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LDRD: Unified Task-Data Manycore Parallelism Kokkos and Qthreads s

Deep hierarchical features of current hardware

m Multi-socket, multi-processor, multi(or many)-core, multiple hardware threads.

m Multiple NUMA regions, multiple levels of caches, segmented and shared cache.
Need to expose more fine-grained parallelism

m Task parallelism is suitable for irregular problems:
e.g., producer/consumer, recursive algorithms.

m Kokkos addresses high-level abstractions for data
parallelism. &) D)
— Nested data-parallelism within a task provides better

0
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locality exploiting hardware threads.
Research highlights Coom

m Abstractions harnessing multiple tasking backends to
heterogeneous devices.

Jia

/@

m Dependence driven asynchronous task execution with Thread team in a task

A

data-parallel thread team.
m Wait-free respawn task mechanism, !
e.g., a task on GPUs cannot wait on dependence.

m Mini-apps (e.g., sparse factorization) to support and
evaluate development.
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Kokkos Portable Task API e
m TaskPolicy coordinates how and where tasks are executed
e.g., create, add_dependence, spawn (Or respawn), wait;

m Future is a handle for tasks and allows dependence among them.

1 void SimpleTask () {

2 typedef Kokkos::Threads exec_space; //Serial, Threads, Qthread

3

4 Kokkos::TaskPolicy<exec_space> policy;

5 Kokkos::Future<int> f = policy.create( Functor<exec_space>() );

6

7 policy.spawn( £ );

8

9 Kokkos::wait ( f );
10 }

m Functor includes a user-defined function body and associated data sets.
11 class Functor<exec_space> {
12 | public:
13 Kokkos::View<exec_space> data;

14
15 void apply( int &r_val ) |

16 r_val = doSomething( data );

17 }

18 |} 4




Sanda

m DAG of tasks is implicitly formed to guide asynchronous task execution.

1 void SimpleDAG () {

2 typedef Kokkos::Threads exec_space;

3

4 Kokkos::TaskPolicy<exec_space> policy;

5 Kokkos::View<exec_space> x, y; // data sets for task

6

7 auto /* future */ fx = policy.create( Functor<exec_space>( x ) );
8 auto /* future */ fy = policy.create( Functor<exec_space>( y ) );
9

10 // dependence of tasks 1is expressed before spawning

1 policy.add_dependence( fx, fy ); // fx is scheduled after fy

12

13 policy.spawn( fx ); // wait for now

14 policy.spawn( fy ); // may immediately execute

15

16 Kokkos::wait ( policy ); // wait for all tasks to complete

17 }




Nested data parallelism with a team of threads

class Functor<exec_space> {
public:
Kokkos::View<exec_space> data;

// member is mpi-like thread communicator interface
// i.e., member.{team_rank,team_size,team_barrier,team_reduce}
void apply( const policy_type::member_type &member, int &r_val
Kokkos::parallel_ for ( TeamThreadRange ( member, data.size() ),
[&] (const int 1 ) |
// different indexing may be required for different
// execution space e.g., GPU interleaved data layout
int id = Index<exec_space>( member, 1 );
doSomething ( data(id) );
b
}
Vi

void SimpleTaskData () {
typedef Kokkos::Threads exec_space;

Kokkos::TaskPolicy<exec_space> policy;
auto /* future */ f = policy.create_team( Functor<exec_space> ()

policy.spawn( f );

Kokkos::wait ( £ );

)

{

)i
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Task-parallel (In)complete Cholesky Factorization s

Standard procedure

1. Fill-reduced (or band-reduced) ordering: Scotch.
2. Symbolic factorization: Hysom and Pothen[1].

3. Numeric factorization.

Design considerations for task-parallelism

m Structure-based (in)complete factorization; fills are statically determined.
m A set of self-contained data within a task.
m Cache-friendly numeric kernels.

m Separation of concerns (concurrency is separated from parallelism):

m Algorithm decomposes factorization into subproblems and provides dependence
among them.
m Runtime schedules tasks to parallel compute units.

— Objective: portable performance on most of heterogeneous architectures.

I D.Hysom and A.Pothen, Level-based incomplete LU factorization: Graph model and algorithms, 2002. 7
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Algorithms-by-blocks

m Originally developed for distributed parallel out-of-core matrix computations.

Algorithm: A := CHOL_UNB(A)

. ArL |ATR
Partition A —
(ABL Apr )

where A7y is0x0
while length(ArL) < length(A) do

Repartition
Ao | a01 |Ao

(ATL Arg = | aj, Joui [ a];
Am_lABR Lo P %1
A | a1 [Ax
where 0] is a scalar
Vou1
T

ary afy /o .
A = Axp —anpap,

oy =

Continue with

Aoo | a1 | Aoz

Arp|Arr
( —17 [ dly Jour ]al,
o AeBR Ao | a1 |Ax

endwhile

2 G.Quintana-Orti ef al., Programming Matrix Algorithms-by-blocks for Thread-level Parallelism, 2009.

3 AButtari et al., A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures, 2009. 8
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m Originally developed for distributed parallel out-of-core matrix computations.

m Converts basic computing units from scalar to blocks.

Algorithm: A := CHOL_BLK(A)

L Arr |A1R )
Partition A —
(AEL Apr
where A7 is0Ox0

while length(Ar.) < length(A) do
Determine block size b

Repartition
Ago Aot [Ao2

A7 |Arr
(A Y >—> Ao A A
BL14BR A Az [A2

where Aj isbxb

Ayp := CHOL_UNB(Aj1)
App = TRIU(A;1) A
Ay = An—ALAn

Continue with

Ago [Ao1 Ao
Arp | A
(A’L ATR><— Ao [An[A2
sL14sR Ao A1 | A2z
endwhile

k-iteration

A(J() AOK AU,N 1
Axo | Axx |... Axn-1
/ZN 1,0 --- AW LK |- ’iN 1L,N-1
Ay = CHOL(Aw)
A = /3[,(1 (Akgs1++Akn-1)
= (Aﬁlﬁk,k““' Mlﬁk,n—l)
Ak+l,k+l /ilr-f-l,n—l AIH-],I:
Agp = : - : ('xk,k+l /zk,n—l)
sym An-1p-1 An1k
Akt 1h41 — Ak 1LhARKAL 0 Ak L1 — Akp1Akn-1
sym An—],n—l "Anfl‘kxk,nfl

2 G.Quintana-Orti ef al., Programming Matrix Algorithms-by-blocks for Thread-level Parallelism, 2009.

3 AButtari et al., A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures, 2009.
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m Originally developed for distributed parallel out-of-core matrix computations.

m Converts basic computing units from scalar to blocks.

m Used for thread-level task parallelism([2,3]: asynchronous tasking and efficient level 3 BLAS.

Algorithm: A := CHOL_BLK(A)

. ArL |ATR
Partition A — (A_BLIK>
where A7pis0x0
while length(Ary) < length(A) do
Determine block size b
Repartition
Aoo J Aot [A

ArL|Arr
(A_|A_ = | Aw]An|An
bL 1Bk Az |Az1 [Az

where Ay isbxb

Ay = CHOL_UNB(Ay;)
App == TRIU(A)~'Any
Axn = An—ALAn

Continue with

Ago |Ao1 Ao
(ﬁ”‘ 3”) — | AwfAi A
BL}EBR Ao Az | Az

endwhile

k-iteration

Aoo cee Aok /]O.Nfl
Ago .| Axx Ag,N-1
/TN—I,O /iNfl,K AN—I,N—I
Ap = (CHOL(Aw)
1% - Tri-Solve
Arg = Ag! (Aggsr---Axno1)
= (A;l(lgk.k-#l“'/ik;l/ik.nfl)
Apprgker o Agpaaen Aprk
A = . B B (A1 - Agno1)
sym An-1a-1 An-1k

App 11— At 1 ;Akk 1

sym

Akt1-1 — Akt 1Akn-1

General Matrix-Matrix mult.

An_1n-1—An-1 pAkp-1

~~Hermitian Rank K-update

2 G.Quintana-Orti ef al., Programming Matrix Algorithms-by-blocks for Thread-level Parallelism, 2009.

3 AButtari et al., A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures, 2009.




Sparse Cholesky-by-blocks

Algorithm: A := CHOL_BY _BLOCKS(A)

" ArL |ATR )
Partition A —
(ABL ABr

where A7z is0x 0
while length(A7.) < length(A) do
Repartition
Ago JAor | Aoz

At |Arr
(A—IA— — | Aio]Au |A2
BLASBR Az |A21 [A22

where Ajpis1x1

genTaskChol (Ayy)
genTaskTrsm(Ayy, Aj2)
genTaskHerk (A12, A2)

Continue with
Ars |Are Aoo |Aot | Aoz
(A_IA_> «— | Ao |An A12
LAk Ao |A21 |A22
endwhile

Sanda
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function genTaskChol
Future f = create((Chol, Ay (0,0) )
add_dependence ( £, Ay (0,0).getFuture() )
An (0,0).setFuture( f )
spawn( f )

function genTaskTrsm :
for j in App.nnz ()
Future f = create( Trsm, Ay;(0,0), A;2(0,3))
add_dependence ( f, Ay (0,0).getFuture() )
add_dependence ( f, A;2(0,]).getFuture() )
Aj2(0,3).setFuture( £ )
spawn ( £ )

function genTaskHerk :
for i in Ap.nnz()
for j in App.nnz ()
if exist( An(i,j) )
Future f = create( i==j ? Herk : Gemm,
A (0,1), An(0,3),
A (i, 3) )
add_dependence ( £, Ajp(0,1i).getFuture ()
add_dependence ( f, A;2(0,Jj).getFuture ()
add_dependence ( f, Ay (i, j).getFuture ()
Az (i,3).setFuture( £ )
spawn ( £ )

m Degree of concurrency still depends on nested dissection ordering.

m Parallelism is not strictly tied with the nested dissection tree.

m Each block records future and dependence is explicitly described from the algorithm.
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2D Partitioned-block Matrix s
: T - Hierarchical (recursive) definition of matrices
y o x X m CrsMatrixBase contains sparse data arrays
s s | x X i.e., row pointers, column indices, value array.

CrsMatrixBase<Scalar> "

Natural ordering from a 2D mesh

typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;
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2D Partitioned-block Matrix (s
e PR Hierarchical (recursive) definition of matrices
. m CrsMatrixBase contains sparse data arrays
s i.e., row pointers, column indices, value array.

o

CrsMatrixBase<Scalar>

Nested dissection ordering by Scotch

typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;
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2D Partitioned-block Matrix e

ol 2] e]s]e]7]e]e]w0]n
EEaE = Hierarchical (recursive) definition of matrices
s s X
. 7] o [ [ .
B \ B m MatrixView defines a rectangular region
. MatrixView [ <] | i.e., view offsets and dimensions;
" ‘ } } m light-weight object with meta data only.
v || CrsMatrixBase<Scalar> \
Matrix view
typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;

10
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2D Partitioned-block Matrix (s
o = Hierarchical (recursive) definition of matrices

m CrsMatrixBase contains sparse data arrays
i.e., row pointers, column indices, value array.

| 3 m MatrixView defines a rectangular region
s MatrixView f X i.e., view offsets and dimensions;

. N m light-weight object with meta data only.

CrsMatrixBase<MatrixView>

Matrix of blocks

typedef CrsMatrixBase<value_type := scalar> ScalarMatrix;
typedef MatrixView<base_object := ScalarMatrix> ViewOnScalarMatrix;
typedef CrsMatrixBase<value_type := ViewOnScalarMatrix> BlockMatrix;

typedef MatrixView<base_object := BlockMatrix> ViewOnBlockMatrix;
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Example :
Ao Aoy
An Az A Aw CHOL(A)
An Ayp Ay Ao TRIU(Ago) ' Aoy
A Aw A A —AliAn
A
(a) 1st iteration
An CHOL(Ay1)
Ago Ao -1
A TRIU(A11) " Ars
A . ﬁu ﬁ“ Aus TRIU(A}) 1Ay @
2 An  Axn A Ay —ATAR
Ao A Az Ax —AﬁAu
A Con > Cron >
(b) 2nd iteration
A A An CHOL(A2) m
e e A A TRIU(A2) " Aas '
Ay TRIU(Az) ™' Agy
An | An  An Az A —AlAn Cren D Coenn D Con D
An A A Aog —ATA
™ 34 3s = Ao
A A —AL Ay
(¢) 3rd iteration Cem D
A Aoy
™ Ay | g i ) Cron D
An | An | Au Ay TRIU(A3) Az
Ao | A Au At~ AL Ay
Au Cron >
(d) 4th iteration
Aw Aoy
An A | A
A An | A A = CHOL(Aw)
A | Aw
Au Task DAG

(e) 5th iteration

A sequence of tasks generated during Cholesky-by-blocks
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Example from Real Problem: pwtk

m Entire task DAG is constructed to demonstrate the degree of concurrency.

m Explicit DAG is never formed and not used in task scheduling in both Pthreads and
Othreads task polices.




Numerical Examples

Test problems from UFL sparse collection
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Matrix ID # of rows(n) # of nonzeros (nnz) nnz/n Description
ecology? 999,999 4,995,991 4.99  Circuit theory
pwtk 217,918 11,524,432 52.88  Stiffness matrix
Machine specifications

Processors Intel Xeon E5-2670 Intel Xeon Phi IBM Power8

# of cores 2x8 1x57 4x5

Clock speed 2.6 GHz 1.1 GHz 3.4 GHz

L2 per core 256 KB 512 KB 512 KB

L3 20 MB shared - 8 MB per core

Compiler Intel 15.2.164 GNU 4.9.2

Kokkos

m Pthreads backend with task only interface (team size = 1).

13
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Comparison with Euclid (Hypre)

Euclid performs MPI-parallel incomplete LU.

m Parallelism is extracted from 1D rowwise partition of a matrix.

Reverse Cuthill McKee (RCM) ordering is used to reduce the bandwidth of the matrix.

m Bandwidth of matrices increases with an increasing level of fills.

ecology2: tacho ecology2: euclid
10° T

T T
—m— Level 0 —o— Level 1
—46— Level 2 —4— Level 4

L‘;

Time [sec]

Time [sec]

107 4
g —3
r *i —m— Level 0 —o— Level 1
[ —&— Level 2 —4— Level 4
-2 L | | 102 L L |
10 1 2 4 8 16 1 2 4 8 16
# of threads # of mpi ranks
Intel Sandy Bridge

14
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Strong Scaling : Intel Sandy Bridge

m Speed-up — Time for single-threaded Cholesky-by-blocks
peed-up = Time for parallel Cholesky-by-blocks

m Performance depends on matrix sparsity: ecology? is sparser and pwtk is denser.

m With increasing fill-level, factorization is more compute-intensive.

Tasking overhead is constant and amortized during asynchronous parallel execution.

[ ]
ecology2 pwtk
16 — T T 16 — T T
—m— Level 0 —o— Level 1 —m— Level 0 —o— Level |
o Level 2 —4— Level 4 o Level 2 —4— Level 4 .
= =
2 2
t .l T sl |
2 e ! 2
@n _— @n
4t Z = s =
2 3 2| 3
1 | | T | |
12 4 8 16 12 4 8 16
# of threads # of threads

15
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Strong Scaling : Intel Xeon Phi

m Speed-up — Time for single-threaded Cholesky-by-blocks
peed-up = Time for parallel Cholesky-by-blocks

m Performance depends on matrix sparsity: ecology? is sparser and pwtk is denser.

m With increasing fill-level, factorization is more compute-intensive.

Tasking overhead is constant and amortized during asynchronous parallel execution.

[ ]
ecology2 pwtk
56 T T 56 — T T
—m— Level 0 —o— Level 1 —m— Level 0 —o— Level 1
—4— Level 2 —4— Level 4 —4— Level 2 —4— Level 4
= =
3 z y
B s g T s —
2 2
w W
12 = g 2 = g
i . fa ‘ .
14 12 28 56 14 12 28 56
# of threads # of threads

15
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Strong Scaling : IBM Power8

m Speed-up — Time for single-threaded Cholesky-by-blocks
peed-up = Time for parallel Cholesky-by-blocks

m Performance depends on matrix sparsity: ecology? is sparser and pwtk is denser.

m With increasing fill-level, factorization is more compute-intensive.

m Tasking overhead is constant and amortized during asynchronous parallel execution.

ecology2 pwtk
20 T T 20
—m— Level 0 —o— Level 1 —m— Level 0 —o— Level | )
—6—Level2 —4— Level 4 —o— Level 2 —4— Level 4
= =
2 Y 2
T 0l B ERU
2, = -3
w w
sk = i 5
Tor I I | I | i i
12 5 10 20 12 5 10 20

# of threads # of threads
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Tasking Overhead: Intel Xeon Phi

Effici _ Time for sequential Cholesky
" CIENCY = Time for single-threaded Cholesky-by-blocks

m With increasing fill-level, cache-friendly sparse matrix operations on blocks exploit better data locality.

m Task granularity is problem-specific on irregular problems.

# blocks
Treecut ecology2 pwtk
15 83 17
10 3,071 905
5 105,864 33,182
ecology?2 pwtk
1 1.2 T T

T T
——5—-6—10—+—15

.
sl | e

N
=
T
|

Efficiency
o
o
\\\R
|
Efficiency
(=] (=]
(=) o
T T
| |

o
~
"=
|
e
N
T

Fill-level Fill-level
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Summary b

Kokkos hybrid task-data programming model

m Presented abstractions for task-data parallelism.

m Developed dependence driven task model.

m Harnessed two tasking backends: Pthreads and Qthreads.
m https://github.com/kokkos/kokkos

Task-data parallel sparse matrix factorization
m Presented sparse algorithm-by-blocks for task parallel Cholesky (in)complete
factorization.
m As mini-app, provided support and feedback to design task-data interface.
m Demonstrated portable performance on multicore and manycore architectures.
m Trilinos/shylu/tacho

Kokkos tasking API and Cholesky miniapp are in the experimental phase

17
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Ongoing and Future Work s

Kokkos hybrid task-data programming model

m Asynchronous tasking on GPUs.

Task-data parallel sparse matrix factorization

m Performance optimization for task-data hybrid parallelism:
e.g., algorithm design and thread team overhead.

m Supernodal direct factorization: Cholesky and LDL.

m Leverage to domain decomposition FE solver in collaboration with Clark
Dohrmann (1542).
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