Extend Anasazi eigensolvers for billionnode graphs on an array of commodity SSDs

 $\bullet \bullet \bullet$

Da Zheng, Randal Burns, Joshua Vogelstein, Alexander Szalay Johns Hopkins University

Overview

- FlashEigen extends the Anasazi eigensolvers to store sparse matrices and dense matrices on commodity SSDs.
- Our SSD eigensolver achieves the performance comparable to the in-memory implementation in a large parallel machine when computing a small number of eigenvalues.
- Our solution can compute eigenvalues of billion-node sparse graphs in a single machine.

Motivation

Sequential read: 540 MB/s Sequential write: 480 MB/s

Motivation

INTREPIO

INTREPIO

...

INTREPIO

Sequential read: 12 GB/s Sequential write: 10 GB/s

One order of magnitude slower than RAM

INTREPID

Motivation

Can we replace RAM with SSDs?

- Target applications: large-scale data analysis.
- Speed vs. Scalability vs. Cost

Goals:

- Scalability >= 10
- Cost ≈ 10%
- Speed ≈ 50%

The full picture

We need an eigensolver

- Why to choose the Anasazi framework?
 - Extreme flexibility:
 - User-defined sparse matrix multiplication
 - User-defined dense matrices
 - Block extension.
 - Multiple state-of-art eigensolvers.

Target graphs

- Super sparse: |E| / |V| = 10~100
- Power-law distribution in vertex degree
- Nearly random vertex connection.
- Examples:
 - Social network graphs
 - Web graphs

The subspace requires roughly => the same or larger storage size than the sparse matrix.

FlashEigen architecture

- Three layers:
 - SAFS
 - Deliver maximal I/O performance of SSDs
 - FlashEigen
 - A subset of FlashMatrix
 - Sparse matrix multiplication.
 - Dense matrix operations.
 - Implement Anasazi matrix operations
 - Anasazi
 - Unmodified code

Anasazi eigensolvers					
FlashEigen	Sparse matrix	Dense matrix			
SAFS					
SSD SSD	SSD SSD	SSD SSD			

Subspace

- The vector subspace storage >= the sparse matrix
 - Vectors are stored on SSDs.
 - Data is streamed to memory for computation => sequential I/O.

 $n \times block_size$

- Implement Anasazi::MultiVec
 - Vectors are groups into dense matrices (n × block_size).
 - Keep the most recent dense matrix in RAM to reduce I/O.
- The most I/O-intensive matrix operation:
 - Dense matrix multiplication for reorthogonalization.

MvTimesMatAddMv	MvAddMv	MvScale
MvTransMv	MvDot	MvNorm
SetBlock	MvRandom	MvInit

Sparse matrix

- Semi-external memory sparse matrix multiplication => sequential I/O
 - \circ Sparse matrix (n × n) on SSDs.
 - \circ Dense matrix (n × b) in RAM.
 - b has to be small.
- Implement Anasazi::OperatorTraits::apply().
- In-memory optimizations:
 - Cache blocking into small tiles to reduce CPU cache misses.
 - Group multiple tiles into super tiles based on the number of columns in dense matrices.

Supported eigensolvers in FlashEigen

- BlockKrylovSchur
- BlockDavidson
- LOBPCG
- We use BlockKrylovSchur for our eigenvalue problems:
 - The fastest in memory.
 - Generates the least I/O.
 - \circ $\;$ Use the least memory.

Graphs for performance evaluation

edges *#* vertices Friendster 1.7B 65M KNN distance graph 62M 12B RMat-100M-40 100M 3.7B RMat-100M-160 100M 14B Web page graph 3.4B 129B

Evaluation platform

- Dell PowerEdge R920
 - 4 Xeon CPU E7-4860 v2 @ 2.60GHz (48 cores)
 - 1TB DDR3-1600
- 24 OCZ Intrepid 3600 SATA SSD (10TB total)
- 3 LSI SAS 9300-8e host bus adapter
- The total cost: ~\$50,000

Speed of sparse matrix multiplication (SpMM)

- Our semi-external memory (SEM) SpMM achieves at least 50% of our in-memory (IM) SpMM.
- Both our IM and SEM SpMM outperforms Trilinos, especially with 4 columns in the dense matrices.

has 4 columns

Speed of SpMM relative to our in-memory SpMM

Speed of dense matrix multiplication (DMM)

- DMM for reorthogonalization
 - Block size = 4
 - Vary #blocks (1 128).
- Our EM DMM is only 25% of IM DMM.

Speed of DMM relative to our in-memory DMM

I/O throughput in EM DMM

- External-memory dense matrix multiplication is bottlenecked by SSDs.
 - Average I/O
 throughput is over
 10GB/s.
 - The maximal I/O
 throughput of the
 hardware is 12GB/s.

Speed of eigensolvers

- EM KrylovSchur achieves 40%-60% speed of IM KrylovSchur.
- EM KrylovSchur has performance close to the Trilinos KrylovSchur.

Scalability of FlashEigen

• Page graph:

#eigenvalues	runtime	memory	read	write
8	4.2 hours	120GB	145TB	4TB
32	24 hours	120GB	922TB	11TB

• Average I/O throughput is 11GB/s.

The story goes on (1)

- Good news:
 - Samsung enterprise SAS SSD (SM1635)
 - Sequential read: 1400 MB/s
 - Sequential write: 700 MB/s
 - Random read IOPS: 195K IOPS
 - Random write IOPS: 24K IOPS

=> 30GB/s with 24 SSDs?

The story goes on (2)

- DMM for reorthogonalization:
 - Subspace size: 128
 - The block size varies (4-128).
 - Computation increases by 32.
 - \circ I/O increases by 2.
- Using a larger block size reduces the performance gap between IM and EM.
- Our solution works better for other eigensolvers such as BlockDavidson and LOBPCG.

Conclusion

- The SSD-based eigensolver can have performance comparable to in-memory eigensolvers.
- For sparse graphs, SSDs are still the bottleneck, especially in dense matrix multiplication.

Thank you! Da Zheng: dzheng5@jhu.edu FlashEigen: https://github.com/icoming/FlashGraph

I/O throughput in SEM SpMM

 On some graphs, SpMV is bottlenecked by SSDs.

dense matrix