Sandia
Exceptional service in the national interest @ National

Laboratories

Task-parallel Sparse Incomplete Cholesky Factorization
using Kokkos Portable APIs.

Kyungjoo Kim Sivasankaran Rajamanickam
H. Carter Edwards Stephen L. Olivier George Stelle

Collaborators : E. Boman J. Booth A. Bradley C.Dohrmann S.Hammond

Center for Computing Research, Sandia National Labs
Trilinos User Group Meeting, October 26-29, 2015

y/
Sandia National Laboratories is a mult-program laboratory managed and operated by Sandia Corporation, a wholl owned subsidiary of Lockheed Martin
e {ational Nuciear Y

e g e
©ENERGY NISHA #CCR

Sanda

Overview

Kokkos Portable Task Parallel Programming Model

Task-parallel (In)complete Cholesky Factorization

Numerical Examples

Conclusion

Sanda
Natonal

LDRD: Unified Task-Data Manycore Parallelism Kokkos and Qthreads s

Deep hierarchical features of current hardware

m Multi-socket, multi-processor, multi(or many)-core, multiple hardware threads.

m Multiple NUMA regions, multiple levels of caches, segmented and shared cache.
Need to expose more fine-grained parallelism

m Task parallelism is suitable for irregular problems:
e.g., producer/consumer, recursive algorithms.

m Kokkos addresses high-level abstractions for data
parallelism. &) D)
— Nested data-parallelism within a task provides better

0
Riaia’

locality exploiting hardware threads.
Research highlights Coom

m Abstractions harnessing multiple tasking backends to
heterogeneous devices.

Jia

/@

m Dependence driven asynchronous task execution with Thread team in a task

A

data-parallel thread team.
m Wait-free respawn task mechanism, !
e.g., a task on GPUs cannot wait on dependence.

m Mini-apps (e.g., sparse factorization) to support and
evaluate development.

Sanda

National
Kokkos Portable Task API e
m TaskPolicy coordinates how and where tasks are executed
e.g., create, add_dependence, spawn (Or respawn), wait;

m Future is a handle for tasks and allows dependence among them.

1 void SimpleTask () {

2 typedef Kokkos::Threads exec_space; //Serial, Threads, Qthread

3

4 Kokkos::TaskPolicy<exec_space> policy;

5 Kokkos::Future<int> f = policy.create(Functor<exec_space>());

6

7 policy.spawn(£);

8

9 Kokkos::wait (f);
10 }

m Functor includes a user-defined function body and associated data sets.
11 class Functor<exec_space> {
12 | public:
13 Kokkos::View<exec_space> data;

14
15 void apply(int &r_val) |

16 r_val = doSomething(data);

17 }

18 |} 4

Sanda

m DAG of tasks is implicitly formed to guide asynchronous task execution.

1 void SimpleDAG () {

2 typedef Kokkos::Threads exec_space;

3

4 Kokkos::TaskPolicy<exec_space> policy;

5 Kokkos::View<exec_space> x, y; // data sets for task

6

7 auto /* future */ fx = policy.create(Functor<exec_space>(x));
8 auto /* future */ fy = policy.create(Functor<exec_space>(y));
9

10 // dependence of tasks 1is expressed before spawning

1 policy.add_dependence(fx, fy); // fx is scheduled after fy

12

13 policy.spawn(fx); // wait for now

14 policy.spawn(fy); // may immediately execute

15

16 Kokkos::wait (policy); // wait for all tasks to complete

17 }

Nested data parallelism with a team of threads

class Functor<exec_space> {
public:
Kokkos::View<exec_space> data;

// member is mpi-like thread communicator interface
// i.e., member.{team_rank,team_size,team_barrier,team_reduce}
void apply(const policy_type::member_type &member, int &r_val
Kokkos::parallel_ for (TeamThreadRange (member, data.size()),
[&] (const int 1) |
// different indexing may be required for different
// execution space e.g., GPU interleaved data layout
int id = Index<exec_space>(member, 1);
doSomething (data(id));
b
}
Vi

void SimpleTaskData () {
typedef Kokkos::Threads exec_space;

Kokkos::TaskPolicy<exec_space> policy;
auto /* future */ f = policy.create_team(Functor<exec_space> ()

policy.spawn(f);

Kokkos::wait (£);

)

{

)i

Sanda

Sanda

Task-parallel (In)complete Cholesky Factorization s

Standard procedure

1. Fill-reduced (or band-reduced) ordering: Scotch.
2. Symbolic factorization: Hysom and Pothen[1].

3. Numeric factorization.

Design considerations for task-parallelism

m Structure-based (in)complete factorization; fills are statically determined.
m A set of self-contained data within a task.
m Cache-friendly numeric kernels.

m Separation of concerns (concurrency is separated from parallelism):

m Algorithm decomposes factorization into subproblems and provides dependence
among them.
m Runtime schedules tasks to parallel compute units.

— Objective: portable performance on most of heterogeneous architectures.

I D.Hysom and A.Pothen, Level-based incomplete LU factorization: Graph model and algorithms, 2002. 7

Sanda
Laboratories

Algorithms-by-blocks

m Originally developed for distributed parallel out-of-core matrix computations.

Algorithm: A := CHOL_UNB(A)

. ArL |ATR
Partition A —
(ABL Apr)

where A7y is0x0
while length(ArL) < length(A) do

Repartition
Ao | a01 |Ao

(ATL Arg = | aj, Joui [a];
Am_lABR Lo P %1
A | a1 [Ax
where 0] is a scalar
Vou1
T

ary afy /o .
A = Axp —anpap,

oy =

Continue with

Aoo | a1 | Aoz

Arp|Arr
(—17 [dly Jour]al,
o AeBR Ao | a1 |Ax

endwhile

2 G.Quintana-Orti ef al., Programming Matrix Algorithms-by-blocks for Thread-level Parallelism, 2009.

3 AButtari et al., A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures, 2009. 8

Algorithms-by-blocks

Sanda
Laboratories

m Originally developed for distributed parallel out-of-core matrix computations.

m Converts basic computing units from scalar to blocks.

Algorithm: A := CHOL_BLK(A)

L Arr |A1R)
Partition A —
(AEL Apr
where A7 is0Ox0

while length(Ar.) < length(A) do
Determine block size b

Repartition
Ago Aot [Ao2

A7 |Arr
(A Y >—> Ao A A
BL14BR A Az [A2

where Aj isbxb

Ayp := CHOL_UNB(Aj1)
App = TRIU(A;1) A
Ay = An—ALAn

Continue with

Ago [Ao1 Ao
Arp | A
(A’L ATR><— Ao [An[A2
sL14sR Ao A1 | A2z
endwhile

k-iteration

A(J() AOK AU,N 1
Axo | Axx |... Axn-1
/ZN 1,0 --- AW LK |- ’iN 1L,N-1
Ay = CHOL(Aw)
A = /3[,(1 (Akgs1++Akn-1)
= (Aﬁlﬁk,k““' Mlﬁk,n—l)
Ak+l,k+l /ilr-f-l,n—l AIH-],I:
Agp = : - : ('xk,k+l /zk,n—l)
sym An-1p-1 An1k
Akt 1h41 — Ak 1LhARKAL 0 Ak L1 — Akp1Akn-1
sym An—],n—l "Anfl‘kxk,nfl

2 G.Quintana-Orti ef al., Programming Matrix Algorithms-by-blocks for Thread-level Parallelism, 2009.

3 AButtari et al., A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures, 2009.

Algorithms-by-blocks

Sanda
Laboratories

m Originally developed for distributed parallel out-of-core matrix computations.

m Converts basic computing units from scalar to blocks.

m Used for thread-level task parallelism([2,3]: asynchronous tasking and efficient level 3 BLAS.

Algorithm: A := CHOL_BLK(A)

. ArL |ATR
Partition A — (A_BLIK>
where A7pis0x0
while length(Ary) < length(A) do
Determine block size b
Repartition
Aoo J Aot [A

ArL|Arr
(A_|A_ = | Aw]An|An
bL 1Bk Az |Az1 [Az

where Ay isbxb

Ay = CHOL_UNB(Ay;)
App == TRIU(A)~'Any
Axn = An—ALAn

Continue with

Ago |Ao1 Ao
(ﬁ”‘ 3”) — | AwfAi A
BL}EBR Ao Az | Az

endwhile

k-iteration

Aoo cee Aok /]O.Nfl
Ago .| Axx Ag,N-1
/TN—I,O /iNfl,K AN—I,N—I
Ap = (CHOL(Aw)
1% - Tri-Solve
Arg = Ag! (Aggsr---Axno1)
= (A;l(lgk.k-#l“'/ik;l/ik.nfl)
Apprgker o Agpaaen Aprk
A = . B B (A1 - Agno1)
sym An-1a-1 An-1k

App 11— At 1 ;Akk 1

sym

Akt1-1 — Akt 1Akn-1

General Matrix-Matrix mult.

An_1n-1—An-1 pAkp-1

~~Hermitian Rank K-update

2 G.Quintana-Orti ef al., Programming Matrix Algorithms-by-blocks for Thread-level Parallelism, 2009.

3 AButtari et al., A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures, 2009.

Sparse Cholesky-by-blocks

Algorithm: A := CHOL_BY _BLOCKS(A)

" ArL |ATR)
Partition A —
(ABL ABr

where A7z is0x 0
while length(A7.) < length(A) do
Repartition
Ago JAor | Aoz

At |Arr
(A—IA— — | Aio]Au |A2
BLASBR Az |A21 [A22

where Ajpis1x1

genTaskChol (Ayy)
genTaskTrsm(Ayy, Aj2)
genTaskHerk (A12, A2)

Continue with
Ars |Are Aoo |Aot | Aoz
(A_IA_> «— | Ao |An A12
LAk Ao |A21 |A22
endwhile

Sanda
Laboratories

function genTaskChol
Future f = create((Chol, Ay (0,0))
add_dependence (£, Ay (0,0).getFuture())
An (0,0).setFuture(f)
spawn(f)

function genTaskTrsm :
for j in App.nnz ()
Future f = create(Trsm, Ay;(0,0), A;2(0,3))
add_dependence (f, Ay (0,0).getFuture())
add_dependence (f, A;2(0,]).getFuture())
Aj2(0,3).setFuture(£)
spawn (£)

function genTaskHerk :
for i in Ap.nnz()
for j in App.nnz ()
if exist(An(i,j))
Future f = create(i==j ? Herk : Gemm,
A (0,1), An(0,3),
A (i, 3))
add_dependence (£, Ajp(0,1i).getFuture ()
add_dependence (f, A;2(0,Jj).getFuture ()
add_dependence (f, Ay (i, j).getFuture ()
Az (i,3).setFuture(£)
spawn (£)

m Degree of concurrency still depends on nested dissection ordering.

m Parallelism is not strictly tied with the nested dissection tree.

m Each block records future and dependence is explicitly described from the algorithm.

Sanda

2D Partitioned-block Matrix s
: T - Hierarchical (recursive) definition of matrices
y o x X m CrsMatrixBase contains sparse data arrays
s s | x X i.e., row pointers, column indices, value array.

CrsMatrixBase<Scalar> "

Natural ordering from a 2D mesh

typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;

Sanda

2D Partitioned-block Matrix (s
e PR Hierarchical (recursive) definition of matrices
. m CrsMatrixBase contains sparse data arrays
s i.e., row pointers, column indices, value array.

o

CrsMatrixBase<Scalar>

Nested dissection ordering by Scotch

typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;

Sanda

2D Partitioned-block Matrix e

ol 2] e]s]e]7]e]e]w0]n
EEaE = Hierarchical (recursive) definition of matrices
s s X
. 7] o [[.
B \ B m MatrixView defines a rectangular region
. MatrixView [<] | i.e., view offsets and dimensions;
" ‘ } } m light-weight object with meta data only.
v || CrsMatrixBase<Scalar> \
Matrix view
typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;

10

Sanda

2D Partitioned-block Matrix (s
o = Hierarchical (recursive) definition of matrices

m CrsMatrixBase contains sparse data arrays
i.e., row pointers, column indices, value array.

| 3 m MatrixView defines a rectangular region
s MatrixView f X i.e., view offsets and dimensions;

. N m light-weight object with meta data only.

CrsMatrixBase<MatrixView>

Matrix of blocks

typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;

Sanda

National
Example :
Ao Aoy
An Az A Aw CHOL(A)
An Ayp Ay Ao TRIU(Ago) ' Aoy
A Aw A A —AliAn
A
(a) 1st iteration
An CHOL(Ay1)
Ago Ao -1
A TRIU(A11) " Ars
A . ﬁu ﬁ“ Aus TRIU(A}) 1Ay @
2 An Axn A Ay —ATAR
Ao A Az Ax —AﬁAu
A Con > Cron >
(b) 2nd iteration
A A An CHOL(A2) m
e e A A TRIU(A2) " Aas '
Ay TRIU(Az) ™' Agy
An | An An Az A —AlAn Cren D Coenn D Con D
An A A Aog —ATA
™ 34 3s = Ao
A A —AL Ay
(¢) 3rd iteration Cem D
A Aoy
™ Ay | g i) Cron D
An | An | Au Ay TRIU(A3) Az
Ao | A Au At~ AL Ay
Au Cron >
(d) 4th iteration
Aw Aoy
An A | A
A An | A A = CHOL(Aw)
A | Aw
Au Task DAG

(e) 5th iteration

A sequence of tasks generated during Cholesky-by-blocks

Sanda

Example from Real Problem: pwtk

m Entire task DAG is constructed to demonstrate the degree of concurrency.

m Explicit DAG is never formed and not used in task scheduling in both Pthreads and
Othreads task polices.

Numerical Examples

Test problems from UFL sparse collection

(Q}=
Natonal
Laboratories

Matrix ID # of rows(n) # of nonzeros (nnz) nnz/n Description
ecology? 999,999 4,995,991 4.99 Circuit theory
pwtk 217,918 11,524,432 52.88 Stiffness matrix
Machine specifications

Processors Intel Xeon E5-2670 Intel Xeon Phi IBM Power8

of cores 2x8 1x57 4x5

Clock speed 2.6 GHz 1.1 GHz 3.4 GHz

L2 per core 256 KB 512 KB 512 KB

L3 20 MB shared - 8 MB per core

Compiler Intel 15.2.164 GNU 4.9.2

Kokkos

m Pthreads backend with task only interface (team size = 1).

13

Sanda
Laboratories

Comparison with Euclid (Hypre)

Euclid performs MPI-parallel incomplete LU.

m Parallelism is extracted from 1D rowwise partition of a matrix.

Reverse Cuthill McKee (RCM) ordering is used to reduce the bandwidth of the matrix.

m Bandwidth of matrices increases with an increasing level of fills.

ecology2: tacho ecology2: euclid
10° T

T T
—m— Level 0 —o— Level 1
—46— Level 2 —4— Level 4

L‘;

Time [sec]

Time [sec]

107 4
g —3
r *i —m— Level 0 —o— Level 1
[—&— Level 2 —4— Level 4
-2 L | | 102 L L |
10 1 2 4 8 16 1 2 4 8 16
of threads # of mpi ranks
Intel Sandy Bridge

14
—

Sanda
Laboratories

Strong Scaling : Intel Sandy Bridge

m Speed-up — Time for single-threaded Cholesky-by-blocks
peed-up = Time for parallel Cholesky-by-blocks

m Performance depends on matrix sparsity: ecology? is sparser and pwtk is denser.

m With increasing fill-level, factorization is more compute-intensive.

Tasking overhead is constant and amortized during asynchronous parallel execution.

[]
ecology2 pwtk
16 — T T 16 — T T
—m— Level 0 —o— Level 1 —m— Level 0 —o— Level |
o Level 2 —4— Level 4 o Level 2 —4— Level 4 .
= =
2 2
t .l T sl |
2 e ! 2
@n _— @n
4t Z = s =
2 3 2| 3
1 | | T | |
12 4 8 16 12 4 8 16
of threads # of threads

15

Sanda
Laboratories

Strong Scaling : Intel Xeon Phi

m Speed-up — Time for single-threaded Cholesky-by-blocks
peed-up = Time for parallel Cholesky-by-blocks

m Performance depends on matrix sparsity: ecology? is sparser and pwtk is denser.

m With increasing fill-level, factorization is more compute-intensive.

Tasking overhead is constant and amortized during asynchronous parallel execution.

[]
ecology2 pwtk
56 T T 56 — T T
—m— Level 0 —o— Level 1 —m— Level 0 —o— Level 1
—4— Level 2 —4— Level 4 —4— Level 2 —4— Level 4
= =
3 z y
B s g T s —
2 2
w W
12 = g 2 = g
i . fa ‘ .
14 12 28 56 14 12 28 56
of threads # of threads

15

Sanda
Laboratories

Strong Scaling : IBM Power8

m Speed-up — Time for single-threaded Cholesky-by-blocks
peed-up = Time for parallel Cholesky-by-blocks

m Performance depends on matrix sparsity: ecology? is sparser and pwtk is denser.

m With increasing fill-level, factorization is more compute-intensive.

m Tasking overhead is constant and amortized during asynchronous parallel execution.

ecology2 pwtk
20 T T 20
—m— Level 0 —o— Level 1 —m— Level 0 —o— Level |)
—6—Level2 —4— Level 4 —o— Level 2 —4— Level 4
= =
2 Y 2
T 0l B ERU
2, = -3
w w
sk = i 5
Tor I I | I | i i
12 5 10 20 12 5 10 20

of threads # of threads

15

Sanda
Laboratories

Tasking Overhead: Intel Xeon Phi

Effici _ Time for sequential Cholesky
" CIENCY = Time for single-threaded Cholesky-by-blocks

m With increasing fill-level, cache-friendly sparse matrix operations on blocks exploit better data locality.

m Task granularity is problem-specific on irregular problems.

blocks
Treecut ecology2 pwtk
15 83 17
10 3,071 905
5 105,864 33,182
ecology?2 pwtk
1 1.2 T T

T T
——5—-6—10—+—15

.
sl | e

N
=
T
|

Efficiency
o
o
\\\R
|
Efficiency
(=] (=]
(=) o
T T
| |

o
~
"=
|
e
N
T

Fill-level Fill-level

Sanda

Summary b

Kokkos hybrid task-data programming model

m Presented abstractions for task-data parallelism.

m Developed dependence driven task model.

m Harnessed two tasking backends: Pthreads and Qthreads.
m https://github.com/kokkos/kokkos

Task-data parallel sparse matrix factorization
m Presented sparse algorithm-by-blocks for task parallel Cholesky (in)complete
factorization.
m As mini-app, provided support and feedback to design task-data interface.
m Demonstrated portable performance on multicore and manycore architectures.
m Trilinos/shylu/tacho

Kokkos tasking API and Cholesky miniapp are in the experimental phase

17

Sanda

Ongoing and Future Work s

Kokkos hybrid task-data programming model

m Asynchronous tasking on GPUs.

Task-data parallel sparse matrix factorization

m Performance optimization for task-data hybrid parallelism:
e.g., algorithm design and thread team overhead.

m Supernodal direct factorization: Cholesky and LDL.

m Leverage to domain decomposition FE solver in collaboration with Clark
Dohrmann (1542).

	Overview
	Kokkos Portable Task Parallel Programming Model
	Task-parallel (In)complete Cholesky Factorization
	Numerical Examples
	Conclusion

