
Panzer: A Finite Element Assembly

Engine for Multiphysics Simulation

Sandia National Laboratories is a multi-program laboratory managed and

operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy's National Nuclear

Security Administration under contract DE-AC04-94AL85000.

Roger Pawlowski, Eric Cyr, and John Shadid

Sandia National Laboratories

Trilinos User Group Meeting

November 2nd, 2011

SAND2011-8261C

What is Panzer?

• A general finite element assembly engine for multiphysics simulation:

– User Physics Kernels + Problem Description =

Thyra::ModelEvaluator

• Quantities need for advanced solution and analysis algorithms: residuals,

Jacobians, parameter sensitivities, stochastic residual/Jacobians, etc.

– A unification of Trilinos discretization tools: Shards, Intrepid, Phalanx,

Sacado, Stokhos, (Optionally: STK, SEACAS)

– Supports 1D, 2D, and 3D unstructured mesh calculations

• A library and a Trilinos package – NOT a terminal application

• Contains NO physics specific code

– Generic assembly tools

• Leverages Template-based Generic Programming to assemble

quantities of interest

Use Case

Panzer

Register Problem

Build Thyra::ModelEvaluator

Register Problem Description

Register Equation Set Factory

Register BC Factory

Register Model Factory

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Build Piro::NOXSolver

(ModelEvaluator)

<<uses>>

Physics applications are light

weight front end

(External Trilinos Repo?)

History

• Research over past 7 years in Charon:
– Export control (4D001) restricted collaborations

– Complicated build system (some great features including

TPL management)

– Restricted to a Monolithic Framework

– No longer meets research requirements

• Generalize the capabilities explored and

developed in Charon into Trilinos packages
– Rapid prototyping of new discretizations/algoritms

– New code base flexibility, lessons learned

– Resulting packages: Phalanx, Panzer

A Research Tool for DOE/OS: ASCR/AMR, ASCR/UQ

• Formulations: fully coupled fully implicit, semi-implicit, FCT

• Compatible discretizations:

– Mixed basis for DOFs within element block

– Arbitrary element types (not restricted to nodal basis)

– “Node” specific code is eliminated (or treated as specializations)

• Multiphysics:

– Fully coupled systems composed of different equation sets in different

element blocks

– Preconditioning: Approximate block factorization/physics based

• Supports advanced analysis techniques:

– Modern software techniques for advanced architectures

– Supports Template-based Generic Programming

– Adjoint-based error analysis

– Stability, bifurcation, embedded (SAND) optimization, embedded uncertainty

quantification (Stokhos/PCE)

New Research Requirements

Production Requirements

Production Quality Software (ASC, CASL)

• Strict and extensive unit testing (TDD)

• Integration with legacy code components

• NOT restricted to any mesh database or I/O format

• Control over granularity of assembly process (efficiency vs flexibility)

• Applications:
– ASC: Semiconductor Device (Next-generation Charon) for QASPR

– CASL: CFD component for VERA simulator

DOE / NNSA

Panzer Components

• Problem Description

– Maps equations sets and boundary conditions into nodes of

Phalanx assembly DAG.

• Assembly Engine

– A collection of Phalanx Field Managers to control assembly

– Produces a Model Evaluator for User

• Data Mapping Utilities

– DOF Manager for mapping field values into linear algebra

– Connection Manager: Abstraction of Mesh

• STK Adaptors (Optional)

– Concrete implementation Panzer objects for using

STK::Mesh and SEACAS for I/O

– Specialized evaluators

Data Mapping

Assembly Engine

Panzer Unifies Trilinos Discretization Tools

Shards::MDArray

Phalanx

Sacado

Stokhos

Intrepid

Panzer

AssemblyEngine

Connection ManagerSTK Mesh

STK

FEI

Evaluators

SEACAS

STK Evaluators

Thyra::ModelEvaluator

Epetra

Tpetra

Teuchos

ME_Factory

Thyra::Operator_Vector

• NOTE: NO Solver

Relationships

• NOTE: No

internal

relationships

shown

STK Adaptors

Linear Object Factory

DOF Manager

Problem Specification

Physics Blocks

Boundary Conditions

Integration/Basis Layouts

Shards::CellTopology

STK Connection Manager

TBGP

Graph-based Assembly Process
(Notz, Pawlowski, Sutherland; submitted to TOMS)

• Phalanx package

• Graph-based equation

description

– Automated dependency

tracking (Topological sort to

order the evaluations)

– Each node is a point of

extension that can be

swapped out

– Easy to add equations

– Easy to change models

– Easy to test in isolation

• Multiphysics Complexity is

handled automatically!

• User controlled memory

allocation of Field data

• Multi-core research:

– Spatial decomposition

(Kokkos::MDArray)

– Algorithmic decomposition

Phalanx Handles Multiphysics Complexity using

Template-based Generic Programming

Param. Sens., Jv, Adjoint, PCE (SGF, SGJ), Arb. Prec.

PCE::OrthogPoly<double>

DFad<PCE::OrthogPoly<double> >

DFad< DFad<double> >

Extract/Scatter

Gather/Seed

DFad<double>

Extract/Scatter

Gather/Seed

Scalar TypeEvaluation Type

Gather/Seed

Extract/Scatter

double

Take Home Message:

Reuse the same code base!

Equations decoupled from algorithms!

Machine precision accuracy!

TBGP, Pawlowski,

Phipps, Salinger;

submitted to SP

Data Mapping

Computes global unknown indices
1. Serves as interface to mesh

2. Allows Panzer to be mesh agnostic

3. Handles unknowns for mixed discretizations

4. Handles unknowns for multiphysics (multiple element blocks)

5. Uses FEI for producing unknowns

Composed of 3 primary pieces
1. FieldPattern – Describes the basis layout and continuity of fields

2. DOFManager – Manages and computes unknown numbers on fields

3. ConnManager – (User implemented) Mesh topology from field pattern

Features not implemented but supported by design
1. Higher order discretizations – geometric symmetries

2. Heterogeneous meshes – quadrilaterals and triangles

Data Mapping: New Directions

Finite Element discretizations have changed

 Charon used nodal-equal-order-finite elements

 New code embraces mixed discretizations

 Also using “Compatible Discretizations”

 Requires extra data management: orientations

Hcurl(Edge elements) Hdiv(Face elements)Hgrad(Nodal elements)

Data Mapping Handles These Elements

Data Mapping: Field Pattern

up

For stable Navier-Stokes pair:
 Linear pressures

 Quadratic velocities

Field Pattern specifies basis layout

 Continuity across subcells (continuity of field)

 Unknowns on each element

 Communicates required topology

Data Mapping: DOFManager

Input

Element Block 1

u as

p as

T as

Element Block 2

T as

ConnManager

Output

Element Block 1
u,p,T GIDs on all

elements

Element Block 2
T GIDs on all

elements

panzer::DOFManager

Magic!
(FEI)

Data Mapping: ConnManager

Must generate mesh connectivity
 DOFManager passes in field pattern

 Provides unique global node, edge, volume ids for each element

 Optionally provides orientation for edge and face elements

 Uniform field pattern across all element blocks

 Makes multiphysics easy
0 1 2

3 4 5

6 7 8

90 1 2

3 4 5

6 7 8

10

11 12 13 14 15

16 17

18 19 20 21 22

23 24

Data Mapping: ConnManager

0 1 2

3 4 5

6 7 8

Piecewise linear p

Piecewise linear u

90 1 2

3 4 5

6 7 8

10

11 12 13 14 15

16 17

18 19 20 21 22

23 24

Piecewise linear p

Piecwise quadratic u

Data Mapping: Unknown Ordering

Same ConnManager can be used multiple times

 Produce DOFManager for each type of physics

 Good for Block Preconditioning

Old code used “interlaced” unknown ordering by node

Panzer data mapping allows for greater control of ordering

 You can still interlace (the default)

 Blocked physics is also possible

The Future

• Stokhos integration (almost complete)

• Adjoint capability

• Use of Kokkos MDArray for multi-/many-

core/GPGPU support

• Expression templates for MDFields

• Phalanx: Incorporation of Kokkos::MDArray

(Evaluators will be functors)

