
1

AMESOS: General Interfaces to
Direct Solver Libraries

Marzio Sala ETHZ/D-INFK

K. Stanley (Oberlin College),

M. Heroux (SNL), R. Hoekstra (SNL)

2

Outline

! Design of the AMESOS project, an abstract
framework for solving

A x = b

with distributed, sparse direct methods

! Advantages and disadvantages

! Supported libraries

! Python interface (through PyTrilinos)

NOTE: we consider the usage of direct solvers, not
their implementation

3

Background

! An application has to solve

A x = b

! The linear system matrix A is:
– Square, double-precision

– Serial or distributed

– Sparse

! Very good libraries of direct solution methods
available
– Not trivial to implement

– Parallel even more difficult

– Public domain or commercial

4

Background (2)

! What is the best method/library?
– No absolute winner, experimentation needed

! Requires custom-made interfaces
– A library can be tested only if an interface exists

– Code to write, debug, maintain

application

Solver-1 Solver-2 Solver-N

5

Background (3)

! Can we improve this process?

! OO solution: keep the application and the
solver as separate as possible

! Requires an additional software layer…

" this is the main goal of the AMESOS project

6

application

Solver-1 Solver-2 Solver-N

General interface New Solver

Objectives

! AMESOS defines an additional layer to the
linear system solver libraries

! Takes care of dealing with each solver’s data
distribution and format, calling sequence, …

7

Objectives (2)

! Flexibility:
– More than one algorithm/Iibrary must be available,

allow easy testing

! Simplicity of usage:
– MATLAB’s solution is simply x = A\b, it should not

be more difficult in a production code

– Mathematical code should be simple to use!

! Efficiency:
– The final software framework must be as efficient

as possible

– The overhead must be minimal

8

Design

Two basic (pure virtual) classes:

1. RowMatrix class to query for matrix elements
– Contained in the Epetra package

– “Adaptor’’ design pattern

2. Solver class to manage all the internal
operations of the supported library

– Concrete implementations are the core of Amesos

– Decouples operations and low-level operations

– “Facade’’ design pattern; also use “factory”

9

The RowMatrix class

! We don’t want a matrix format, rather a
matrix interface

! Each solver typically requires a (slightly)
different format

! We allow queries for matrix rows:
– The RowMatrix class must provide a getrow()

method that returns the nonzero indices and values
for a given (locally owned) row

– Each row is wholly owned by one processor

– The Solver class will query the matrix and reallocate
it in the supported solver’s format

10

The RowMatrix class (2)

Advantages:

! The matrix format used by the application
becomes inessential

! Easy to modify the matrix with dropping,
reordering, …

! Separate the application and the solver
(good OO practice)

Disadvantages:

! Possible memory overhead

11

The RowMatrix class (3)

! However:
– The matrix formats of the application is often

different from the matrix format of the solver;
memory overhead unavoidable

– The matrix layout sometimes is not supported from
the solver; requires data redistribution (not easy!)

! The RowMatrix gives efficient solutions to
these problems

! Memory overhead can be reduced by downcast
to specific matrix classes

12

The Solver class

! The generic interface to a direct solver library is
encapsulated in the Solver class:

! Contains methods:
– SymbolicFactorization()

– NumericFactorization()

– Solve()

– SetParameters()

! The calling sequence of the library is hidden to
the user (high-level view)

! Tuning with SetParameters()
– Solver-specific

13

Supported libraries

CSerialSuperLU

CparallelSuperLU_DIST

F77Serial, denseLAPACK

sourcesParallel (shared)PARDISO

languagemodelname

F77Parallel, denseSCALAPACK

CserialUMFPACK

CSerial, out-of-coreTAUCS

F90Serial, parallel (dist)MUMPS

CserialKLU

CParallel (dist)DSCPACK

14

Supported Libraries (2)

! Some solvers are serial

! The concrete implementations of the Solver
class redistribute objects as necessary:

! Serial solvers can be used in parallel

! Some solvers require different distributions for
matrix and vectors

! A different number of processors may be
required by the solver (e.g., coarse solver in
multilevel preconditioners)

"Users do not care about data distribution

15

16

Example of Code
#include "Amesos.h"

#include "mpi.h"

#include "Epetra_MpiComm.h"

...

int main(int argc, char *argv[])

{

 MPI_Init(&argc, &argv);

 Epetra_MpiComm Comm(MPI_COMM_WORLD);

 <create A, x, b>

 Epetra_LinearProblem Problem(A, x, b);

 Amesos Factory; // factory class

 string SolverType = ”Mumps"; // selected interface

 Amesos_BaseSolver* Solver; // generic solver object

 Solver = Factory.Create(SolverType, Problem);

 Solver->SymbolicFactorization(); // symbolic factorization

 Solver->NumericFactorization(); // numeric factorization

 Solver->Solve(); // linear system solution

 delete Solver;

 MPI_Finalize();

 return(EXIT_SUCCESS);

}

! Implements a “virtual constructor”

! The application code only deals
with abstract classes

! Details about the implementation
are contained in the library only

17

Overhead

additional

interface time

below 5%

for n > 3K

interface time

below 1%

18

Extension to Python

! Few, well-defined interfaces are easy to wrap

! This is done by the PyTrilinos project:
– Developers: MS, Bill Spotz, Mike Heroux, Eric Phipps

! SWIG is used to generate the “glue” code

! See next talk for more details

19

Summary

! AMESOS is a set of interfaces to direct solvers:
– Easy-to-use

– (almost) as efficient as the underlying solver

– Easy to add new solvers

– Standard C++ API from applications to all solvers for
(almost) any matrix format/distribution

! Disadvantages:
– Fine tuning can be problematic

– Some solvers are not compatible (same function
name, different parameters); same for different
versions

20

Summary (2)

! Web page, download, info

http://software.sandia.gov/trilinos/

! Future developments:
– Add new interfaces (HSL MAxx, OBLIO, PaStiX, …)

– Generalizing the framework with templates (float,
double, complex<double>)

– Feel free to ask!

! Amesos Developers:
– Ken Stanley, MS, Mike Heroux, Rob Hoekstra, Tim

Davis

