AMESQOS: General Interfaces to
Direct Solver Libraries

Marzio Sala ETHZ/D-INFK
K. Stanley (Oberlin College),
M. Heroux (SNL), R. Hoekstra (SNL)

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

= Design of the AMESOS project, an abstract
framework for solving

Ax=b
with distributed, sparse direct methods
= Advantages and disadvantages
= Supported libraries
= Python interface (through PyTrilinos)

NOTE: we consider the usage of direct solvers, not
their implementation

|] -

= An application has to solve
Ax=Db

* The linear system matrix A is:
— Square, double-precision
— Serial or distributed
— Sparse

= Very good libraries of direct solution methods
available
— Not trivial to implement

— Parallel even more difficult

— Publicdomain or commercial

= What is the best method/library?

— No absolute winner, experimentation needed

= Requires custom-made interfaces
— Alibrary can be tested only if an interface exists
— Code to write, debug, maintain

application

i

Background (3)

= Can we improve this process?

= OO solution: keep the application and the
solver as separate as possible

= Requires an additional software layer...
> this is the main goal of the AMESOS project

Objectives

= AMESOS defines an additional layer to the
linear system solver libraries

= Takes care of dealing with each solver’s data
distribution and format, calling sequence, ...

application

|

_

Objectives (2)

= Flexibility:
— More than one algorithm/library must be available,
allow easy testing

= Simplicity of usage:
— MATLAB's solution is simply x = A\D, it should not
be more difficult in a production code

— Mathematical code should be simple to use!
= Efficiency:
— The final software framework must be as efficient
as possible
— The overhead must be minimal

avmesos [F5H

Two basic (pure virtual) classes:
1. RowMatrix class to query for matrix elements

— Contained in the Epetra package
— “Adaptor” design pattern

2. Solver class to manage all the internal
operations of the supported library
— Concrete implementations are the core of Amesos
— Decouples operations and low-level operations
— “Facade” design pattern; also use “factory”

I'mH

The RowMatrix class

Epetra::CrsMatrix

= We don't want a matrix format, rathera >
matrix interface NN

= Each solver typically requires a (slightly) NS
different format NN

= We allow queries for matrix rows:

— The RowMatrix class must provide a getrow ()
method that returns the nonzero indices and values
for a given (locally owned) row

— Each row is wholly owned by one processor

— The Solver class will query the matrix and reallocate
it in the supported solver’s format

avmesos |75

The RowMatrix class (2)

Advantages:

» The matrix format used by the application
becomes inessential

= Easy to modify the matrix with dropping,
reordering, ...

= Separate the application and the solver
(good OO practice)

Disadvantages:
= Possible memory overhead

The RowMatrix class (3)

= However:

— The matrix formats of the application is often
different from the matrix format of the solver;
memory overhead unavoidable

— The matrix layout sometimes is not supported from
the solver; requires data redistribution (not easy!)

= The RowMatrix gives efficient solutions to
these problems

= Memory overhead can be reduced by downcast
to specific matrix classes

avmesos [P

The Solver class

» The generic interface to a direct solver library is
encapsulated in the Solver class:

» Contains methods:
— SymbolicFactorization()

— NumericFactorization()
— Solve()
— SetParameters()

* The calling sequence of the library is hidden to
the user (high-level view)

* Tuning with SetParameters()
— Solver-specific

I'%H8

Supported libraries

name model| language
LAPACK Serial, dense F77
DSCPACK Parallel (dist) C

KLU serial C
MUMPS Serial, parallel (dist) Foo
PARDISO Parallel (shared) sources
TAUCS Serial, out-of-core C
UMFPACK serial C
SuperLU Serial C
SuperLU _DIST | parallel C
SCALAPACK Parallel, dense F77

avmesos [N

Supported Libraries (2)

= Some solvers are serial

» The concrete implementations of the Solver
class redistribute objects as necessary:

= Serial solvers can be used in parallel

= Some solvers require different distributions for
matrix and vectors

» Adifferent number of processors may be
required by the solver (e.g., coarse solver in
multilevel preconditioners)

» Users do not care about data distribution

I'=H3

A
. Wrap as
| Create Matrix Aowhtai ‘
!’ .
] s
=) Instantiate
| Allocate Salver Call Factary |-=: Spocie Solver
1
1
1
1
1
1
1
:
V L)
Symbolic Call inferface Redistribuie Bolver's symbalic
[Factorization methad qraph and sonvert factorization
T
1
1
1
1
1
1
1
i
V ¥
Numerie Call interface Hadistribuie Solver's numeric
Factorization mathod valuas, conveart faciarization
!, ¥
1
1
% b 1
i 1
| Creata and il ’—D Wrap as Vecior]
vaciorn 1
® b 1
1
!’ .
’—DAII ul Call interi ’—D Hadistribu Sal f'ul i
all interface edistribuie ver's solution
| Soke A= b ﬂ—‘ methad ﬂ—‘ Vectors | phase
"

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

"Amesos.h"

#include
#include "mpi.h"
#include "Epetra_MpiComm.h"

int main(int argc, char *argv[])

{
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM WORLD) ;
<create A, x, b>
Epetra LinearProblem Problem(A, x, b);
Amesos Factory; //
string SolverType = "Mumps"; //
Amesos_BaseSolver* Solver; //
Solver = Factory.Create(SolverType,
Solver->SymbolicFactorization(); //
Solver->NumericFactorization(); //
Solver->Solve(); //
delete Solver;
MPI Finalize();
return(EXIT_ SUCCESS);

}

i

Implements a “virtual constructor’

The application code only deals
with abstract classes

Details about the implementation
are contained in the library only

factory class
selected interface
generic solver object ——

Problem);

symbolic factorization
numeric factorization
linear system solution

avmesos |5

30

M
(%]

20 additional
interface time
(0] —+— LIMFPACK
below 5% perty
for n > 3K

=
=]

ifm] =

interface time

(interface time / sclver time) * 100
=
un

L]

below 1%
o
0 _ TAY)
R L L I C I R B I I L I - AT AR L
R R RN S G C i e S S IO VR Y
matrix size n

Extension to Python

Few, well-defined interfaces are easy to wrap

This is done by the PyTrilinos project:
— Developers: MS, Bill Spotz, Mike Heroux, Eric Phipps

SWIG is used to generate the “glue” code
See next talk for more details

= AMESOS is a set of interfaces to direct solvers:
— Easy-to-use
— (almost) as efficient as the underlying solver
— Easy to add new solvers

— Standard C++ APl from applications to all solvers for
(almost) any matrix format/distribution

= Disadvantages:
— Fine tuning can be problematic

— Some solvers are not compatible (same function

name, different parameters); same for different
versions

Summary (2)

= Web page, download, info
http://software.sandia.gov/trilinos/

= Future developments:

— Add new interfaces (HSL MAxx, OBLIO, PaStiX, ...)

— Generalizing the framework with templates (float,
double, complex<double>)

— Feel free to ask!

= Amesos Developers:

— Ken Stanley, MS, Mike Heroux, Rob Hoekstra, Tim
Davis

I'"H

