
Template-based Generic Programming 

Techniques for Finite Element Assembly 

Roger Pawlowski, Eric Cyr, Eric Phipps, Andrew Salinger and John Shadid 

Sandia  National Laboratories 

 

Sandia National Laboratories is a multi-program laboratory 

managed and operated by Sandia Corporation, a wholly owned 

subsidiary of Lockheed Martin Corporation, for the U.S. 

Department of Energy's National Nuclear Security Administration 

under contract DE-AC04-94AL85000. 

SAND2012-1207 C 



Challenges in  

Multiphysics Simulation 
Physics Model Complexity 

• Solving multiphysics PDE systems generates complexity: 

– Complex interdependent coupled physics 

– Multiple proposed mathematical models 

– Different numerical formulations (e.g. space-time discretizations) 

• Supporting multiplicity in models and solution techniques often leads to 

complex code with complicated logic and fragile software designs 
 

Analysis Beyond Forward Simulation 

• Forward solves are not enough – we want to explore complex solution spaces: 

– Simultaneous analysis and design adds requirements (typically 

sensitivities) 

– Do not burden analysts/physics experts with analysis algorithm 

requirements: i.e. programming sensitivities for implicit solvers, 

optimization, stability, bifurcation analysis and UQ 

 

Engine must be flexible, extensible, maintainable and EFFICIENT! 



Challenges in  

Multiphysics Simulation 
Physics Model Complexity 

• Solving multiphysics PDE systems generates complexity: 

– Complex interdependent coupled physics 

– Multiple proposed mathematical models 

– Different numerical formulations (e.g. space-time discretizations) 

• Supporting multiplicity in models and solution techniques often leads to 

complex code with complicated logic and fragile software designs 
 

Analysis Beyond Forward Simulation 

• Forward solves are not enough – we want to explore complex solution spaces: 

– Simultaneous analysis and design adds requirements (typically 

sensitivities) 

– Do not burden analysts/physics experts with analysis algorithm 

requirements: i.e. programming sensitivities for implicit solvers, 

optimization, stability, bifurcation analysis and UQ 

 

Engine must be flexible, extensible, maintainable and EFFICIENT! 

Directed Acyclic Graph-based Assembly 

Template-based Generic Programming 



DAG-based Assembly 

• Widely used idea in both research and 
production codes.  Codes leveraging this: 
– Albany: Salinger 

– Amanzi: Moulton 

– Charon/Drekar/Panzer: Pawlowski and Cyr 

– SIERRA/Aria: Notz, … 

– Uintah: Berzins and Sutherland 

 
P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, Graph-
Based Software Design for Managing Complexity and 
Enabling Concurrency in Multiphysics PDE Software, ACM 
Transactions on Mathematical Software, Vol. 39, No. 1 (2012). 

 



Lightweight DAG-based  

Expression Evaluation 
• Decompose a complex model into a 

graph of simple kernels (functors) 
 

• Supports rapid development, separation 

of concerns and extensibility. 
 

• A node in the graph evaluates one or 

more fields: 

– Declare fields to evaluate 

– Declare dependent fields 

– Function to perform evaluation 
 

• Separation of data (Fields) and kernels 

(Expressions) that operate on the data 
– Fields are accessed via multidimensional array 

interface 
 

• Can use for asynchronous task 

management on node! 



Navier-Stokes Example 

•Graph-based equation 

description 

– Automated runtime 

dependency tracking 

(Topological sort to order 

the evaluations) 

– Each node is a point of 

extension that can be 

swapped out 

– Easy to add equations 

– Easy to change models 

– Easy to test in isolation 

– User controlled granularity 

– No unique decomposition 

 

•Multi-core research: 

– Spatial vs algorithmic 

decomposition 

– Kernel launch: fused vs 

separate 

 

 

r
i 

fr
i 



• Model problem 

 

 

• Direct to steady-state, implicit time-stepping, linear stability analysis 

 

 

 

• Steady-state sensitivity analysis 

 

 

 

 

• Bifurcation analysis 

Analysis Beyond 

Forward Simulation 



Template-based Generic  

Programming (TBGP) 

• Implement equations templated on the 

scalar type 
 

• Libraries provide new scalar types that 

overload the math operators to 

propagate embedded quantities 

• Expression templates for 

performance 

• Derivatives: FAD, RAD 

• Stochastic Galerkin: PCE 

• Multipoint: Ensemble 

 

 

 

 

double Fad<double> 

Fad: 

Seeding/initializing V 

For J: 

For Jw: 



TBGP Example 

void computeF(double* x, double* f)  

{  

  f[0] = 2.0 * x[0] + x[1] * x[1];  

  f[1] = x[0] * x[0] * x[0] + sin(x[1]);  

} 

template <typename ScalarT>  

void computeF(ScalarT* x, ScalarT* f)  

{  

  f[0] = 2.0 * x[0] + x[1] * x[1]; 

  f[1] = x[0] * x[0] * x[0] + sin(x[1]);  

}  

void computeJ(double* x, double* J)  

{  

  // J(0,0)  

  J[0] = 2.0;  

  // J(0,1)  

  J[1] = 2.0 * x[1]; 

  // J(1,0)  

  J[2] = 3.0 * x[0] * x[0];  

  // J(1,1)  

  J[3] = cos(x[1]);  

} 

DFad<double>* x; 

DFad<double>* f; 

… 

computeF(x,f); 

Same accuracy as writing analytic derivative:  

No differencing error involved! 

double* x; 

double* f; 

… 

computeF(x,f); 



Example Scalar Types 
(Trilinos Stokhos and Sacado: E. Phipps) 

Scalar Types 

double • Residual 

 

• Jacobian 

 

• Hessian 

 

 

• Parameter Sensitivities 

 

• Jv 

 

• Stochastic Galerkin Residual 

 

• Stochastic Galerkin Jacobian 

Evaluation Types 

DFad<double> 

DFad<double> 

PCE<double>  

DFad< PCE<double> >  

1. All evaluation types are compiled into single library and managed at 

runtime from a non-template base class via a template manager. 

2. Not tied to double (can do arbitrary precision) 

3. Can mix multiple scalar types in any evaluation type. 

4. Can specialize any node: Write analytic derivatives for performance! 

DFad<double> 

DFad< DFad<double> > 



Galerkin Weak form ignoring boundary terms for 

simplicity: 

TBGP in Multiphysics  

PDE Assembly 

PDE Equation: 

FEM Basis: 

Residual Equation: 



Break mesh into  

worksets of 

elements 

Gather solution values and 

seed Scalar type 

Extract values from 

Scalar type and 

scatter to global 

residual 

• Only have to specialize two 

expressions for evaluation 

type: 

• Gather/Seed 

• Extract/Scatter 

• All other code is reused 

• Achieved separation of 

concerns! 

• Machine precision accurate 

derivatives 

• Kokos hides node 

specializations 

TBGP + DAG: Global Evaluation 

Gather/Seed 

Extract/Scatter 



Seed 

Extract 

DFad< DFad<double> > 

Seed 

Extract 

DFad<double> 

Handling Complexity in Analysis Requirements 

Scalar Type 

Seed 

Extract 

double 

Evaluation Type 

Param. Sens., Jv, Adjoint, PCE (SGF, SGJ), AP 

Take Home Message: 

Reuse the same code base! 

Equations decoupled from algorithms! 

Machine precision accuracy! 

TBGP, Pawlowski, 

Phipps, Salinger; 

Scientific 

Programming, in 

press. 



Node (functor) Example 
template<typename EvalT, typename Traits> 

class NonlinearSource : public PHX::EvaluatorWithBaseImpl<Traits>, 

                                        public PHX::EvaluatorDerived<EvalT, Traits> { 

public:   

  NonlinearSource(const Teuchos::ParameterList& p); 

  void postRegistrationSetup(typename Traits::SetupData d, PHX::FieldManager<Traits>& vm); 

  void evaluateFields(typename Traits::EvalData d); 

  void preEvaluate(typename Traits::PreEvalData d); 

  void postEvaluate(typename Traits::PostEvalData d); 

   

  KOKKOS_INLINE_FUNCTION 

  void operator () (const int i) const; 

 

private: 

  typedef typename EvalT::ScalarT ScalarT; 

 

  PHX::MDField<ScalarT,Cell,Point> source; 

  PHX::MDField<const ScalarT,Cell,Point> density; 

  PHX::MDField<const ScalarT,Cell,Point> temp; 

 

  std::size_t cell_data_size; 

}; 

 



Node (functor) Example 

template<typename EvalT, typename Traits> NonlinearSource<EvalT, Traits>:: 

NonlinearSource(const Teuchos::ParameterList& p) : … 

{  

  this->addEvaluatedField(source); 

  this->addDependentField(density); 

  this->addDependentField(temp); 

  this->setName("NonlinearSource"); 

} 

 

template<typename EvalT, typename Traits> 

KOKKOS_INLINE_FUNCTION 

void NonlinearSource<EvalT, Traits>::operator () (const int i) const 

 { 

    for (int ip = 0; ip < density.dimension(1); ++ip) 

      source(i,ip) =  density(i,ip) * temp(i,ip) * temp(i,ip); 

  } 

 

template<typename EvalT, typename Traits> 

void NonlinearSource<EvalT, Traits>:: 

evaluateFields(typename Traits::EvalData d) 

{    

 Kokkos::parallel_for (d.num_cells, *this); 

} 



Rapid Development of New Physics 
(Single driver and collection of interchangeable evaluators) 

Semiconductor  

Drift Diffusion 

Multi-phase 

Chemically 

Reacting Aerosol  

NGNP Reactor 

Chemicurrent 

CFD and  

MHD 

DAG Assembly +TBGP 



Jacobian Evaluation Efficiency 

• Tremendous savings in development time 

• Coding sensitivities is error prone and time consuming, especially 

when accounting for changing models/parameters! 

• Vector intrinsics are hidden in the scalar types 

 



Sensitivity Analysis Capability  

Demonstrated on the QASPR Simple Prototype 

1st-order Finite Difference Accuracy 

• Bipolar Junction Transistor 

• Pseudo 1D strip (9x0.1 micron) 

• Full defect physics 

• 126 parameters 

Sensitivities show dominant physics 

Comparison to FD: 
 Sensitivities at all time points 

 More accurate 
 More robust 
 14x faster! 

Sensitivities computed at all times 

FD perturbation size 



Large-Scale Semiconductor Device Simulations on 

IBM Blue Gene Platform (P. Lin) 

• Generic programming (via AD tools) 

is applied at the element level, not 

globally. 

• Weak scaling to 65k cores and two 

billion DOF: Jacobian evaluation via 

AD scales 

• Using all four cores per node with 

MPI process on each core. 

 

DOE/NNSA 

cores DOF Jacobian time 

256 7.93m 52.19 

1024 31.5m 52.28 

4096 126m 52.09 

8192 253m 52.82 

16384 504m 52.74 

32768 1.01b 52.96 

65536 2.01b 52.94 



•  JFNK (FD) 

 

 

 

• JFNK (AD) 

• Machine precision accurate 

• Ex: Solution varies 10^12 over domain 

 

 

 

 

• Explicit Jacobian (AD generated) 

• Machine precision accurate 

• Complexity ideas allow for storing 

individual operators for 

preconditioning! 

• Larger memory requirements 

Example: JFNK 
(2D Diffusion/Rxn System: 2 eqns)  

Relative times

F(x) 1.00

J(x) 4.45

Jv (AD) 1.53

Mv (matvec) 0.06

JFNK (AD) 

Explicit J (AD) 

JFNK (AD) 

Explicit J (AD) 



Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting  
H2, O2,, Ar, Opposed Flow Jet Reactor 

O2, Ar 

H2, Ar 

70 steady state reacting flow solves 

(10 species, 19 reactions) 

Approx. Physical Time scales (sec.):  

• Chemical kinetics: 10-12 to 10-4 

• Momentum diffusion: 10-6 

• Heat conduction: 10-6 

• Mass diffusion: 10-5 to 10-4  

• Convection: 10-5 to 10-4  

• Diffusion flame dynamics:       (steady) 

Streamlines 

Temperature (Min. 300oK, Max 2727oK) 

OH (Min. 0.0, Max 0.177) 

Ignited branch  



Embedded UQ in Drekar:  
Rod to Fluid Heat Transfer 



Issues 
• Very flexible, maybe too much so? 

– Extreme flexibility allows you to shoot yourself in the foot! 

– Blind Application of TBGP can be inefficient (Minimize Scatter, AD 
sensitivities at the local element level) 
 

• Efficient expression templates may require more recent compilers: 
– Gnu 4.6+, Intel 11+ 

 

• AD can be slower than hand coded derivatives 
– For implicit methods, assembly is usually not the bottleneck – inverting the 

Jacobian is the bottleneck 

– Adding new parameter sensitivities is difficult for (multiple) ever-changing 
physics models, … 

– Can use AD as first cut for Jacobian, then go back and replace terms with 
hand coded where appropriate  

– Development time spent debugging hand coded Jacobians is significant! 
 

• Advanced C++ language features (templates) can be intimidating 
– Error reporting of templated code is improving 

– Expended significant effort  to minimize/hide templates from node impls 
 

 

 



Conclusions 

DAG + TBGP: 

• Exascale hardware  multiphysics  combinatorial 
explosion of sensitivity requirements. 

– Changing equation sets, formulations will change sensitivity 
requirements! 

• We can write very advanced multiphysics software 
that is efficient, flexible and maintainable but 
templates are crucial 

• Decoupling algorithms from equations is powerful: 
– We don’t write Jacobians anymore - enormous savings of 

manpower! 

• Generic programming allows: 
– Segregation of technologies 

– Easily adaptive environment (from SE standpoint) 

• Machine precision accuracy of required quantities is 
achieved 

• Future: Integration of ATM for functional parallelism 

 



Trilinos Tools for Supporting TBGP 

• Panzer: Multiphysics assembly framework 

• Intrepid:  Discretizations tools for PDEs 
– Basis functions, quadrature rules, … 

• Phalanx:  DAG Assembly manager 
– DAG for multiphysics complexity 

– Explicitly manages fields/kernels for different evaluation/scalar types 

• Stokhos: UQ Scalar Types 
– PCE and multipoint/ensemble scalar type classes/overloaded operators 

– Simultaneous ensemble propagation classes, overloaded operators 

– Tools and data structures for forming, solving embedded SG systems 

• Sacado: AD Scalar types 
– AD scalar types 

– Parameter library – tools to manage model parameters 

– MPL – simple implementation of some metaprogramming constructs 

• Kokkos (shards mda deprecated) 
– Multi-dimensional array for next-gen architectures 

 

1. R. P. Pawlowski, E. T. Phipps and A. G. Salinger, Automating Embedded Analysis Capabilities 

and Managing Software Complexity in Multiphysics Simulation, Part I:Template-based 

Generic Programming, Scientific Programming 20 (2012) 197–219. 

2. R. P. Pawlowski, E. T. Phipps, A. G. Salinger, S. J. Owen, C. M. Siefert and M. L. Staten, 

Automating Embedded Analysis Capabilities and Managing Software Complexity in 

Multiphysics Simulation, Part II: Application to Partial Differential Equations, Scientific 

Programming 20 (2012) 327–345. 


