
Extend Anasazi eigensolvers for billion-
node graphs on an array of commodity

SSDs

Da Zheng, Randal Burns, Joshua Vogelstein, Alexander Szalay

Johns Hopkins University

Overview
● FlashEigen extends the Anasazi eigensolvers to store sparse matrices and dense

matrices on commodity SSDs.

● Our SSD eigensolver achieves the performance comparable to the in-memory

implementation in a large parallel machine when computing a small number of

eigenvalues.

● Our solution can compute eigenvalues of billion-node sparse graphs in a single

machine.

Motivation

Sequential read: 540 MB/s

Sequential write: 480 MB/s

Motivation

...

Up to 24×

Sequential read: 12 GB/s

Sequential write: 10 GB/s

One order of magnitude

slower than RAM

Motivation

Sequential read: 9 GB/s

Sequential write: 6.6 GB/s

Can we replace RAM with SSDs?
● Target applications: large-scale data analysis.

● Speed vs. Scalability vs. Cost

Goals:
● Scalability >= 10
● Cost ≈ 10%
● Speed ≈ 50%

The full picture

SAFS

asynchronous user-task I/O interface

page cache

SSD SSD SSD SSD

vertex
tasks

FlashGraph

graph algorithms

vertex-centric interface

vertex
scheduler

vertex
programs

graph-algs
library

time-series graph
analysis

FlashMatrix

General operators

R interface

Optimizer

ML libStat lib

SSD SSD SSD

Graph

analysis

Matrix

analysis

We need an eigensolver
● Why to choose the Anasazi framework?

○ Extreme flexibility:

■ User-defined sparse matrix multiplication

■ User-defined dense matrices

○ Block extension.

○ Multiple state-of-art eigensolvers.

Target graphs
● Super sparse: |E| / |V| = 10~100

● Power-law distribution in vertex degree

● Nearly random vertex connection.

● Examples:

○ Social network graphs

○ Web graphs

The subspace requires roughly

the same or larger storage size

than the sparse matrix.

=>

FlashEigen architecture
● Three layers:

○ SAFS

■ Deliver maximal I/O

performance of SSDs

○ FlashEigen

■ A subset of FlashMatrix

● Sparse matrix

multiplication.

● Dense matrix operations.

■ Implement Anasazi matrix

operations

○ Anasazi

■ Unmodified code

FlashEigen

Anasazi eigensolvers

Sparse matrix Dense matrix

SAFS

SSD SSD SSD SSD SSD SSD

Subspace
● The vector subspace storage >= the sparse matrix

○ Vectors are stored on SSDs.

○ Data is streamed to memory for computation => sequential I/O.

● Implement Anasazi::MultiVec

○ Vectors are groups into dense matrices (n × block_size).

○ Keep the most recent dense matrix in RAM to reduce I/O.

● The most I/O-intensive matrix operation:

○ Dense matrix multiplication for reorthogonalization.

n × block_size

MvTimesMatAddMv MvAddMv MvScale

MvTransMv MvDot MvNorm

SetBlock MvRandom MvInit

Sparse matrix
● Semi-external memory sparse matrix

multiplication => sequential I/O

○ Sparse matrix (n × n) on SSDs.

○ Dense matrix (n × b) in RAM.

○ b has to be small.

● Implement Anasazi::OperatorTraits::apply().

● In-memory optimizations:

○ Cache blocking into small tiles to reduce CPU cache

misses.

○ Group multiple tiles into super tiles based on the

number of columns in dense matrices.

RAM

SSD

n × block_size

Supported eigensolvers in FlashEigen
● BlockKrylovSchur

● BlockDavidson

● LOBPCG

● We use BlockKrylovSchur for our eigenvalue problems:

○ The fastest in memory.

○ Generates the least I/O.

○ Use the least memory.

Graphs for performance evaluation
●

vertices # edges

Friendster 65M 1.7B

KNN distance graph 62M 12B

RMat-100M-40 100M 3.7B

RMat-100M-160 100M 14B

Web page graph 3.4B 129B

Evaluation platform
● Dell PowerEdge R920

○ 4 Xeon CPU E7-4860 v2 @ 2.60GHz (48 cores)

○ 1TB DDR3-1600

● 24 OCZ Intrepid 3600 SATA SSD (10TB total)

● 3 LSI SAS 9300-8e host bus adapter

● The total cost: ~$50,000

Speed of sparse matrix multiplication (SpMM)
● Our semi-external

memory (SEM) SpMM

achieves at least 50% of

our in-memory (IM)

SpMM.

● Both our IM and SEM

SpMM outperforms

Trilinos, especially with

4 columns in the dense

matrices.

SpMV Dense matrix

has 4 columns

Speed of dense matrix multiplication (DMM)
● DMM for reorthogonalization

○ Block size = 4

○ Vary #blocks (1 - 128).

● Our EM DMM is only 25% of

IM DMM.

I/O throughput in EM DMM
● External-memory

dense matrix

multiplication is

bottlenecked by SSDs.

○ Average I/O

throughput is over

10GB/s.

○ The maximal I/O

throughput of the

hardware is 12GB/s.

Speed of eigensolvers
● EM KrylovSchur achieves

40%-60% speed of IM

KrylovSchur.

● EM KrylovSchur has

performance close to the

Trilinos KrylovSchur.

Scalability of FlashEigen
● Page graph:

● Average I/O throughput is 11GB/s.

#eigenvalues runtime memory read write

8 4.2 hours 120GB 145TB 4TB

32 24 hours 120GB 922TB 11TB

The story goes on (1)
● Good news:

○ Samsung enterprise SAS SSD (SM1635)

■ Sequential read: 1400 MB/s

■ Sequential write: 700 MB/s

■ Random read IOPS: 195K IOPS

■ Random write IOPS: 24K IOPS

=> 30GB/s with 24 SSDs?

The story goes on (2)
● DMM for reorthogonalization:

○ Subspace size: 128

○ The block size varies (4-128).

○ Computation increases by 32.

○ I/O increases by 2.

● Using a larger block size

reduces the performance gap

between IM and EM.

● Our solution works better for

other eigensolvers such as

BlockDavidson and LOBPCG.

Conclusion
● The SSD-based eigensolver can have performance comparable to in-memory

eigensolvers.

● For sparse graphs, SSDs are still the bottleneck, especially in dense matrix

multiplication.

Thank you!

Da Zheng: dzheng5@jhu.edu

FlashEigen: https://github.com/icoming/FlashGraph

I/O throughput in SEM SpMM
● On some graphs,

SpMV is bottlenecked

by SSDs.

SpMV SpMM with 4-col

dense matrix

