Sandia

Exceptional service in the national interest National
Laboratories

Michael A. Heroux
Sandia National Laboratories

U.S. DEPARTMENT OF ///A
Nat

TR ¥ s
EN ERG ' ///’ VA‘D’*’Q Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
tional Nuclear Security Administration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

What is Trilinos?) e,

* Object-oriented software framework for...

= Solving big complex science & engineering problems
= A Project of Projects.

BACKGROUND/MOTIVATION

Laptops to

¢ Geometry, Meshing

Optimal Kernels to Optimal Solutions:

¢ Discretizations, Load Balancing.

¢ Scalable Linear, Nonlinear, Eigen,
Transient, Optimization, UQ solvers. l Systems of systems

¢ Scalable I/O, GPU, Manycore

Leadership systems

Transforming Computational Analysis To
Support High Consequence Decisions

¢+ 60 Packages.

¢ Other distributions:
¢ Cray LIBSCI
¢ Public repo.

Optimization under Uncertainty

Quantify Uncertainties/Systems Margins

Optimization of Design/System

Robust Analysis with Parameter Sensitivities

Accurate & Efficient Forward Analysis

Forward Analysis

Each stage requires greater performance and error control of prior stages:
Always will need: more accurate and scalable methods.
more sophisticated tools.

Applications) .

= All kinds of physical simulations:
= Structural mechanics (statics and dynamics)
= Circuit simulations (physical models)
= Electromagnetics, plasmas, and superconductors
= Combustion and fluid flow (at macro- and nanoscales)

= Coupled / multiphysics models

= Data and graph analysis (2D distributions).

Trilinos Strategic Goals A i,

Laboratories

= Scalable Computations: As problem size and processor counts increase, the cost ~
of the computation will remain nearly fixed.

= Hardened Computations: Never fail unless problem essentially intractable, in
which case we diagnose and inform the user why the problem fails and provide a > Algorithmic

reliable measure of error. Goals

= Full Vertical Coverage: Provide leading edge enabling technologies through the
entire technical application software stack: from problem construction, solution,
analysis and optimization.

_/
= Universal Interoperability: All Trilinos packages, and important external \
packages, will be interoperable, so that any combination of packages and external
software (e.g., PETSc, Hypre) that makes sense algorithmically will be possible within

Trilinos.

= Universal Accessibility: All Trilinos capabilities will be available to users of major
computing environments: C++, Fortran, Python and the Web, and from the desktop > Software

to the latest scalable systems. Goals

= TriBITS Lifecycle: Trilinos will be:

= Reliable: Leading edge hardened, scalable solutions for each of these
applications

= Available: Integrated into every major application at Sandia

= Serviceable: “Self-sustaining”.

Sandia
’11 National
Laboratories

Capability Leaders:
Layer of Proactive Leadership

= Areas:
= User Experience (W. Spotz).
= Scalable I/O: (J. Lofstead).
= Framework, Tools & Interfaces (J. Willenbring).
= Software Engineering Technologies and Integration (R. Bartlett).
= Discretizations (P. Bochev).
= Geometry, Meshing & Load Balancing (K. Devine).
= Scalable Linear Algebra (M. Heroux).
= Linear & Eigen Solvers (J. Hu).
= Nonlinear, Transient & Optimization Solvers (A. Salinger).

= Each leader provides strategic direction across all Trilinos packages
within area.

Unique features of Trilinos).

= Huge library of algorithms
= Linear and nonlinear solvers, preconditioners, ...
= Optimization, transients, sensitivities, uncertainty, ...

= Growing support for multicore & hybrid CPU/GPU
= Built into the new Tpetra linear algebra objects
= Unified intranode programming model
= Spreading into the whole stack:
Multigrid, sparse factorizations, element assembly...
Growing support for mixed and arbitrary precisions
= Don’t have to rebuild Trilinos to use it.

= Growing support for huge (> 2B unknowns) problems.

Jidino

Trilinos’ software organization

Sandia
’11 National
Laboratories

Trilinos Is made of packages

= Not a monolithic piece of software
= Like LEGO™ bricks, not Matlab™
= Each package:
= Has its own development team and management
= Makes its own decisions about algorithms, coding style, etc.
= May or may not depend on other Trilinos packages

= Trilinos is not “indivisible”

= You don’t need all of Trilinos to get things done

= Any subset of packages can be combined and distributed

= Current public release (11.2) contains 54 of the 60+ Trilinos packages
= Trilinos top layer framework

= Not a large amount of source code: ~1.5%

= Manages package dependencies
Like a GNU/Linux package manager

= Runs packages’ tests nightly, and on every check-in

= Package model supports multifrontal development

Trilinos Package Summary

Objective

Package(s)

Discretizations

Meshing & Discretizations

STK, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos
Automatic Differentiation Sacado

Methods
Mortar Methods Moertel
Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos
Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Services Load Balancing Zoltan, Isorropia, Zoltan2
“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika
C++ utilities, 1/0, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx, Trios
Iterative linear solvers AztecOO, Belos, Komplex
Direct sparse linear solvers Amesos, Amesos?2
Direct dense linear solvers Epetra, Teuchos, Pliris
Iterative eigenvalue solvers Anasazi, Rbgen
ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Solvers

Multilevel preconditioners

ML, CLAPS, Muelu

Block preconditioners

Meros, Teko

Nonlinear system solvers

NOX, LOCA, Piro

Optimization (SAND)

MOOCHO, Aristos, TriKota, Globipack, Optipack, ROL

Stochastic PDEs

Stokhos

Sandia
’11 National
Laboratories

Interoperability vs. Dependence
(“Can Use") ("“Depends On”)

= Although most Trilinos packages have no explicit
dependence, often packages must interact with some other
packages:
= NOX needs operator, vector and linear solver objects.
= AztecOO needs preconditioner, matrix, operator and vector objects.
= |nteroperability is enabled at configure time.
= Trilinos cmake system is vehicle for:
Establishing interoperability of Trilinos components...
Without compromising individual package autonomy.
= Architecture supports simultaneous development on many
fronts.

Sandia
fl'l National

Laboratories

Trilinos Presentation Forums

= Supercomputing 2014 Tutorial
= Sunday, Nov 16, 2014

= Linear Algebra Libraries for High-Performance Computing:
Scientific Computing with Multicore and Accelerators

= With Jack Dongarra, Jim Demmel, Jacub Kurzak
= EuroTUG:

= March 2 -4, 2015, CEA, Paris.

= Next Trilinos User Group Meeting:
= QOct 26-29, 2015.

Themes for FY13/14) i,

" trilinos.org becomes real.

= We have a machine and sound legal foundation.
= Community clone (out for some time, preferred model for many).
= Developer agreements (based on OpenMPI/Apache) in the works.

= Execution of plans for “Extreme Scale” computing:

= Multicore/Manycore for desktop/deskside.
= Scalable multicore/manycore for high end.

= Delivering the Tpetra/Kokkos stack to mainstream users.

= Expanding the Trilinos Developer Community.

= Toward completion and adoption of a lifecycle model.

= TriBITS Lifecycle Model 1.0 completed.
= Discussions on Thursday.

= Resilience: Start of a decade-long effort.
= Usability: Making Trilinos more accessible.

Themes for FY14/15) .

= Scalable Algorithms & Implementations:

= Partitioning & Load Balancing.
= Thread scalability.

= Productivity Focus:
= |DEAS Project. More later.
= XxSDK:

= |DEAS extreme-scale scientific software ecosystem.

" Trilinos Community 2.0:
= Revisiting the Trilinos value proposition.

= Resilience: Continuing a decade-long effort:
= Algorithms, software.

= Preparations for task-centric/dataflow applications:

= Application-library APIs for a task-centric app architecture?
= Execution models.

Trilinos Availability/Information

= Trilinos and related packages:
= Available via LGPL or BSD.

" Current releaseis 11.12.
= Preparing for 12.0 — April.

" (backward compatibility break)
= Unlimited availability.

"= More information:
= http://trilinos.org

National

Trilinos Community 2.0 .

= GitHub, Atlassian:
= Open source SW development, tools platforms.
= Workflows for high-quality community SW product development.

= Trilinos value proposition:
" Included these same things, but must re-evaluate.
= Must address packages that want GitHub presence.
= Must (IMO) move Trilinos itself to GitHub.

= New types of Trilinos packages (evolving):
= |nternal: Available only with Trilinos (traditional definition).
= Exported: Developed in Trilinos repository, available externally.
= |mported: Developed outside of Trilinos, available internally.

Trilinos Community 2.0

Sandia
’11 National
Laboratories

= (Case studies:
= TriBITS: Was an internal package, now external.

DTK: Has always been external.
KokkosCore: Is internal. Needs to be available externally.

= |ssues to Resolve:

Package inclusion policies: Define for each package type.
Quality criteria: Contract between Trilinos and packages.
Workflows: Development, testing, documentation, etc.

Trilinos on GitHub: Evaluate.
Trilinos Value Proposition: Re-articulate Trilinos Strategic Goals implications.

THE HPC ECOSYSTEM & TRILINOS
ACTIVITIES

20

Three Parallel Computing Design i
Points

"= Terascale Laptop: Uninode

= Petascale Deskside: Multinode-Manycore

= Exascale Center: Manynode-Manycore

Goal: Make
Petascale = Terascale + more
Exascale = Petascale + more Common Element

Most applications will not adopt an exascale programming
strategy that is incompatible with tera and peta scale.

SPMD+X Parallel Programming Model:
Multi-level/Multi-device

HPC Value-Added

Communicating
Sequential Processes
network of

computational New X OptiOIlS

nodes
Example:

Parallex/HPX

Broad Community
Efforts

computational Threaded Processes ‘
node with
manycore CPUs
and / or

GPGPU

Stateless kernels |

21

The work ahead of us: Threads and vectors

MiniFE 1.4 vs 2.0 as Harbingers

o Typical MPIl-only run: ;

o Balanced setup vs
solve

o First MIC run: ——_
o Thread/vector solver
o No-thread setup

Sandia
National _
Laboratories

MiniFE: Setup vs Solver Speedup

o V 2.0: Thread/vector
o Lots of work:

m Data placement, const
/restrict declarations,
avoid shared writes, find
race conditions, ...

o Unique to each app

R N
N L /N
Ry / \

Py /

M /l
| B2\ s
| B\ \ﬁ ﬁ/

WVec V2

V 1.4/SB Vv .0/M|C-NoV V 2.0/MAC-Vec
Version/System

& Setup
Solve::SpMV

i Solve::DOT

i Solve::AXPY

WITH C++ AS YOUR HAMMIER,
EVERYTHING LOOKS LIKE YOUR
THUMB.

Compile-time Polymorphism

eria
/ Kernel

OpenMFP
/7 Kernel

Kokkos functor CudaKernel

Sandia
National
Laboratories

Struct-of-Arrays vs. Array-of-Structs 1.

A False Dilemma

National

Multi-dimensional Dense Arrays) .

= Many computations work on data stored in multi-dimensional
arrays:
= Finite differences, volumes, elements.
= Sparse iterative solvers.

= Dimension are (k,I,m,...) where one dimension is long:
= A(3,1000000)
= 3 degrees of freedom (DOFs) on 1 million mesh nodes.

= A classic data structure issue is:
= Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) ... or
= By node: A(1,1), A(1,2), ...

= Adherence to raw language arrays forces a choice.

—

KOKKOS TuncCtor example:

compute jacobian

for(int cell = O; cell < worksetNumCells; cell++) {

for(int gp = 0; gp < nuMQPs; qp++) {

for(int row = 0; row < numDims; row++){

for(int col = 0; col < numDims; col++){
for(int node = 0; node < numNodes; node++){
jacobian(cell, gp, row, col) +=

coordVec(cell, node, row)
*basisGrads(node, gp, col);

} /I node
} /I col

Kokkos::parallel_for (worksetNumCells,
compute_jacobian<ScalarT, Device, numQPs, numDims,
numNodes> (basisGrads, jacobian, coordVec));

Sandia
m National
Laboratories

template < typename ScalarType, clas DeviceType, int numQPs_,
int numDims_, int numNodes_ >
class compute_jacobian {
Array3 basisGrads_;
Array4 jacobian_;
Array3_const coordVec_;
public:
typedef DeviceType device_type;
compute_jacobian(Array3 &basisGrads, Array4 &jacobian,
Array3 &coordVec)
: basisGrads_(basisGrads)
, jacobian_(jacobian)
, coordVec_(coordVec){}

KOKKOS_INLINE_FUNCTION
void operator () (const std::size_t i) const

{

for(int qp = 0; gp < nuMQPs_; qp++) {
for(int row = 0; row < numDims_; row++){
for(int col = 0; col < numDims_; col++){
for(int node = 0; node < numNodes_; node++){
jacobian_{(i, qp, row, col) += coordVec_{(i, node, row)
*basisGrads_(node, gp, col);

}// node
}// col
}// row
Y/ ap

National

Kokkos Key Features) Bz

= Multi-dimensional array containers:
= |ndex space abstraction:
Physics (i,j,k) does not dictate storage (i,j,k).
= Physical layout determined by:
Memory placement policy.
At compile time.
= Parallel patterns execution framework:
= parallel_for/reduce/scan — Similar to TBB.
= Task-DAG — under development.

= Goals:
= Provide portability layer for apps and libraries.
= Provide prototypes for eventual C++ standards.

#

Kokkos: A Layered Collection of Libraries

= Applications and Domain Libraries written in Standard C++

= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ..

i\

= Require C++1998 standard (supported everywhere except IBM’s xIC)

Sandia
National _
Laboratories

= Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this)

As soon as vendors catch up to C++2011 language compliance

Application and Domain Specific Library Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ...

= Kokkos implemented with C++ template meta-programming

= |n spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

MiniFENL Proxy Application) i,

Solve nonlinear finite element problem via Newton iteration
= Focus on construction and fill of sparse linear system

= Thread safe, thread scalable, and performant algorithms
= Evaluate thread-parallel capabilities and programming models
Construct sparse linear system graph and coefficient arrays
= Map finite element mesh connectivity to degree of freedom graph
= Thread-scalable algorithm for graph construction
Compute nonlinear residual and Jacobian
= Thread-parallel finite element residual and Jacobian

= Atomic-add to fill element coefficients into linear system
= Atomic-add for thread safety, performance?

Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System (i) &%

Laboratories

MiniFENL: Newton iteration of FEM:
Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?

Scatter-Atomic-Add
+ Simpler

Scatter-Atomic-Add Gather-Sum
Finite Element Data

/

Element
Computations

AN

+ Less memory

Element
Computations
& Scatter-Add

\ 4

Per-Element

— Slower HW atomic
Gather-Sum

u Mapping:
Mesh -> Sparse Graph \\

Scratch Arrays
+ Bit-wise reproducibility atomic-add\ | sparse Linear System >/L
s . e Gather-@
= Performance win? Coefficients =
= Scatter-atomic-add 0.35
o 0.
= ~equal Xeon PHI -§ 0.3 W =——Phi-60 GatherSum
ey =#=Phi-60 ScatterAtomic
= 40% faster Kepler GPU g 0-25 .
8 0.2 =Phi-240 GatherSum
v’ Pattern chosen 2 0.5 =4—Phi-240 ScatterAtomic
= Feedback to HW vendors: = 0.1 m ——K40X GatherSum
performant atomics Z 005 —#~KA40X ScatterAtomic
cE‘%' 0

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

Thread-Scalable Sparse Matrix Construction ()&

= MiniFENL: Construct sparse matrix graph from FEM connectivity

= Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

v 2

i

215

} .

@ 1 =#=Phi-60

(o]

S 0.5 =-Phi-240

Z 5 —4—K40X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Pattern and tools generally applicable to construction and
dynamic modification of data structures

Porting in Progress: Trilinos rh)

" Trilinos : SNL’s suite of equation solver libraries (and others)
= Currently MPIl-only parallel

= |[ncremental refactoring to MPI+Kokkos parallel

" Tpetra: Trilinos’ core parallel sparse linear algebra library
= Vectors, multi-vectors, sparse matrices, parallel data distribution maps
®" Fundamental operations: axpy, dot, matrix-vector multiply, ...
= Templated on “scalar” type: float, double, automatic differentiation (AD),
embedded uncertainty quantification (UQ), ...
= Port Tpetra to MPI+Kokkos, other libraries follow
" On schedule to complete in Spring 2015
= Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort

" Embedded UQ already Kokkos-enabled through LDRD

= Greater computational intensity leads to significant speed-ups compared to
non-embedded UQ sampling algorithms

Node API Futures: MPI Analogy

= |s Trilinos/packages/aztecoo/src/md_wrap_*

Sandia
I Natonal
Laboratories

md wrap_intel c.c md wrap ncube_c.c md wrap scalar_c.c

md wrap mpi c.c md wrap puma c.c md wrap sp2 c.C

= Excerptfrommd wrap sp2 c.c (nextslide).

int md_write(char *buf, int bytes, int dest, int type, int *flag)

{

int err, buffer;

if (bytes == 0) {
err = mpc_bsend(&buffer, 1, dest, type);
} else {
err = mpc_bsend(buf, bytes, dest, type);
}
if (err!=0) (void) fprintf(stderr, "mpc_bsend error = %d\n", mperrno);
return O;

b

Original md write function (prior to MPI)

Sandia
National
Laboratories

int md_write(char *buf, int bytes, int dest, int type, int *flag)

{

#if defined (MPL)
int err, buffer;

if (bytes == 0) {
err = mpc_bsend(&bulffer, 1, dest, type);
} else {
err = mpc_bsend(buf, bytes, dest, type);
§
if (err!=0) (void) fprintf(stderr, "mpc_bsend error = %d\n", mperrno);
#elif defined (MPI)
int err, buffer;
if (bytes == 0) {
err = MPI Send(&buffer, 1, MPI BYTE, dest, type, MPI COMM_WORLD);
} else {
err = MPI_Send(buf, bytes, MPI BYTE, dest, type, MPI COMM_WORLD);
§
if (err !=0) (void) fprintf(stderr, "MPI_Send error = %d\n", err);
#endif
return O;

b

Sandia
National
Laboratories

All node APIls are transitional...

= Except the one(s) that becomes the standard.

= Recommended activities:
= Write a light-weight API:

Compile-time polymorphism.
Match your needs and nothing more.

Wrap other functionality: CUDA, OpenMP, OpenCL,
pthreads, ...

Don't fall in love with your implementation!
Examples: OCCA, Mint, Kokkos, RAJA, and more.

= Participate in standards committees.
= Prepare for eventual replacement by a standard.

Sandia
National _
Laboratories

Sandia

Non-incremental Efforts) e

= Use of Futures:
= Exploit previously inaccessible, fine-grain dynamic parallelism.
= Natural framework for expressing data-driven parallelism.
= Better than MPI:
= Beyond functional mimic of MPI.
= AGAS: Truly adaptive mesh refinement.
= Qverarching goal: Show that non-incremental approaches
= Work.

= Superior to MPI+X in one or more metric:
Performance: Extracting latent parallelism.
Portability: Performance obtained from system’s underlying runtime.
Productivity: Easier to write, understand, maintain.

= More in a minute.

_

S=

Q

g3
=%

RESILIENT COMPUTING & TRILINOS

National

Four Resilient Programming Models @&z

= Skeptical Programming. (SP)

= Relaxed Bulk Synchronous (rBSP)

= Local-Failure, Local-Recovery (LFLR)

= Selective (Un)reliability (SU/R)

Toward Resilient Algorithms and Applications
Michael A. Heroux arXiv:1402.3809v2 [cs.MS]

Skeptical Programming)

Laboratories
| might not have a reliable digital machine

» Expect rare faulty computations

» Use analysis to derive cheap “detectors” to filter large errors
» Use numerical methods that can absorb bounded error

Algorithm 1: GMRES algorithm GMRES

for/ =1 to do

._ j—1 .
ri=b—Ax [Theoretical Bounds on the \
q, ==r/[[r[l, Arnoldi Process
for 7 =1 to restart do
wo i Aq, ™ Iwoll = Ayl < A2,z
fori—1 to j do = [woll < [[All2 = [|AllF
hij = i " Wiy From isometry of orthogonal projections,
W, 1= Wi — hy 5q,

ond _ hijl < |Allp)

hivig = 1wl

Qi1 = W/hjp .
Find y = min|[Hyy — ||blle],| * h;; form Hessenberg Matrix

Evaluate convergence criteria » Bound only computed once, valid for entire solve
Optionally, compute x; = Q;
end

end

Evaluating the Impact of SDC in Numerical Methods
J. Elliott, M. Hoemmen, F. Mueller, SC’13

Enabling Local Recovery from Local @,
Faults

= Current recovery model: [
Local node failure, D T TR L W
global kill/restart. N

0

= Different approach: oel

" App stores key recovery data in persistent {...- S
local (per MPI rank) storage (e.g., buddy;s-
NVRAM),
and registers recovery function.

= Upon rank failure:

= MPI brings in reserve HW, assigns to failed
rank, calls recovery fn.

= App restores failed process state via its
persistent data (& neighbors’?).

= All processes continue.

42

Motivation for LFLR:

= Current practice of Checkpoint/
Restart is global response to single
node (local) failure

= Kill all processes (global terminate), then
restart

= Dependent on Global File system

= SCR (LLNL) is fast, but adheres global
recovery

= Single node failures are predominant
= 85% on LLNL clusters (Moody et al. 2010)
" 60-90% on Jaguar/Titan (ORNL)

= Need for scalable, portable and
application agnostic solution

Sandia
"1 National
Laboratories

SANDIA REPORT

SAND2014-15076
Unlimited Release
Printed June 2014

Report for the ASC CSSE L2 Milestone
(4873) — Demonstration of Local Failure
Local Recovery Resilient Programming
Model

Keita Teranishi and Michasl A. Heroux

Sancia Nationaf Laboaniorios Is & muS-program iabortory managed and oporatid by Sandia Corporation,

Agproved for pUbiic rekass; Ruthar dissamination Unimikd.

() Sancia Nationa Laboratores

W

S=

Q

g3
=%

TOWARD A NEW APPLICATION
ARCHITECTURE

Manytasking: A Productive) s
Application Architecture

Atomic Unit: Task
= Domain scientist writes code for a task.
= Task execution requirements:

Tunable work size: Enough to efficiently use a core once scheduled.
Vector/SIMT capabilities.

Utility of Task-based Approach:
= Qversubscription: Latency hiding, load balancing.
= Dataflow: Task-DAG or futures.
= Resilience: Re-dispatch task from parent.
= Déja vu for apps developers: Feels a lot like MPI programming.
= Universal portability: Works within node, across nodes.

Task-centric Benefits h) e,

= Task-centric: Many tasks
o MPI: = Async dispatch: Many in flight.
o Halo exchange. = Natural latency hiding.

o Local compute. = Higher message injection rates.
o Global collective.
(m]

Halo exchange.

= Better load balancing.

= Compatible with “classics”:

= Fortran, vectorization, small-scale
OMP.

= Used within a task.

= Natural resilience model:

= Every task has a parent (can
regenerate).

= Demonstrated concept:
= Co-Design centers, PSAAP2, others.

Execution Policy for Task Parallelism rhh) i

= TaskManager< ExecSpace > execution policy

= Policy object shared by potentially concurrent tasks
TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm, task_functor_a); // single-thread task
Future<> fb = spawn(tm , task_functor_b);

= Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N), functor _c);
Future<value_type> fd = spawn_reduce(tm.team(N,M), functor_d);
wait(tm); // wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Managers
= Define a scope for a collection of potentially concurrent tasks

= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

Kokkos/Qthread LDRD

San_diaI
Summary: Task-centric app design ..

Scalable application design will move to a task-centric architecture:
= Provides a sequential view for domain scientists.
Looks a lot like MPI programming.
Only added requirements: Consumer/producer dependencies.
= Support vectorization/SIMT within a task.

= Supports many (all, really) threading environments.
= Permits continued use of Fortran.

= Provides a resilience-capability architecture.
Challenges to developing task-centric apps:

= Much more complicated MPI node-level interactions:

= OS/RT support for task-DAGS:

What are the Apps responsibility? How can OS/RT assist?
Concurrent execution is essential for scalability.

— Must be reading/writing from memory, computing simultaneously.

S=

Q

g3
=%

TRILINOS FRAMEWORK AND TOOLS

Trilinos Framework and Tools

= Changes since last year

= User-focused web content moved from
trilinos.sandia.gov to trilinos.org

Some links still need to be cleaned up
= Moved to time-based, rather than feature-based
releases (4 per year)
= Updated tutorial delivery - Trilinos_tutorial
Student accounts accessible via ssh
Virtual machine image
Trilinos_tutorial is on Github
= First collaborator agreements in place
A long way to go yet

i\

Sandia
National _
Laboratories

Sandia
’11 National
Laboratories

Trilinos Framework and Tools

= Plans for Upcoming Year
= Make public repo identical to developer repo
Put on Github, support pull request workflow

= Move trilinos-user and trilinos-announce mail lists to
trilinos.org

= 12.0 release scheduled for April
Chance for packages to break backward compatibility

= More collaboration agreements

= |mprove support for and integration of externally
developed packages

S=

Q

g3
=%

TRILINOS SW ENGINEERING
TECHOLOGIES AND INTEGRATION

Trilinos Software Engineering Technologies and Integration

Progress in last year:
*TriBITS Hosted on Github
» URL: https://github.com/TriBITSPub/TriBITS
» Github issues, pull requests, etc.
« Snapshotted into Trilinos (keep integrated).
» http://trac.trilinos.org/wiki/TriBITSTrilinosDev

*TriBITS Documentation: Developers guide 170+ pages, build/test reference 30+
pages, overview document in progress ...

Plans for Next Year:

*TriBITS System (IDEAS Project)

« Partition TriBITS into lighter-weight framework(s), better support wrapping external
software as a TriBITS package, etc.

« Merge TriBITS concepts of Packages and TPLs => Construct larger meta-projects,
build/install/test meta-projects in pieces, extract and build/install individual packages,
(optionally) build Trilinos with TPLs, use export XXXConfig.cmake files as glue.

« Standard installations of TriBITS

« Overview and tutorials

* Implementation of TriBITS Lifecycle Model in TriBITS system => Targeted metrics
and testing of backward compatibility, valgrind, coverage, etc.

*TriBITS Lifecycle Model Adoption and Refinement: IDEAS, Trilinos, CASL

Sandia
"1 National

Laboratories

S=

Q

g3
=%

TRILINOS EMBEDDED NONLINEAR
ANALYSIS TOOLS

Embedded Nonlinear Analysis Tools Capability Area
We are: top level algorithms (outermost loops)

» solution of nonlinear equations

« time integration

» bifurcation tracking / stability analysis / parameter continuation

« optimization (black-box, PDE-constrained, full-space)

* uncertainty quantification

» multi-physics coupling

* model order reduction

Governing Philosophy: “Analysis beyond Simulation,”
Goal: to automate many computational analysis and design tasks, using applied
math and algorithms to replace trial-and-error or repeated simulation.

» parameter studies

* sensitivity analysis

« calibration

* optimization

* locating instabilities

* performing UQ

Trilinos Strategic Goals that we align with:
1. Full Vertical Coverage
2. Hardened Solvers
3. Scalability

Trilinos Packages in the Embedded Nonlinear Analysis Capability Area
Package Name Quick Description Point of Contact
Piro Uniform Wrapper for most ENAT Capabilities Andy Salinger
NOX Nonlinear Solver with Globalized Newton’ s methods Roger Pawlowski
LOCA Parameter Continuation, Bifurcation Tracking, 4D Eric Phipps
Rythmos Time integration algorithms
Sacado Automatic Differentiation using Expression Templates Eric Phipps
Stokhos Stochastic-Galerkin Uncertainty Quantification Tools Eric Phipps
TriKota Interface to Dakota for a Trilinos app Andy Salinger
ROL Embedded Optimization Ridzal, Kouri
PIKE Multi-Physics coupling Pawlowski
Razor Model Order Reduction Cortial & Carlberg, Kalashnikova

Related Efforts Outside of Trilinos

Dakota Dakota is a mature and widely-used software toolkit that delivers many
analysis capabilities using a non-intrusive (a.k.a. blackbox) interface...

Albany, Codes built in Albany or on Panzer are born with transformational

Panzer analysis capabilities. M

_ Embedded Nonlinear Analysis Tools and @Eﬁ?ﬂm
__Piro Abstract Interfaces
Analysis Tools
(black-box)
Dakota
ROL ModelEvaluator
OptiPack

ModelEvaluator AP > Composite Physics |
Analysis Tools o -N PIKE
(embedded) A Nonlinear Elim.
NOX (| |
Rythmos
LOCA ROL Ridzal Wed 10:00
Stokhos Adjoints Perego Wed 10:50
Anasazi PR PIKE Pawlowski Wed 11:10
Application Assembl
ROL EE — Y Stokhos Phipps Wed 2:40
| Discretizations |
Stratimikos | Derivative Tools |

| Linear Algebra |

BEE¥
=N

TRILINOS UX

Trilinos User Experience Capability Area)&,

Bill Spotz, lead

Web Site Design (Dena Vigil, lead)

= Trilinos.org is on-line
= Largely just a placeholder right now
= Missing content

= Plans are converging for Content Management System
= Thursday brown bag roundtable for data base design (please participate!)

= DB relationship to canonical information in Trilinos repository
= Policies and tools to keep information synchronized

= Collapsible documentation for ParameterlLists
= Automated system for dynamic content in doxygen (demo)
= Infrastructure is ready for developers to start implementing
= |nstructions in doc/DocumentingParametertlLists/memo

National

Trilinos User Experience Capability Area T

Documentation, Examples and Tutorials (Mark Hoemmen, lead)

= We have 3 tutorials this year! = Bigchallenge: MPI+X
= VECPAR (summer, full day!) = Programming models and interfaces are in flux
= EuroTUG (summer) = Refactor (necessarily) takes time from UX

= TUG (this week)
= Think of ways to make your time scale

= New resources and tutorial materials * Leverage nightly tests and other automation
= Trilinos virtual machine / install (Jim Willenbring) = Make examples also serve as tests
= Paratools servers (Sameer Shende, U Oregon) = Build a tutorial out of examples
* Muelu tutorial with its own virtual machine = Add searchable metadata to examples
(Tobias Wiesner)
= Kokkos tutorial examples (Christian Trott) . Cross-package higher-level interfaces?

= Anasazi examples (Alicia Klinvex) and manual

. = |fI'ma new user and | want to build a preconditioner
(Rich Lehoucq)

for my linear system, where do | look? Do | go
straight to the packages or look in Stratimikos?
= Progress in making tutorials scalable (meaning
O(1) time to prepare or hand off)
= (+) More examples live in Trilinos repository
= (+) Tested nightly; appear in Doxygen
automatically

= (-) Virtual machine / WebTrilinos prep still
manual

Sandia
"1 National
Laboratories

Trilinos User Experience Capability Area

Simplified Layers & Skins (Bill Spotz, lead)

= Enthought SBIR
= Develop a distributed array capability for Python (DistArray), with a
NumPy-like interface
= Develop a protocol for copy-less conversions to data structures to and
from Trilinos, PETSc, Global Arrays, etc.

= Sandia Role: Enhance PyTrilinos to work with DistArrays
= New Domi package for distributed multi-dimensional data
= New wrappers for Tpetra, Domi, others to come ...

= Employ converters to use DistArrays

= Not much work on ForTrilinos or CTrilinos fronts
= Much discussion about using Stratimikos as a high-level interface

= Registration, templates, circular dependencies...

What is the Discretization Capability (@)=,
Area”

The Discretization Capability Area is a collection of low-level software
tools that enable rapid development of application codes based on the
numerical solution of partial differential equations (PDESs).

— The nltty-g rltty that takes
: UL ‘ you from the ‘
meshing, partitioning computational mesh to

your first linear system.

Discretization Capability Area) s

Which packages?

FEI, Panzer

user-defined assignment and management of global degrees of freedom; assembly
of local PDE discretization data into distributed linear systems; etc.

Shards

definition of cell topology

Intrepid
local (cell-based) FE/FV/FD basis definition;
numerical integration; cell geometry; etc.

Phalanx

decomposition of complex PDE systems into a number of
elementary user-defined expressions; efficient management of
expression dependencies; hooks to embedded tools, etc.

Sandia
’11 National
Laboratories

Developments and directions

Intrelab: (developers: D. Ridzal & J. Young)

« Enables access to Trilinos from Matlab

* Resides in Intrepid

» Access to Intrepid and ML.

« Can be extended to include other packages as needed.

« Great tool for rapid prototyping

Wednesday

« 8:30-8:50 — Introduction (D. Ridzal)
« 8:50-9:10 — Applications to elasticity (P. Kuberry)

Sandia
’11 National
Laboratories

Developments and directions

Flexibility of Intrepid enables non-standard use cases
Wednesday talks:

* A spectral Semi-Lagrangian transport scheme
9:10-9:30 S. Moe

« A second order CVFEM method
9:30-10:00 K. Peterson

Transitioning to Kokkos
* Thursday, 8:30-9:00 (Demeshko/Edwards)

