
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

KokkosArray

A C++ Library for Manycore

Performance-Portability

H. Carter Edwards, Christian Trott, Daniel Sunderland

Sandia National Laboratories

2012 Trilinos User Group

SAND2012-9215P

Unlimited Release

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
1

Project Charter

• R&D within ASC CSSE

– CSSE: Computational Systems and Software Environment

– “Heterogeneous Computing” project

• PM: Rob Hoekstra (1426), PI: Carter Edwards (1444)

• Effective use of heterogeneous architectures

• Emphasis on heterogeneity at the node-level

– Heterogeneous parallelism (MPI + threading + vectorization)

• Deliverables

Research performance-portable programming models

Develop proxy-applications to demonstrate and evaluate

programming model

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
2

KokkosArray Library

• KokkosArray IS:

– An implementation of the programming model

– Consolidation of proxy-applications‟ common functionality

– “Low level” enabling data structures and algorithms

– Extremely attentive to:

1. Portability & performance (as per project charter)

2. Usability: ease of use, error detection, extensibility,

maintainability, ...

• KokkosArray IS NOT:

– A linear algebra library

– A discretization library

– A mesh library

 Intent: Build such libraries on top of KokkosArray

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
3

The Problem / Challenge

Future of HPC: Manycore Accelerators

• Multicore CPU

– Increasing core counts with decreasing global memory / core

– Cores share caches and memory controllers

– Non-uniform memory access (NUMA), performance issues

– Increasing vector unit lengths

Memory access patterns critical for best performance

• Manycore GPU (e.g., NVIDIA Kepler, AMD Fusion)

– Physically separate memory with data-transfer overhead

– Work-dispatch interaction between host and device

– Memory controller optimized for thread-gang (warp) based access

Memory access patterns critical for acceptable performance

• Is all about Memory Access Patterns

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
4

The Problem / Challenge

Future of HPC: Manycore Accelerators

• Shared Memory Threading within MPI is required

– Cannot run MPI-everywhere on GPU

– Cannot afford MPI process memory for every core

– Cannot scale MPI collectives to millions of CPU cores

• Unless you have heroic hardware: Blue Gene Q

• Memory Access Patterns are Critical

– Correctness – no race conditions among threads

– Performance – proper blocking or striding

• Access Pattern Requirements are Device-dependent

– CPU-core : blocking for cache and cache-lines

– GPU : striding for coalesced access

– “array of structures” vs. “structure of arrays”

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
5

Programming Model Concept

• Manycore Device

– Has a separate memory space (physically or logically)

– Dispatch work to cores/threads of the device

– Work : computations + data residing on the device

– Currently supported devices CPU+pthreads, CUDA

• Classic Multidimensional Arrays, with a twist

– Map multi-index (i,j,k,...)  memory location on the device

• Should be efficient for both memory used and time to compute

– Map is derived from a Layout

Choose Layout for device-specific access pattern requirements

• Layout must change when porting among devices

– Layout changes are transparent to the user code;

 IF the user code honors the simple array API: a(i,j,k,...)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
6

Programming Model Implementation

• Standard C++ Library, not a Language extension

– In spirit of Intel‟s TBB, NVIDIA‟s Thrust & CUSP, MS C++AMP, ...

– Not a language extension like OpenMP, OpenACC, OpenCL, CUDA

• Template Meta-Programming

– For device-specializations and array layout polymorphism

– C++1998 standard (would really be nice to have C++2011)

• Extremely Attentive to:

1. Portability – the project charter R&D constraint

2. Performance – the project charter R&D objective

3. Usability – the SQE objective

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
7

Current Capabilities

• Multidimensional Arrays

– Declare dimensions and access data members

– Allocate and deallocate in Device memory space

– Deep-copy data between host and device memory space

– Optionally choose or define your own Layout

• Parallel-For and Parallel-Reduce

– Define thread-parallel work functors (function + data)

– Dispatch work to device

– Optionally wait for dispatched work to complete

– Reduction is guaranteed deterministic, given same # of threads

• Defer Task-Parallelism, Pipeline-Parallelism (for now)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
8

Multidimensional Array : API

• Multidimensional Array : Basic API

class View< double * * [3][8] , Device > a(“a”,N,M);

• Dimensioned as [N][M][3][8] (two runtime, two compile-time)

• Allocated in memory space of Device

– a(i,j,k,l) : access data member via multi-index

• Multi-index is mapped according to Device‟s default Layout

• Multidimensional Array : Advanced API

class View<double**[3][8], Layout , Device> a(“a”,N,M);

Multi-index access API is unchanged for user code

– Override Device‟s default layout

• E.g., force row-major or column-major

– Layout is an extension point for blocking, tiling, etc.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
9

Multidimensional Array : API

• View Memory Management : Basic API

typedef class View<double**,Device> MyMatrixType ;

MyMatrixType a(“a”,N,M); // allocate array

MyMatrixType b = a ; // A new view to the same data

– As per Trilinos standard practice, views are reference counted

• Internal reference counting to avoid cluttering user-code

• View Memory Management : Advanced API

class View<const double**,Layout,Device,Unmanaged> c = a ;

– A non-reference counted view

– Faster to construct, assign, and destroy; however,

User-code assumes responsibility to destroy „c‟ before „a‟

– Can only allocate managed views

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
10

Multidimensional Array : API

• Host / Device Deep Copy : Basic API

typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...) ;

MyViewType::HostMirror a_host = create_mirror(a);

deep_copy(a , a_host); deep_copy(a_host , a);

NO hidden deep-copy, deep-copy only when told by user-code

– HostMirror: identical layout in Host space for fast memory-copy

• Host / Device Deep Copy: Advanced API

MyViewType::HostMirror a_host = create_mirror_view(a);

– If Device uses host memory then „a_host‟ is simply a view of „a‟

– Deep-copy becomes a no-op

– Avoids deep-copy performance penalty if not needed

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
11

Parallel_For API

• Thread-Parallel Calls to a Functor on the Device

– Dispatch: parallel_for(NP , functor);

• Functor : A function + its calling arguments

– Simple example:

template< class DeviceType > // allows for partial-specialization

struct AXPY {

 typedef DeviceType device_type ; // run on this device

 double a ; // parameter

 View<double*,device_type> x , y ; // arrays

 void operator()(int ip) const { y(ip) += a * x(ip); } // function

};

– Call „operator()(ip) NP times where ip  [0,NP)

– Array data access uses „ip‟ to avoid race conditions

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
12

Functor Pattern

• Dispatch NP units of Work to Manycore Device

– Work = computation + data

– Called ip  [0,NP) times from (up to) NP different threads

– Functor object is shared by all threads

• Thus: void operator()(int ip) const ;

• Why Functor Pattern ?

– Standard C++ and Portable

– Flexible: as many argument-members as you need

• Why Not : traditional Function + Argument List ?

Requires language / compiler extensions

– E.g., CUDA, OpenCL, OpenACC, OpenMP, ...

– Impedes device-specific specializations

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
13

Parallel Work Affinity for

NUMA Performance

• KokkosArray manages Computation + Data Affinity

– A CPU-core computes on y(ip); so y(ip) should be NUMA-local

– A simplified model:

CORE CORE CORE CORE

memory controller,
shared cache memory

MAIN MEMORY

CORE CORE CORE CORE

memory controller,
shared cache memory

MAIN MEMORY

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
14

Parallel_Reduce API
(parallel_for is so easy in comparison)

• Similar to parallel_for, with Reduction Argument

– Dispatch: result = parallel_reduce(NP , functor);

Result is deterministic, given the same device and # threads

• Result is a value, or View to a value, on the host or device

– Called ip  [0,NP) times: functor(ip , contribution);

struct DOT {

 typedef DeviceType device_type ;

 typedef double value_type ; // type of the reduction argument

 View<double*,device_type> x , y ;

 void operator()(int ip , value_type & contrib) const

 { contrib += y(ip) * x(ip); }

 // ... to be continued ...

};

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
15

Parallel_Reduce API
(what makes it harder)

• Different than parallel_for : Reduction Argument

– Called on up to NP different threads

• Producing up to NP contributions toward the final result

– Must reduce per-thread contributions

– Must manage per-thread temporary data for contributions

– Must yield deterministic result, for a given device and # threads

• Flexibility and extensibility

– User defined value_type: scalar, simple „struct‟, simple array

• Not just a „double‟

– Place result on the host or device

– Post-process result on the device

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
16

Parallel_Reduce API

Inter-Thread Reduction

• Initialize and Join Per-Thread Contributions
struct DOT {

 // ... continued ...

 typedef double value_type ;

 static void init(value_type & contrib) { contrib = 0 ; }

 static void join(volatile value_type & contrib ,

 const volatile value_type & input)

 { contrib = contrib + input ; }

};

– Initialize thread‟s contrib via Functor::init

– Join threads‟ contrib via commutative Functor::join

– „volatile‟ to insure correct inter-thread memory access

• Prevents compiler from optimizing away join operation

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
17

Parallel_Reduce API : Advanced

• Reduction Argument : A „struct‟
struct Centroid {

 typedef DeviceType device_type ;

 struct value_type { double x[3], mass ; }; // struct value_type

 View<double*[3],device_type> point ;

 View<double*, device_type> mass ;

 void operator()(int ip , value_type & contrib) const

 {

 contrib.x[0..2] += point(ip,0..2) * mass(ip); // pseudo code

 contrib.mass += mass(ip);

 }

 static void init(value_type & contrib) {...}

 static void join(volatile value_type & contrib ,

 const volatile value_type & input) {...}

};

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
18

Parallel_Reduce API : Advanced

• Reduction Argument : Runtime-sized Array
struct MultiVectorDOT {

 typedef DeviceType device_type ;

 typedef double value_type[] ; // runtime array type

 const unsigned value_count ; // runtime array count

 void operator()(int ip , double contrib[]) const ;

 static void init(double contrib[] , unsigned count);

 static void join(volatile double contrib[] ,

 const volatile double input[] ,

 unsigned count);

};

– Result is an array, or View to an array on the host or device

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
19

Parallel_Reduce API : Advanced

• “Finalizing” the Reduction Argument

– A final, serial computation performed on the device

– Example: norm2 requires a serial „sqrt‟ of the dot product result

• Store result on device; avoid device-host-device round-trip

• parallel_reduce(NP , dot , norm2_finalize)

struct Norm2Finalize {

 typedef DeviceType device_type ;

 typedef double value_type ;

 View<double,device_type> view ;

 // called by one thread with the reduction result:

 void operator()(const value_type & result) const

 { *view = sqrt(result); }

};

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

• Explicit Dynamics : computationally intensive

– Element stress and internal force contributions to nodes

– Node gather-assemble forces, apply boundary condition,

compute acceleration, integrate motion

– MPI + KokkosArray hybrid parallel

• Nonlinear Thermal Conduction : memory intensive

– Newton iteration to solve nonlinear equation

– Element computation of residual and Jacobian

– Gather-assemble sparse linear system; CG iterative solver

– Update nonlinear solution

– MPI + KokkosArray hybrid parallel

• Same finite element kernel source code on all devices

– Template instantiation inserts device specific array-maps

20

Finite-Element Proxy-Applications
see kokkos/array/usecases

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.
21

Plans

• Ports to OpenMP, Intel Phi (MIC), and AMD Fusion

• Tiled Array Layouts

• Embedded Data Types : View< Type **[3][8], device >

– Type can be a UQ expansion, automatic differentiation, ...

• Multi-Functor Dispatch

• “Alpha” Use, Evaluation, and Improvement-Steering by

– Tpetra, Mark Hoemann

– UQ-on-GPU LDRD, Eric Phipps

– LAMMPS ? Exploring via miniMD, up next: Christian Trott

– Sierra Toolkit ? up last: Daniel Sunderland

– Your library / application???

• Transition from “Experimental” to “Primary Stable” FY13

