar Type

// double version

void computeF(double* x, double* f)

{

f[0] = 2.0 * x[0] + x[1] * x[1];

f[1] = x[0] * x[0] * x[0] + sin(x[1]);

}

// ad version

template <typename ScalarT>

void computeF(ScalarT* x, ScalarT* f)

{

f[0] = 2.0 * x[0] + x[1] * x[1];

f[1] = x[0] * x[0] * x[0] + sin(x[1]);

}

void computeJ(double* x, double* J)

{

// J(0,0)

J[0] = 2.0;

// J(0,1)

J[1] = 2.0 * x[1];

// J(1,0)

J[2] = 3.0 * x[0] * x[0];

// J(1,1)

J[3] = cos(x[1]);

}

ScalarT double Residual

ScalarT Dfad<double> Jacobian

Machine precision accuracy:

No FD involved!

Writing derivatives in the context of

multiphysics systems with changing

dependency chains is difficult and

error prone!

Generic Programming
(using data types from Trilinos/Sacado: E. Phipps)

Scalar Types

double• Residual

• Jacobian

• Hessian

• Parameter Sensitivities

• Jv

• Stochastic Galerkin Residual

• Stochastic Galerkin Jacobian

Concept: Evaluation Types

DFad<double>

DFad<double>

Sacado::PCE::OrthogPoly<double>

Sacado::Fad::DFad< Sacado::PCE::OrthogPoly<double> >

Field Manager is templated on Evaluation Type

NOTES:

1. Not tied to

double (can do

arbitrary

precision)

2. Not tied to any

one scalar

type can use

multiple scalar

types in any

evaluation

type!

DFad<double>

DFad< DFad<double> >

Phalanx Handles Multiphysics Complexity using

Template-based Generic Programming

Param. Sens., Jv, Adjoint, PCE (SGF, SGJ), Arb. Prec.

PCE::OrthogPoly<double>

DFad<PCE::OrthogPoly<double> >

DFad< DFad<double> >

Extract/Scatter

Gather/Seed

DFad<double>

Extract/Scatter

Gather/Seed

Scalar TypeEvaluation Type

Gather/Seed

Extract/Scatter

double

Take Home Message:

Reuse the same code base!

Equations decoupled from algorithms!

Machine precision accuracy!

TBGP, Pawlowski,

Phipps, Salinger;

submitted to SP

Flexibility of Evlauation Types

struct Traits : public PHX::TraitsBase {

// **

// *** Scalar Types

// **

typedef double RealType;

typedef Sacado::Fad::DFad<RealType> FadType;

#ifdef HAVE_STOKHOS

typedef Stokhos::StandardStorage<int,RealType> SGStorageType;

typedef Sacado::PCE::OrthogPoly<RealType,SGStorageType> SGType;

typedef Sacado::Fad::DFad<SGType> SGFadType;

#endif

// **

// *** Evaluation Types

// **

struct Residual { typedef RealType ScalarT; };

struct Jacobian { typedef FadType ScalarT; };

#ifdef HAVE_STOKHOS

struct SGResidual { typedef SGType ScalarT; };

struct SGJacobian { typedef SGFadType ScalarT; };

#endif

// **

// *** MPL Vector of Evaluation Types

// **

typedef Sacado::mpl::vector<Residual, Jacobian

#ifdef HAVE_STOKHOS

, SGResidual, SGJacobian

#endif

> EvalTypes;

Jacobian-Free

Newton-Krylov (JFNK)

Iterative Linear Solver – GMRES

Krylov Subspace of the form:

In the inner iteration of the linear

solve, we only need the action of the

Jacobian on a vector:

Advantages:

•Same as Newton, but no

Jacobian is required!

•Residual Based!

Disadvantage:

•Accuracy/convergence

issues due to scalar

perturbation factor:

•Solution vector scaling

is criticalOnly require an explicit matrix for

preconditioning – does NOT have to be

exact!

• JFNK (FD)

• JFNK (AD)

• Machine precision accurate

• Ex: Solution varies 10^12 over domain

• Explicit Jacobian (AD generated)

• Machine precision accurate

• Complexity ideas allow for storing

individual operators for

preconditioning!

• Larger memory requirements

Example: JFNK
(2D Diffusion/Rxn System: 2 eqns)

Relative times

F(x) 1.00

J(x) 4.45

Jv (AD) 1.53

Mv (matvec) 0.06

JFNK (AD)

Explicit J (AD)

JFNK (AD)

Explicit J (AD)

Build System

• Panzer and Drekar are both Trilinos

packages

– Panzer will be released as official Trilinos package

• Reside in separate git repository

– Uses external Trilinos package support

• Leverage the build and testing infrastructure

• Under CI, nightly testing as part of CASL

Utilities
• Memory Management

– Teuchos memory management classes: RCP, ArrayRCP, …

– Has some important features missing in boost/tr1

• Array view semantics, extra data

– Common look and feel with Trilinos packages

• Input Objects are constructed with Teuchos ParameterLists

– Validation is critical for robust usage

– Common look and feel with Trilinos packages

• Boost (Phalanx Assembly)

– Template metaprogramming library (MPL)

– Graph library

– Tokenizer (for one input path)

– Hash Table

Problem Description

• Driven by Teuchos::ParameterList

– Runtime configurable database

– Let developers write their own front end to populate:

• XML (automatically supported)

• GUI (Trilinos/Optika/QT)

• Traditional text parsing (boost::tokenizer)

• Issues

– ParameterList XML reader does not preserve ordering (not

standards compliant)

– Validation doesn’t quite support our use case

• Dynamic (user defined) trees: sublist names are

designated by the user at runtime

Nonlinear Analysis

• We use the PIRO package to interface to nonlinear analysis tools

– Gives access to NOX, LOCA, Rythmos, and MOOCHO through a single

interface

– Model evaluator driven

– ParameterList + ModelEvaluator (+ optional observers) = Solver

Thyra::ModelEvaluator

PIRO::NOXSolver

Thyra::ModelEvaluator

PIRO::RythmosSolver

…

Building a Nonlinear Analysis

Model Evaluator is this Simple!

RCP<Teuchos::ParameterList> piro_params =

Teuchos::rcp(new Teuchos::ParameterList(solncntl_params));

RCP<Thyra::ModelEvaluatorDefaultBase<double> > piro;

if (solver=="NOX") {

piro = Teuchos::rcp(new Piro::NOXSolver<double>(piro_params, drekar_me));

}

else if (solver=="Rythmos") {

piro = Teuchos::rcp(new Piro::RythmosSolver<double>(piro_params, drekar_me,

observer_factory->buildRythmosObserver(mesh,dofManager,ep_lof)));

}

else {

Preconditioning

Three variants of preconditioning

1. Domain Decomposition (Trilinos/Aztec & IFPack)

2. Multilevel methods: Trilinos/ML Package

3. Approximate Block Factorization / Physics-based: Trilinos/Teko package

• ILU(k) Factorization on each processor

(with overlap)

• High parallel efficiency, non-optimal

algorithmic scalability

Fully-coupled Algebraic Multilevel methods
• Consistent set of DOF at each node (stabilized FE)

• Aggregation rate chosen to fix coarse grid size

• Jacobi, GS, ILU(k) as smoothers

• Can provide optimal algorithmic scalability

Aggregation based Multigrid:

• Vanek, Mandel, Brezina, 1996

• Vanek, Brezina, Mandel, 2001

• Sala, Formaggia, 2001

• Applies to mixed interpolation (FE) or staggered (FV)

discretization approaches

• Applied to systems where AMG is difficult or might fail

• Can provide optimal algorithmic scalability

Discrete N-S Exact LDU Factorization Approx. LDU

Brief Overview of Block Preconditioning Methods for Navier-Stokes:

(A Taxonomy based on Approximate Block Factorizations, JCP – 2008)

Now use AMG type methods on sub-problems.

Momentum transient convection-diffusion:

Pressure – Poisson type:

Precond. Type References

Pres. Proj; 1st

Term Nuemann
Series

Chorin(1967);Temam (1969);
Perot (1993): Quateroni et.
al. (2000) as solvers

SIMPLEC Patankar et. al. (1980) as

solvers; Pernice and Tocci

(2001) smothers/MG

Pressure
Convection /
Diffusion

Kay, Loghin, Wathan,
Silvester, Elman (1999 -
2006); Elman, Howle, S.,
Shuttleworth, Tuminaro
(2003,2008)

Transient
Kelvin-Helmholtz

Weak Scaling Uncoupled Aggregation Scheme:
Time/iteration on BlueGene/P (Drift – Diffusion BJT: P. Lin)

• TFQMR: used to look at time/iteration of multilevel preconditioners.

• W-cyc time/iteration not doing well due to significant increase in work on coarse levels (not shown)

• Good scaled efficiency for large-scale problems on larger core counts for 31K Unknowns / core

64K

144K

64K

144K

Linear and Eigen Solvers

• We use the Stratimikos package for linear

solvers

– ParameterList driven assembly of all linear solvers

and eigensolvers in Trilinos

• AztecOO, Belos, Amesos

• “Linear Operator with Solve” (LOWS)

• Preconditioner support included (Ifpack, ML,

Teko, …)

– Assembles Thyra objects:

• Anasazi (Eigensolver) is accessed

– Indirectly via LOCA stability analysis

Building a linear solver

is this simple!

Stratimikos::DefaultLinearSolverBuilder linearSolverBuilder;

linearSolverBuilder.setParameterList(strat_params);

RCP<Thyra::LinearOpWithSolveFactoryBase<double> > lowsFactory =

createLinearSolveStrategy(linearSolverBuilder);

RCP<Thyra::ModelEvaluatorDefaultBase<double> > thyra_me =

Thyra::epetraModelEvaluator(ep_me,lowsFactory);

Linear Algebra Layer

• Pass Thyra vector and operator objects

throughout code

– At the lowest level we cast to concrete type to fill

object

– Plan to use Tpetra, but not all pieces are present

in the “2nd Generation” stack

• MueLu

• NOX/LOCA

– For now we use Epetra for concrete LA type

Mesh Database and I/O

• Any mesh database or I/O format can be used, must implement

a Panzer::ConnectionManager to use with the assembly engine

• Panzer conatins a concrete Implementation to STK::mesh

– A ConnectionManager implementation to STK for DOF

mapping

• SEACAS

– I/O uses Exodus format

– Apps are now in Trilinos (exodiff)

• Panzer provides Observers for NOX and Rythmos to write

Exodus file on triggered events (e.g. successful time steps)

Results

Spatial Error Verification

Temporal Error Verification

VUQ Coordination for solution verification
and validation (with B. Rider)

Vortex shedding over cylinder

Verification on Multiple Meshes
(Hex mesh ranging from 700K to 6M elements)

Solution Profiles

• Sandia Redsky platform, 256-1024 processes

• Oak Ridge Jaguar platform, 1200-9600 processes

• 2nd order BFD2 time integration

• Linear Lagrange elements (2nd order in space)

Transient Pressure Profiles

-10000

-5000

 0

 5000

 10000

 0 0.2 0.4 0.6 0.8 1

P
re

ss
u

re
 (

P
a
)

Time (sec)

Pressure, prbD (4.75e-3, 0.0, 0.1415)

671572 elem
1049228 elem
2663920 elem
5832718 elem

-10000

-5000

 0

 5000

 10000

 0 0.2 0.4 0.6 0.8 1

P
re

ss
u

re
 (

P
a
)

Time (sec)

Pressure, prbB (4.75e-3, 0.0, 0.0978)

671572 elem
1049228 elem
2663920 elem
5832718 elem

Mesh # of

Elements

Simulated

Time (sec.)

Flow

through

times

Dt CFL ave.

(section1/s

ection3)

Y+ ave.

672K (Red) 671,572 0.88 26 5.0x10-5 9.6/1.3 26

1M (Green) 1,049,288 1.11 33 5.0x10-5 11.1/2.9 19

3M (Blue) 2,663,920 0.2 6 2.0x10-5 5.9/2.1 16

6M (Purple) 5,832,718 0.32 9 2.0x10-5 7.9/2.2 13

Time Averaged Pressure

Profiles Across Spacer Grid

• Coarsest mesh is inadequate for simulation

• 3 finer meshes show signs of convergence

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.05 0.1 0.15 0.2

P
re

s
s
u

re
 (

P
a
)

Z (m)

Ave. Pressure, (4.75e-3, 0.0, 0.0 - 0.16966)

671572 elem
1049228 elem
2663920 elem
5832718 elem

Mesh Mean

Pressure

Drop

(Pa)

677K 23,400

1M 26,780

3M 23,800

6M 22,042

∆ p h() = a+bhc =17.42 -163.7h1.234

• Pressure drop value

• Coarse mesh

solutions not yet in

asymptotic range

• Already > 1st order!

Turbulence Characteristics

• 672K mesh is inadequate to resolve behavior near spacer grid.

• Non-monotonic behavior in turbulent intensity:

– Converges 3 diameters downstream as turbulence subsides

– Suggests under-resolution of mesh near spacer grid

• Turbulent intensity comparison to Benhamadouche et al. 2009:

– At 3 diameters downstream, Drekar: 18%, Ben.: 11%

– At 10 diameters downstream, Drekar: 10%, Ben.: 8.5%

• Monotonic decrease in amount of eddy-viscosity with refined mesh

shows correct behavior (reduced contribution of subgrid model).

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

nu
t/n

u

Z/D measured from Strap t.e.

Turbulent Viscosity (Center of Subchannel)

671572 elem
1049228 elem
2663920 elem
5832718 elem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12

I (
u’

/U
)

Z/D measured from Strap t.e.

Turbulent Intensity (Center of Subchannel)

671572 elem
1049228 elem
2663920 elem
5832718 elem

Demo of Forcing of Structural Vibration
(Sierra/Presto). Solid Zircaloy Rod

Rod

displacement

in y-direction

produced by

fluid loads

FFT on

displacement

yields same

frequency.

Impact
• TBGP w/ Phalanx and Panzer allows for rapid development and

integration of advanced physics (Using Agile Components)

– Drekar went from drawing board to milestone completion in 6

months

– Implementation + verification + validation + production runs!

• New capabilities to propel ASCR research:

– Multiphysics: Mixed equation sets (e.g. conjugate heat transfer)

– Mixed basis and higher order methods (compatible disc. For MHD)

• Drekar has been adopted as one of two TH/CFD codes for CASL.

– Integrated into VERA simulation suite.

– First official release to CASL in FY12/Q2

• Community Adoption:

– ASC/QASPR: Next-generation Charon now under development using

Panzer (Suzey Gao)

– Phalanx is the backbone of FE assembly in Albany(~10 different physics).

• Being considered for “Joule metric” code (ASCR OMB metric)

A Users Perspective

• Trilinos is not a uniform code base:

– Many developers with varying opinions on software quality

– Good documentation vs good tests (sometimes both or neither)

• Confusion in a package maturity level:

– PS and SS do not mean hardened code! Is there a better way to

describe a code’s status?

– Additional capabilities required: PIRO and Rythmos

• Pushing new interfaces/capabilities through Thyra layers can be

difficult.

– The answer can’t always be go to Ross!

• Would not have advanced this far this fast without expertise that spans

a large part of Trilinos.

– High entry bar to Trilinos

Conclusions

• Successfully stood up a new code in 6

months!

• Leveraged a significant portion of Trilinos

• Not all packages fit perfectly, but it is

preferable to rolling your own (technical debt)

• Lightweight front end physics description

• Decoupled from solution/analysis procedures

Extra Slides

An ANA is a numerical algorithm that can be expressed abstractly solely in terms of

vectors, vector spaces, linear operators, and other abstractions built on top of these

without general direct data access or any general assumptions about data locality

What is an abstract numerical algorithm (ANA)?

Introducing Abstract Numerical Algorithms

Vector

Axpy()

Dot()

Norm()

…

Operator

Apply()

…

ModelEvaluator

supportsF()

evalModel()

…

T
h

y
ra

In
te

rf
a
ce

s

Concrete Implementations

Epetra, PETSc, Tpetra, …

A
N

A Linear

Krylov

Nonlinear

Glob. N-K

Optimization
Block composition

operators and vectors:

Block Factorization

Preconditioners:

Wish List

• Order preserving ParameterList xml parser

• ParameterList Validators for our use case

• Improved support for Thyra

• Rythmos support for better startup and ramping

• Intrepid:

– 0D quadratures need to be supported for 1D code!

– Cylindrical coordinates (3D physics on a 2D mesh)

• Improved TPL support: versioning!

– STK, ML, Zoltan: Parmetis 3 4

• When code should be made into a general Trilinos package?

FFT and PSD on Center Rod

• Maximum frequency of the FFT is roughly the Nyquist frequency.

• Characteristic turbulent cascade is evident in the PSD (just starting

to analyze this).

• Massively Parallel: MPI

• 2D & 3D Unstructured Stabilized FE

• Fully Coupled Globalized Newton-
Krylov solver

– Sensitivities: Template-based
Generic Programminc for
Automatic Differentiation
(Sacado), UQ, Arb. Prec.

– GMRES (AztecOO, Belos)

– Additive Schwarz DD w/ Var.
Overlap (Ifpack, AztecOO)

– Aggressive Coarsening Graph
Based Block Multi-level [AMG] for
Systems (ML w/Amesos for
coarse solve)

– Physics-based/Block
Factorization (Teko)

• Fully-implicit: 1st-5th variable order
BDF (Rythmos) & TR

• Direct-to-Steady-State (NOX),
Continuation, Linear Stability and
Bifurcation (LOCA / Anasazi), PDE
Constrained Optimization (Moocho)

trilinos.sandia.gov

Drekar::CFD Charon2

Solvers/Analysis

Panzer

Assembly

Engine

Drekar::CFD

Thyra::Model

Evaluator

• Phalanx – TBGP Assembly Tools

• Intrepid – Finite Element Library

• Shards – Topology, MDArray

• STK - Mesh Database

• SEACAS – IO, Partitioning

Drekar::XMHD

