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Overview
● FlashEigen extends the Anasazi eigensolvers to store sparse matrices and dense 

matrices on commodity SSDs.

● Our SSD eigensolver achieves the performance comparable to the in-memory 

implementation in a large parallel machine when computing a small number of 

eigenvalues.

● Our solution can compute eigenvalues of billion-node sparse graphs in a single 

machine.



Motivation

Sequential read: 540 MB/s

Sequential write: 480 MB/s



Motivation

...

Up to 24×

Sequential read: 12 GB/s

Sequential write: 10 GB/s

One order of magnitude 

slower than RAM



Motivation

Sequential read: 9 GB/s

Sequential write: 6.6 GB/s



Can we replace RAM with SSDs?
● Target applications: large-scale data analysis.

● Speed vs. Scalability vs. Cost

Goals:
● Scalability >= 10
● Cost ≈ 10%
● Speed ≈ 50%
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We need an eigensolver
● Why to choose the Anasazi framework?

○ Extreme flexibility:

■ User-defined sparse matrix multiplication

■ User-defined dense matrices

○ Block extension.

○ Multiple state-of-art eigensolvers.



Target graphs
● Super sparse: |E| / |V| = 10~100

● Power-law distribution in vertex degree

● Nearly random vertex connection.

● Examples:

○ Social network graphs

○ Web graphs

The subspace requires roughly 

the same or larger storage size 

than the sparse matrix.

=>



FlashEigen architecture
● Three layers:

○ SAFS

■ Deliver maximal I/O 

performance of SSDs

○ FlashEigen

■ A subset of FlashMatrix

● Sparse matrix 

multiplication.

● Dense matrix operations.

■ Implement Anasazi matrix 

operations

○ Anasazi

■ Unmodified code

FlashEigen

Anasazi eigensolvers
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Subspace
● The vector subspace storage >= the sparse matrix

○ Vectors are stored on SSDs.

○ Data is streamed to memory for computation => sequential I/O.

● Implement Anasazi::MultiVec

○ Vectors are groups into dense matrices (n × block_size).

○ Keep the most recent dense matrix in RAM to reduce I/O.

● The most I/O-intensive matrix operation:

○ Dense matrix multiplication for reorthogonalization.

n × block_size

MvTimesMatAddMv MvAddMv MvScale

MvTransMv MvDot MvNorm

SetBlock MvRandom MvInit



Sparse matrix
● Semi-external memory sparse matrix 

multiplication => sequential I/O

○ Sparse matrix (n × n) on SSDs.

○ Dense matrix (n × b) in RAM.

○ b has to be small.

● Implement Anasazi::OperatorTraits::apply().

● In-memory optimizations:

○ Cache blocking into small tiles to reduce CPU cache 

misses.

○ Group multiple tiles into super tiles based on the 

number of columns in dense matrices.

RAM

SSD

n × block_size



Supported eigensolvers in FlashEigen
● BlockKrylovSchur

● BlockDavidson

● LOBPCG

● We use BlockKrylovSchur for our eigenvalue problems:

○ The fastest in memory.

○ Generates the least I/O.

○ Use the least memory.



Graphs for performance evaluation
●

# vertices # edges

Friendster 65M 1.7B

KNN distance graph 62M 12B

RMat-100M-40 100M 3.7B

RMat-100M-160 100M 14B

Web page graph 3.4B 129B



Evaluation platform
● Dell PowerEdge R920

○ 4 Xeon CPU E7-4860 v2 @ 2.60GHz (48 cores)

○ 1TB DDR3-1600

● 24 OCZ Intrepid 3600 SATA SSD (10TB total)

● 3 LSI SAS 9300-8e host bus adapter

● The total cost: ~$50,000



Speed of sparse matrix multiplication (SpMM)
● Our semi-external 

memory (SEM) SpMM 

achieves at least 50% of 

our in-memory (IM) 

SpMM.

● Both our IM and SEM 

SpMM outperforms 

Trilinos, especially with 

4 columns in the dense 

matrices.

SpMV Dense matrix 

has 4 columns



Speed of dense matrix multiplication (DMM)
● DMM for reorthogonalization

○ Block size = 4

○ Vary #blocks (1 - 128).

● Our EM DMM is only 25% of 

IM DMM.



I/O throughput in EM DMM
● External-memory 

dense matrix 

multiplication is 

bottlenecked by SSDs.

○ Average I/O 

throughput is over 

10GB/s.

○ The maximal I/O 

throughput of the 

hardware is 12GB/s.



Speed of eigensolvers
● EM KrylovSchur achieves 

40%-60% speed of IM 

KrylovSchur.

● EM KrylovSchur has 

performance close to the 

Trilinos KrylovSchur.



Scalability of FlashEigen
● Page graph:

● Average I/O throughput is 11GB/s.

#eigenvalues runtime memory read write

8 4.2 hours 120GB 145TB 4TB

32 24 hours 120GB 922TB 11TB



The story goes on (1)
● Good news:

○ Samsung enterprise SAS SSD (SM1635)

■ Sequential read: 1400 MB/s

■ Sequential write: 700 MB/s

■ Random read IOPS: 195K IOPS

■ Random write IOPS: 24K IOPS

=> 30GB/s with 24 SSDs?



The story goes on (2)
● DMM for reorthogonalization:

○ Subspace size: 128

○ The block size varies (4-128).

○ Computation increases by 32.

○ I/O increases by 2.

● Using a larger block size 

reduces the performance gap 

between IM and EM.

● Our solution works better for 

other eigensolvers such as 

BlockDavidson and LOBPCG.



Conclusion
● The SSD-based eigensolver can have performance comparable to in-memory 

eigensolvers.

● For sparse graphs, SSDs are still the bottleneck, especially in dense matrix 

multiplication.

Thank you!

Da Zheng: dzheng5@jhu.edu

FlashEigen: https://github.com/icoming/FlashGraph



I/O throughput in SEM SpMM
● On some graphs, 

SpMV is bottlenecked 

by SSDs.

SpMV SpMM with 4-col 

dense matrix


