
CSRI Summer Proceedings 2008 1

OVERVIEW AND PERFORMANCE ANALYSIS OF THE
EPETRA/OSKI MATRIX CLASS IN TRILINOS

I. KARLIN STUDENT∗ AND J. HU MENTOR†

Abstract. In this paper, we describe a new matrix class in Epetra that gives a Trilinos applica-
tion access to the Optimized Sparse Kernel Interface (OSKI) package. Epetra is the core basic linear
algebra package within Trilinos, Sandia’s numerical algorithms framework. We give an overview of
OSKI and the new Epetra class design. We also present numerical results that compare performance
of equivalent OSKI and Epetra kernels in serial and in parallel. Finally, we discuss potential impact
of OSKI on applications that currently use Trilinos.

1. Introduction. Many real world scientific problems, in fields such as atmo-
spheric science, quantum physics, and structural engineering, are simulated on com-
puters. Due to model complexity, fidelity, or time scales, such simulations often must
be run on massively parallel computers. The time and effort involved in designing
these simulations is large. Therefore, many simulations leverage existing optimized
kernels and algorithms provided by other software libraries. At Sandia, one such
source of state-of-the-art numerical algorithms is the Trilinos project [7].

Trilinos is a collection of scientific computing libraries called “packages”. Each
package in Trilinos has unique functionality, and is written by domain experts. Pack-
ages are typically autonomous, but can leverage capabilities in other Trilinos packages.
Functionality available within Trilinos packages includes basic linear algebra opera-
tions, preconditioning, solvers, data distribution and load balancing. The Trilinos
project provides application developers a suite of modern optimized numerical meth-
ods. In turn, Trilinos leverages basic libraries such as the BLAS [4] and LAPACK
[1].

Epetra, a foundational package within Trilinos, is frequently used by other pack-
ages [9]. Epetra provides fundamental classes and methods for serial and parallel
linear algebra. Classes available include point and block matrices, multivectors, and
graphs. These and other classes support the usual linear algebra operations. All
solver packages within Trilinos can use Epetra kernels as building blocks for both se-
rial and parallel algorithms. For this reason, the performance of solvers depends upon
Epetra’s performance. Therefore, making Epetra as efficient as possible will improve
the performance and efficiency of other packages that depend on it.

Just as a program is only as efficient as its underlying components, a parallel
program can only be as efficient as the code run on each processor. Even if a program
scales efficiently, if its underlying serial code is inefficient, its parallel implementation
will be inefficient. By improving the performance of the single-processor portion of
a parallel program, the potential top speed of a parallel program is improved. For
example, in many scientific programs an important kernel operation is matrix-vector
multiplication. By speeding up this kernel, overall simulation speed can be improved.

The Optimized Sparse Kernel Interface (OSKI) provides many highly tuned ma-
trix vector multiply kernels [13, 2, 14]. OSKI provides five optimized, serial, sparse
matrix-vector kernels: four routines that perform matrix-vector multiplication and
one that performs a triangular solve of a system of equations. At install time, OSKI’s
kernels can be tuned according to the underlying machines architecture. At runtime,

∗University of Colorado, Boulder, Ian.Karlin@colorado.edu
†Sandia National Laboratories, jhu@sandia.gov



2 Overview and Performance Analysis of the Epetra/OSKI matrix class interface in Trilinos

OSKI’s kernels can be tuned according to matrix/vector structure. The new Epe-
tra/OSKI interface enables Trilinos and application developers to leverage the highly
tuned kernels provided by OSKI in a standardized manner.

In this paper, we discuss our implementation of an interface to OSKI within
Epetra and assess its performance. In Section 2, we give an overview of the design
and features of the OSKI package itself. In Section 3, we discuss the design of the
Epetra interface to OSKI. In Section 4, we discuss the results of performance tests
run on the OSKI kernels within Epetra. Tests were run on individual OSKI kernels,
and include small scaling studies. In Section 5, conclusions of the work and results
described in this paper are presented. In Section 6, ways to add more functionality
to our implementation, and suggestions of things to test in new OSKI releases are
presented.

2. OSKI High Level Overview. OSKI is a package used to perform optimized
sparse matrix-vector operations. It provides both a statically tuned library created
upon installation and dynamically tuned routines created at runtime. OSKI provides
support for single and double precision values of both real and complex types, along
with indexing using both integer and long types. When possible it follows the sparse
BLAS standard [5] as closely as possible in defining operations and functions.

Before a matrix can use OSKI functionality, it first must be converted to the
matrix type oski matrix t. To store a matrix as an oski matrix t object, a create
function must be called on a CSR or CSC matrix. An oski matrix t object can
either be created using a deep or shallow copy of the matrix. When a shallow copy is
created, the user must only make changes to the matrix’s structure through the OSKI
interface. When a deep copy is created, the matrix that was passed in can be edited
by the user as desired. OSKI automatically makes a deep copy when any matrix is
tuned in a manner that changes its structure.

Routine Calculation
Matrix-Vector Multiply y = αAx + βy or

y = αAT x + βy
Triangular Solve x = αA−1x or

x = αAT−1
x

Matrix Transpose Matrix-Vector Multiply y = αAT Ax + βy or
y = αAAT x + βy

Matrix Power Vector Multiply y = αApx + βy or
y = αAT p

x + βy
Matrix-Vector Multiply and y = αAx + βy and
Matrix Transpose Vector Multiply z = ωAw + ζz or

z = ωAT w + ζz
Table 2.1

Computational kernels from OSKI available in Epetra.

OSKI provides five matrix-vector operations to the user. The operations are
shown in Table 2.1. Hermitian operations are available in OSKI, but are not shown
in the table since Epetra does not include Hermitian functionality. The last three
kernels are composed operations using loop fusion [6] to increase data reuse. To
further improve performance, OSKI can link to a highly tuned BLAS library.

OSKI creates optimized routines for the target machine’s hardware based on
empirical search, in the same manner as ATLAS [15] and PHiPAC [3]. The goal of



I.K. Student and J.H. Mentor 3

the search is create efficient static kernels to perform the operations listed in Table 2.1.
The static kernels then become the defaults that are called by OSKI when runtime
tuning is not used. Static tuning can create efficient kernels for a given data structure.
To use the most efficient kernel, the matrix data structure may need to be reorganized.

When an operation is called enough times to amortize the cost of rearranging
the data structure, runtime tuning can be more profitable than using statically tuned
functions. OSKI provides multiple ways to invoke runtime tuning, along with multiple
levels of tuning. A user can explicitly ask for a matrix to always be tuned for a specific
kernel by selecting either the moderate or aggressive tuning option. If the user wishes
for OSKI to decide whether enough calls to a function occur to justify tuning, hints
can be used. Possible hints include telling OSKI the number of calls expected to the
routine and information about the matrix, such as block structure or symmetry. In
either case, OSKI tunes the matrix either according to the user’s requested tuning
level, or whether it expects to be able to amortize the cost of tuning if hints are
provided. Instead of providing hints the user may, periodically call the tune function.
In this case, the tune function predicts the number of future kernel calls based on
past history, and tunes the routine only if it expects the tuning cost to be recovered
via future routine calls.

OSKI can also save tuning transformations for later reuse. Thus, the cost of
tuning searches can be amortized over future runs. Specifically, a search for the best
tuning options does not need to be run again, and only the prescribed transformations
need to be applied.

OSKI is under active development. As of this writing, the current version is
1.0.1h, with a multi-core version under development [12]. While OSKI provides many
optimized sparse matrix kernels, some features have yet to be implemented, and
certain optimizations are missing. OSKI is lacking multi-vector kernels and stock
versions of the composed kernels. These would greatly add to both OSKI’s usability
and performance. The Matrix Power Vector Multiply is not functional. Finally,
OSKI cannot transform (nearly) symmetric matrices to reduce storage or convert
from a CSR to a CSC matrix (or vice versa). Both could provide significant memory
savings. Thus, performance gains from runtime tuning should not be expected for
point matrices. An exception is pseudo-random matrices, which may benefit from
cache blocking.

3. Design and Implementation. In the design and implementation of the
Epetra OSKI interface the Epetra coding guidelines [8] were followed as closely as
possible. In doing so, we ensured the consistency of our code with the existing Epetra
code base, as well as its readability and maintainability. Finally, the Epetra interface
to OSKI will likely be ported to Kokkos [10], and the interface’s design will make this
process easier.

In the design phase we focused on allowing the greatest amount of flexibility to the
user, and exposing as much of the functionality of OSKI as possible. In some places,
however, OSKI functionality is not exposed because there is not a corresponding
Epetra function. For example, OSKI has a function that allows changing a single
value in a matrix, but Epetra does not. When two copies of a matrix exist, as when
the OSKI constructor makes a deep copy of the underlying data, the corresponding
Epetra copy is guaranteed to contain the same data. Since Epetra can only change
data values one row at a time, a point set function is not included in the OSKI
interface. Instead, we include a function to change a row of data within OSKI by
overloading the Epetra function to change row data. When a single copy of the data



4 Overview and Performance Analysis of the Epetra/OSKI matrix class interface in Trilinos

exists, the Epetra function is called on the matrix. When both an OSKI and Epetra
matrix exist, both the matrix copies are modified to keep the data consistent. The
Epetra function is called once for the Epetra version of the matrix, and the OSKI
matrix has its point function called once for each entry in the row.

When there are clear equivalent functions in OSKI and Epetra, the OSKI function
is designed to overload the Epetra function. In the cases where OSKI provides more
functionality than Epetra, the interface is designed with two functions to perform the
operation. The first function mimics Epetra’s functionality and passes values that
eliminate the extra functionality from OSKI. The second function exposes the full
functionality OSKI provides. Also, as appropriate new functions are added that are
specific to OSKI, such as the tuning functions. Conversely, Epetra functions without
any analogue in the OSKI context are not overloaded in the Epetra Oski namespace.

The interface is also designed to maintain robustness and ease of use. All
Epetra OskiMatrix functions that take in vectors or multi-vectors allow for the input
of both Epetra Vector or Epetra MultiVector objects, and Epetra OskiVector or
Epetra OskiMultiVector objects. The objects are converted to the proper types as
necessary through the use of the lightest weight wrapper or converter possible.

The implementation follows the idea of wrapping and converting data structures
in as lightweight a fashion as possible, to maximize speed and minimize space used.
In addition, the implementation provides the user with as much flexibility as possible.
For example, the user can specify as many tuning hints as they like. Alternatively,
the user can ask Epetra to figure out as much as it can about the matrix and pass
along those hints to OSKI. Both options can be combined, with user-specified hints
taking precedence over automatically generated hints. Options are passed by the user
via Teuchos parameter lists [11].

Class Function
Epetra OskiMatrix Derived from Epetra CrsMatrix.

Provides all OSKI matrix operations.
Epetra OskiMultiVector Derived from Epetra MultiVector.

Provides all OSKI multi-vector operations.
Epetra OskiVector Derived from Epetra OskiMultiVector.

Provides all OSKI vector operations.
Epetra OskiPermutation Stores permutations and provides Permutation

functions not performed on a Epetra OskiMatrix.
Epetra OskiError Provides access to OSKI error handling functions

and the ability to change the default OSKI error
handler.

Epetra OskiUtils Provides the initialize and finalize routines for
OSKI.

Table 3.1
OSKI classes within Epetra.

Finally, the design is broken into six separate classes. Table 3.1 shows the classes
and provides information about which classes each derives from, and what functions
each contains. The design is as modular as possible to allow for the easy addition of
new functions, and to logically group related functions together.

4. Results. To assess the potential benefit of using OSKI in Sandia applications,
we ran tests on representative data and a variety of advanced architectures. For these



I.K. Student and J.H. Mentor 5

tests OSKI version 1.0.1h was used. OSKI runtimes were compared to the runtimes
of the currently used Epetra algorithms, in both serial and parallel. In this section,
we first present our test environment and methodology, and then present the results
of performance tests run comparing Epetra to OSKI.

4.1. Test Environment and Methodology. Performance tests were run on
two different machine architectures in serial and parallel. The first test machine has
two Intel Clovertown processors. The second test machine has one Sun Niagara-2
processor. Machine specifications and compilers are shown in Table 4.1. On each
machine, Trilinos was compiled with widely used optimizations levels, and OSKI was
allowed to pick the best optimization flags itself.

processor #chips cores threads frequency L2 cache compiler
Clovertown 2 8 8 1.87 Ghz 4 M per 2 cores Intel
Niagara-2 1 8 64 1.4 Ghz 4 M per core Sun

Table 4.1
Test machines used for performance testing.

These machines were chosen for their diversity and potential for use at Sandia.
The Clovertown is one of Intel’s latest processors, and the Niagara is an example of
an extremely parallel chip.

On each machine, tests were run on three matrices arising from Sandia appli-
cations. The first matrix is from a finite element discretization within a magnetics
simulation. The second is a block-structured Poisson matrix. The third matrix is
unstructured and represents term-document connectivity. The data is from the Cite-
seer application. Table 4.2 gives some matrix properties. Each matrix was able to fit
within the main memory of each test machine. These matrices were also used in a

matrix rows columns nnz structure
point 556356 556356 17185984 nearly symmetric point
block 174246 174246 13300445 symmetric 3 by 3 blocks
Citeseer 607159 716770 57260599 unstructured point

Table 4.2
Test machines for Epetra OSKI performance testing.

scaling study. Tests were run up to the total number of available threads that can be
executed simultaneously, on each machine.

4.2. Performance Test Results. The serial results for each machine are shown
in Figures 4.1 and 4.2 for four OSKI kernels: Ax, AT x, AT Ax, and the two-vector
multiplication y = Ax; z = Aw. The last operation is henceforth referred to as
“2Mult”. In addition, Table 4.3 shows the speeds of Epetra calculations as a baseline.
Since OSKI has no atomic versions of the composed kernels, the OSKI stock numbers
represent two separate matrix-vector multiply calls to OSKI. There is potential that
the tuned composed kernels are not performing optimally due to tuning to a non-ideal
data structure, as is seen in the tuning cost data later. Results for the matrix power
kernel are unavailable due to a bug in the kernel. Also results for the AAT kernel were
excluded because Epetra only stores matrices in CSR. OSKI cannot convert CSR to
CSC, which is needed to take advantage of these kernels in serial. Finally, the direct
solve kernel was not profiled, as it is not critical to many Sandia applications.



6 Overview and Performance Analysis of the Epetra/OSKI matrix class interface in Trilinos

Fig. 4.1. Relative performance of Epetra and OSKI in serial on Clovertown.

Machine Ax AT x AT A 2Mult
Clovertown 220/227/55 150/154/43 178/183/48 178/184/48
Niagara 58.3/69.9/20.7 56/66.4/20.3 57.1/68.1/20.5 57.1/68.1/20.5

Table 4.3
Epetra serial routine speeds in Mflops. Results are in the form point/block/Citeseer.

On the Clovertown, OSKI produced large speedups over Epetra for all matrices
in serial, as shown in Figure 4.1. The stock kernels demonstrated speedups of 1.8 to
2.8. Tuning improved the block matrices by about one third when compared to the
stock kernels. The composed algorithms demonstrated even more significant speedups
of up to 5.5, when composing and blocking were combined. Tuning did not improve
the runtime of point matrices, except when a composed kernel was used. In the case
of the Citeseer matrix, a composed kernel resulted in either no performance gain or
performance degradation.

Fig. 4.2. Relative performance of Epetra and OSKI in serial on Niagara.

Figure 4.2 shows that on the Niagara, the stock OSKI and Epetra kernels had
roughly the same performance Tuning for point matrices once again resulted in either
no gains or slight losses. Tuning for block matrices resulted in a one third to one
half gain in speed. Again, composing increased the speed of all kernels significantly,
except for the Citeseer matrix, for which the OSKI kernels where actually slower.

As expected, the serial tests show that the tuning of point matrices is counter-
productive, except when needed to use composed kernels. However, tuning of block
matrices results in significant speedups through the reduction of indirect addressing.
For the pseudo random Citeseer matrix, tuning is never beneficial. This is probably
due to either lack of cache-blocking in the composed kernels and/or more random



I.K. Student and J.H. Mentor 7

access, which create a greater number of cache misses. For structured matrices, com-
posing results in a 25% to 60% gain over the faster of the stock and tuned kernels.

Even if the tuning gains shown above are large, the amount of time it takes to
tune a matrix at runtime is important in determining whether tuning will result in
performance gains. Tables 4.4, 4.5 and 4.6 show the cost of tuning and the number
of matrix-vector calls needed to amortize that cost for the point, block, and Citeseer
matrices, respectively. The tuning and retuning costs are expressed in terms of the
number of matrix-vector multiplies that could be performed in the time it takes to
tune. Tuning cost is the amount of time it takes to tune a matrix the first time, and
includes time to analyze the matrix to determine what optimizations are beneficial.
Retuning cost is the amount of time it takes to tune the matrix if the optimizations
to be performed are already known. All comparisons are to the faster of the Epetra
and OSKI matrix-vector multiplies. The amortize columns show the number of calls
to the tuned kernel needed to realize tuning gains. When N/A is listed in an amortize
column, it is never better to tune because the tuned kernels are no faster than the
untuned kernels. We note that the tuning cost depends only on the matrix structure,
not on the matrix kernel to be performed.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 37.6 / 20.1 N/A 48 / 26 45 / 24
Niagara 22.1 / 12.7 N/A 56 / 33 40 / 24

Table 4.4
OSKI tuning costs for point matrix. Cost is equivalent number of matrix-vector multiplications.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 31.1 / 17.7 131 / 75 27 / 16 28 / 16
Niagara 22.5 / 14.1 86 / 54 22 / 14 21 / 13

Table 4.5
OSKI tuning costs for block matrix. Cost is equivalent number of matrix-vector multiplications.

Machine Tune/Retune Amortize Amortize Amortize
Ax/Retune AT A/Retune 2Mult/Retune

Clovertown 14.5 / 6.7 N/A N/A N/A
Niagara 11.5 / 5.2 N/A N/A N/A

Table 4.6
OSKI tuning costs for Citeseer matrix. Cost is equivalent number of matrix-vector multiplications.

In many cases, the tuned OSKI kernels are much more efficient than the Epetra
and OSKI stock kernels. However, the data structure rearrangement required to
create an OSKI kernel is non-trivial. The cost of tunings ranges from 11.5 to 37.6
equivalent matrix-vector multiplies. It can require as many as 131 subsequent kernel
applications to recoup the cost of initial tuning. However, re-tuning costs are usually
slightly over half the cost of the initial tuning, so saving transformations for later use
could be profitable. Block matrices require the smallest number of calls to recover
tuning costs, and when combined with composed kernels, this number drops even



8 Overview and Performance Analysis of the Epetra/OSKI matrix class interface in Trilinos

more. For point matrices tuning the matrix-vector multiply is never profitable, but
the tuning of composed kernels can be profitable for structured matrices.

While serial performance is important to application performance, most scientific
simulations are run on parallel machines. The first level of parallelism is within a single
node, which typically contains one or two multicore processors. To test the scalability
of our implementation of OSKI, within Epetra, we ran tests on each matrix on 1 to 8
cores of each machine and also on 1 to 8 threads per core on the Niagara.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

Sp
ee

du
p

 

 
Epetra point
OSKI point
Epetra block
OSKI block
Epetra citeseer
OSKI citeseer

(a) Clovertown

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Processors

Sp
ee

du
p

 

 
Epetra point
OSKI point
Epetra block
OSKI block
Epetra citeseer
OSKI citeseer

(b) Niagara

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

Processors

Sp
ee

du
p

 

 
Epetra point
OSKI point
Epetra block
OSKI block
Epetra citeseer
OSKI citeseer

(c) Niagara multi-threaded

Fig. 4.3. OSKI matrix-vector multiply strong scaling results.

Figures 4.3(a)-4.3(c) show the strong scaling of the matrix-vector kernel for each
matrix. Figure 4.3(a) shows that on the Clovertown that Epetra has better scaling
than OSKI. Table 4.7 shows, however, that the overall performance of OSKI is either
comparable or better to that of Epetra. The better scaling for Epetra comes from its
slower performance in the single processor case, which allows for more improvement
within a limited memory bandwidth situation. For the point matrix, both Epetra and
OSKI improve significantly until each is running at about 735 Mflops on 4 cores. At
this point, the calculations likely become memory bandwidth limited. With added
processing power, the speeds then improve to slightly under 800 Mflops. The block
matrix results show a similar pattern, with the OSKI block matrix remaining more



I.K. Student and J.H. Mentor 9

efficient throughout. The Citeseer matrix does not scale most likely due to the large
amounts of data it needs to exchange, because its unstructured. Also it could not be
run on 8 processors due to an increasing memory footprint, perhaps due to exchanged
data.

machine point block Citeseer
Epetra/OSKI Epetra/OSKI Epetra/OSKI

Clovertown 798/782 810/1099 59.6/122
Niagara 1 thread/core 508/507 578/778 22.3/22.0
Niagara multiple threads/core 4767/4321 3447/4847 23.2/23.2

Table 4.7
Epetra and OSKI maximum parallel matrix vector multiply speeds in Mflops.

Figure 4.3(b) shows that on the Niagara both the point and block matrix algo-
rithms scale linearly with the number of cores. Essentially, there is enough memory
bandwidth to feed each core. As seen in Figure 4.3(c), adding more threads per core
to the calculating power leads to approximately linear speedup for all matrices. This
begins to tail off at 5 threads for block matrices, and 7 threads for point matrices.
The Citeseer matrix once again does not scale and becomes too large to run above 32
threads.

Scalability also matters when a matrix is being tuned. Figures 4.4(a)-4.4(c) show
how well each matrix scales on each machine in terms of tuning cost. Scaling is usually
linear or slightly better with the number of processors. This result is expected as
tuning is a local computation with no communication between processors. As seen in
Figure 4.4(c), increasing the number of threads per Niagara processor initially leads
to improved performance, before dropping off at 6 or more threads per processor. The
dropoff is most likely due to threads competing for processor resources. Results for
the Citeseer matrix were not shown, as OSKI does not tune its matrix-vector multiply
kernel for the Citeseer matrix. Finally, note that the retune function demonstrates
better scaling than the same tune function in all cases.

In addition to strong scaling tests, we also ran a weak scaling test on the Niagara.
We used the block matrix from the 8 thread test case in Table 4.2. Tests were run on
1, 8, 27 and 64 threads. Results are shown in Figures 4.5(a)-4.5(c). As seen in Figure
4.5(a), the OSKI tuned and untuned matrix-vector multiplies both scale similarly
to Epetra’s matrix-vector multiply. Figure 4.5(b), shows that the tuned composed
kernels do not scale well. The same result was seen for the untuned composed kernels.
For these operations to be possible there is extra data copying in the wrapping of the
serial kernels, which could be the problem. There could also be inefficiencies in the
code in other places or resource contention on the processor. Figure 4.5(c) shows that
re-tuning scales better than tuning as the problem size grows.

5. Conclusions. Overall, OSKI can produce large speedups in sparse matrix
computational kernels. This is especially true when the matrix is block structured or
multiple multiplications are performed using the same matrix. In some cases it can
also produce large gains for matrix-vector multiplies involving only a single matrix.
However, OSKI is still missing some features, such as a multi-vector kernel and the
ability to tune matrices to make them symmetric. Both could produce large runtime
gains. Our Epetra/OSKI interface has stubs to allow the use of these missing fea-
tures as soon as they become available in OSKI. Our experiments show that Sandia
applications that make heavy use certain sparse matrix kernels can benefit from the



10 Overview and Performance Analysis of the Epetra/OSKI matrix class interface in Trilinos

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

Processors

Sp
ee

du
p

 

 
Point tune
Point retune
Block tune
Block retune

(a) Clovertown

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Processors

Sp
ee

du
p

 

 
Point tune
Point retune
Block tune
Block retune

(b) Niagara single-threaded

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Processors

Sp
ee

du
p

 

 
Point tune
Point retune
Block tune
Block retune

(c) Niagara multi-threaded

Fig. 4.4. Scalability of OSKI tuning.

current version of OSKI. As new OSKI features become available, its potential impact
on other Sandia applications should increase.

6. Future Work. For the current (1.0.1h) version of OSKI, a developer may
want to implement the solve function and run more weak scalability or other parallel
tests to determine why the composed kernels do not scale well. For a newer version
of OSKI, a developer may want to test any new tuning features, the matrix power
kernel, as well as any other new functions. Finally, we recommend any new version of
OSKI be tested on the Barcelona and Xeon chips, as we were never able to successfully
install OSKI on these architectures. The Barcelona is of particular interest, as it is
the processor found in the center section of Red Storm.

7. Acknowledgments. We would like to thank Brian Barrett and Doug Do-
erfler for access to the Niagara and Clovertown architectures, respectively. We also
would like to thank Danny Dunlavy and Chris Siefert for providing us with the test
matrices. In addition, we would like to thank Mike Heroux, Chris Siefert and Jim
Willenbring for reviewing the interface design and answering questions along the way.



I.K. Student and J.H. Mentor 11

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

Threads

Ti
m

e 
(s

ec
on

ds
)

 

 

Epetra
OSKI stock
OSKI tuned

(a) MatVec

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Threads

Ti
m

e 
(s

ec
on

ds
)

 

 

Epetra ATA
OSKI ATA
Epetra TwoMult
OSKI TwoMult

(b) Composed

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

Threads

Ti
m

e 
(s

ec
on

ds
)

 

 
Tune
Retune

(c) Tuning

Fig. 4.5. Weak scalability of OSKI on Niagara

Jim’s partial OSKI implimentation of an interface within Kokkos helped serve as a
model for our development. Finally, we would also like to thank Rich Vuduc for his
help with Oski-related questions.

REFERENCES

[1] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Ham-
marling, J. Demmel, C. Bischof, and D. Sorensen, Lapack: A portable linear algebra
library for high-performance computers, Nov 1990, pp. 2–11.

[2] Berkeley Benchmarking and OPtimization Group, OSKI: Optimized Sparse Kernel Inter-
face. http://bebop.cs.berkeley.edu/oski/about.html, May 2008.

[3] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, Optimizing matrix multiply using
phipac: a portable, high-performance, ansi c coding methodology, in ICS ’97: Proceedings
of the 11th international conference on Supercomputing, New York, NY, USA, 1997, ACM,
pp. 340–347.

[4] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C.
Whaley, An updated set of Basic Linear Algebra Subprograms (BLAS), ACM Transac-
tions on Mathematical Software, 28 (2002), pp. 135–151.



12 Overview and Performance Analysis of the Epetra/OSKI matrix class interface in Trilinos

[5] I. S. Duff, M. A. Heroux, and R. Pozo, An overview of the sparse basic linear algebra
subprograms: The new standard from the BLAS technical forum, ACM Transactions on
Mathematical Software (TOMS), 28 (2002).

[6] G. R. Gao, R. Olsen, V. Sarkar, and R. Thekkath, Collective loop fusion for array con-
traction, in 1992 Workshop on Languages and Compilers for Parallel Computing, no. 757,
New Haven, Conn., 1992, Berlin: Springer Verlag, pp. 281–295.

[7] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley,
An overview of the Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

[8] M. A. Heroux and P. M. Sexton, Epetra developers coding guidelines, Tech. Rep. SAND2003-
4169, Sandia National Laboratories, Albuquerque, NM, December 2003.

[9] Sandia National Laboratories, Epetra - Home.
http://trilinos.sandia.gov/packages/epetra/index.html, May 2008.

[10] , Kokkos - Home. http://trilinos.sandia.gov/packages/kokkos/index.html, May 2008.
[11] , Teuchos - Home. http://trilinos.sandia.gov/packages/teuchos, May 2008.
[12] R. Vuduc, Personal Communication, July 2008.
[13] R. Vuduc, J. W. Demmel, and K. A. Yelick, Oski: A library of automatically tuned sparse

matrix kernels, Journal of Physics Conference Series, 16 (2005), pp. 521–530.
[14] , The Optimized Sparse Kernel Interface (OSKI) library user’s guide for version 1.0.1h,

tech. rep., University of California at Berkeley, Berkeley, CA, June 2007.
[15] R. C. Whaley and J. J. Dongarra, Automatically tuned linear algebra software, Procceding

of the 1998 ACM/IEEE conference on Supercomputing (CDROM), (1998), pp. 1–27.


