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Challenges in  

Multiphysics Simulation 
Physics Model Complexity 

• Solving multiphysics PDE systems generates complexity: 

– Complex interdependent coupled physics 

– Multiple proposed mathematical models 

– Different numerical formulations (e.g. space-time discretizations) 

• Supporting multiplicity in models and solution techniques often leads to 

complex code with complicated logic and fragile software designs 
 

Analysis Beyond Forward Simulation 

• Forward solves are not enough – we want to explore complex solution spaces: 

– Simultaneous analysis and design adds requirements (typically 

sensitivities) 

– Do not burden analysts/physics experts with analysis algorithm 

requirements: i.e. programming sensitivities for implicit solvers, 

optimization, stability, bifurcation analysis and UQ 

 

Engine must be flexible, extensible, maintainable and EFFICIENT! 
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Directed Acyclic Graph-based Assembly 

Template-based Generic Programming 



DAG-based Assembly 

• Widely used idea in both research and 
production codes.  Codes leveraging this: 
– Albany: Salinger 

– Amanzi: Moulton 

– Charon/Drekar/Panzer: Pawlowski and Cyr 

– SIERRA/Aria: Notz, … 

– Uintah: Berzins and Sutherland 

 
P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, Graph-
Based Software Design for Managing Complexity and 
Enabling Concurrency in Multiphysics PDE Software, ACM 
Transactions on Mathematical Software, Vol. 39, No. 1 (2012). 

 



Lightweight DAG-based  

Expression Evaluation 
• Decompose a complex model into a 

graph of simple kernels (functors) 
 

• Supports rapid development, separation 

of concerns and extensibility. 
 

• A node in the graph evaluates one or 

more fields: 

– Declare fields to evaluate 

– Declare dependent fields 

– Function to perform evaluation 
 

• Separation of data (Fields) and kernels 

(Expressions) that operate on the data 
– Fields are accessed via multidimensional array 

interface 
 

• Can use for asynchronous task 

management on node! 



Navier-Stokes Example 

•Graph-based equation 

description 

– Automated runtime 

dependency tracking 

(Topological sort to order 

the evaluations) 

– Each node is a point of 

extension that can be 

swapped out 

– Easy to add equations 

– Easy to change models 

– Easy to test in isolation 

– User controlled granularity 

– No unique decomposition 

 

•Multi-core research: 

– Spatial vs algorithmic 

decomposition 

– Kernel launch: fused vs 

separate 
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• Model problem 

 

 

• Direct to steady-state, implicit time-stepping, linear stability analysis 

 

 

 

• Steady-state sensitivity analysis 

 

 

 

 

• Bifurcation analysis 

Analysis Beyond 

Forward Simulation 



Template-based Generic  

Programming (TBGP) 

• Implement equations templated on the 

scalar type 
 

• Libraries provide new scalar types that 

overload the math operators to 

propagate embedded quantities 

• Expression templates for 

performance 

• Derivatives: FAD, RAD 

• Stochastic Galerkin: PCE 

• Multipoint: Ensemble 

 

 

 

 

double Fad<double> 

Fad: 

Seeding/initializing V 

For J: 

For Jw: 



TBGP Example 

void computeF(double* x, double* f)  

{  

  f[0] = 2.0 * x[0] + x[1] * x[1];  

  f[1] = x[0] * x[0] * x[0] + sin(x[1]);  

} 

template <typename ScalarT>  

void computeF(ScalarT* x, ScalarT* f)  

{  

  f[0] = 2.0 * x[0] + x[1] * x[1]; 

  f[1] = x[0] * x[0] * x[0] + sin(x[1]);  

}  

void computeJ(double* x, double* J)  

{  

  // J(0,0)  

  J[0] = 2.0;  

  // J(0,1)  

  J[1] = 2.0 * x[1]; 

  // J(1,0)  

  J[2] = 3.0 * x[0] * x[0];  

  // J(1,1)  

  J[3] = cos(x[1]);  

} 

DFad<double>* x; 

DFad<double>* f; 

… 

computeF(x,f); 

Same accuracy as writing analytic derivative:  

No differencing error involved! 

double* x; 

double* f; 

… 

computeF(x,f); 



Example Scalar Types 
(Trilinos Stokhos and Sacado: E. Phipps) 

Scalar Types 

double • Residual 

 

• Jacobian 

 

• Hessian 

 

 

• Parameter Sensitivities 

 

• Jv 

 

• Stochastic Galerkin Residual 

 

• Stochastic Galerkin Jacobian 

Evaluation Types 

DFad<double> 

DFad<double> 

PCE<double>  

DFad< PCE<double> >  

1. All evaluation types are compiled into single library and managed at 

runtime from a non-template base class via a template manager. 

2. Not tied to double (can do arbitrary precision) 

3. Can mix multiple scalar types in any evaluation type. 

4. Can specialize any node: Write analytic derivatives for performance! 

DFad<double> 

DFad< DFad<double> > 



Galerkin Weak form ignoring boundary terms for 

simplicity: 

TBGP in Multiphysics  

PDE Assembly 

PDE Equation: 

FEM Basis: 

Residual Equation: 



Break mesh into  

worksets of 

elements 

Gather solution values and 

seed Scalar type 

Extract values from 

Scalar type and 

scatter to global 

residual 

• Only have to specialize two 

expressions for evaluation 

type: 

• Gather/Seed 

• Extract/Scatter 

• All other code is reused 

• Achieved separation of 

concerns! 

• Machine precision accurate 

derivatives 

• Kokos hides node 

specializations 

TBGP + DAG: Global Evaluation 

Gather/Seed 

Extract/Scatter 



Seed 

Extract 

DFad< DFad<double> > 

Seed 

Extract 

DFad<double> 

Handling Complexity in Analysis Requirements 

Scalar Type 

Seed 

Extract 

double 

Evaluation Type 

Param. Sens., Jv, Adjoint, PCE (SGF, SGJ), AP 

Take Home Message: 

Reuse the same code base! 

Equations decoupled from algorithms! 

Machine precision accuracy! 

TBGP, Pawlowski, 

Phipps, Salinger; 

Scientific 

Programming, in 

press. 



Node (functor) Example 
template<typename EvalT, typename Traits> 

class NonlinearSource : public PHX::EvaluatorWithBaseImpl<Traits>, 

                                        public PHX::EvaluatorDerived<EvalT, Traits> { 

public:   

  NonlinearSource(const Teuchos::ParameterList& p); 

  void postRegistrationSetup(typename Traits::SetupData d, PHX::FieldManager<Traits>& vm); 

  void evaluateFields(typename Traits::EvalData d); 

  void preEvaluate(typename Traits::PreEvalData d); 

  void postEvaluate(typename Traits::PostEvalData d); 

   

  KOKKOS_INLINE_FUNCTION 

  void operator () (const int i) const; 

 

private: 

  typedef typename EvalT::ScalarT ScalarT; 

 

  PHX::MDField<ScalarT,Cell,Point> source; 

  PHX::MDField<const ScalarT,Cell,Point> density; 

  PHX::MDField<const ScalarT,Cell,Point> temp; 

 

  std::size_t cell_data_size; 

}; 

 



Node (functor) Example 

template<typename EvalT, typename Traits> NonlinearSource<EvalT, Traits>:: 

NonlinearSource(const Teuchos::ParameterList& p) : … 

{  

  this->addEvaluatedField(source); 

  this->addDependentField(density); 

  this->addDependentField(temp); 

  this->setName("NonlinearSource"); 

} 

 

template<typename EvalT, typename Traits> 

KOKKOS_INLINE_FUNCTION 

void NonlinearSource<EvalT, Traits>::operator () (const int i) const 

 { 

    for (int ip = 0; ip < density.dimension(1); ++ip) 

      source(i,ip) =  density(i,ip) * temp(i,ip) * temp(i,ip); 

  } 

 

template<typename EvalT, typename Traits> 

void NonlinearSource<EvalT, Traits>:: 

evaluateFields(typename Traits::EvalData d) 

{    

 Kokkos::parallel_for (d.num_cells, *this); 

} 



Rapid Development of New Physics 
(Single driver and collection of interchangeable evaluators) 

Semiconductor  

Drift Diffusion 

Multi-phase 

Chemically 

Reacting Aerosol  

NGNP Reactor 

Chemicurrent 

CFD and  

MHD 

DAG Assembly +TBGP 



Jacobian Evaluation Efficiency 

• Tremendous savings in development time 

• Coding sensitivities is error prone and time consuming, especially 

when accounting for changing models/parameters! 

• Vector intrinsics are hidden in the scalar types 

 



Sensitivity Analysis Capability  

Demonstrated on the QASPR Simple Prototype 

1st-order Finite Difference Accuracy 

• Bipolar Junction Transistor 

• Pseudo 1D strip (9x0.1 micron) 

• Full defect physics 

• 126 parameters 

Sensitivities show dominant physics 

Comparison to FD: 
 Sensitivities at all time points 

 More accurate 
 More robust 
 14x faster! 

Sensitivities computed at all times 

FD perturbation size 



Large-Scale Semiconductor Device Simulations on 

IBM Blue Gene Platform (P. Lin) 

• Generic programming (via AD tools) 

is applied at the element level, not 

globally. 

• Weak scaling to 65k cores and two 

billion DOF: Jacobian evaluation via 

AD scales 

• Using all four cores per node with 

MPI process on each core. 

 

DOE/NNSA 

cores DOF Jacobian time 

256 7.93m 52.19 

1024 31.5m 52.28 

4096 126m 52.09 

8192 253m 52.82 

16384 504m 52.74 

32768 1.01b 52.96 

65536 2.01b 52.94 



•  JFNK (FD) 

 

 

 

• JFNK (AD) 

• Machine precision accurate 

• Ex: Solution varies 10^12 over domain 

 

 

 

 

• Explicit Jacobian (AD generated) 

• Machine precision accurate 

• Complexity ideas allow for storing 

individual operators for 

preconditioning! 

• Larger memory requirements 

Example: JFNK 
(2D Diffusion/Rxn System: 2 eqns)  

Relative times

F(x) 1.00

J(x) 4.45

Jv (AD) 1.53

Mv (matvec) 0.06

JFNK (AD) 

Explicit J (AD) 

JFNK (AD) 

Explicit J (AD) 



Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting  
H2, O2,, Ar, Opposed Flow Jet Reactor 

O2, Ar 

H2, Ar 

70 steady state reacting flow solves 

(10 species, 19 reactions) 

Approx. Physical Time scales (sec.):  

• Chemical kinetics: 10-12 to 10-4 

• Momentum diffusion: 10-6 

• Heat conduction: 10-6 

• Mass diffusion: 10-5 to 10-4  

• Convection: 10-5 to 10-4  

• Diffusion flame dynamics:       (steady) 

Streamlines 

Temperature (Min. 300oK, Max 2727oK) 

OH (Min. 0.0, Max 0.177) 

Ignited branch  



Embedded UQ in Drekar:  
Rod to Fluid Heat Transfer 



Issues 
• Very flexible, maybe too much so? 

– Extreme flexibility allows you to shoot yourself in the foot! 

– Blind Application of TBGP can be inefficient (Minimize Scatter, AD 
sensitivities at the local element level) 
 

• Efficient expression templates may require more recent compilers: 
– Gnu 4.6+, Intel 11+ 

 

• AD can be slower than hand coded derivatives 
– For implicit methods, assembly is usually not the bottleneck – inverting the 

Jacobian is the bottleneck 

– Adding new parameter sensitivities is difficult for (multiple) ever-changing 
physics models, … 

– Can use AD as first cut for Jacobian, then go back and replace terms with 
hand coded where appropriate  

– Development time spent debugging hand coded Jacobians is significant! 
 

• Advanced C++ language features (templates) can be intimidating 
– Error reporting of templated code is improving 

– Expended significant effort  to minimize/hide templates from node impls 
 

 

 



Conclusions 

DAG + TBGP: 

• Exascale hardware  multiphysics  combinatorial 
explosion of sensitivity requirements. 

– Changing equation sets, formulations will change sensitivity 
requirements! 

• We can write very advanced multiphysics software 
that is efficient, flexible and maintainable but 
templates are crucial 

• Decoupling algorithms from equations is powerful: 
– We don’t write Jacobians anymore - enormous savings of 

manpower! 

• Generic programming allows: 
– Segregation of technologies 

– Easily adaptive environment (from SE standpoint) 

• Machine precision accuracy of required quantities is 
achieved 

• Future: Integration of ATM for functional parallelism 

 



Trilinos Tools for Supporting TBGP 

• Panzer: Multiphysics assembly framework 

• Intrepid:  Discretizations tools for PDEs 
– Basis functions, quadrature rules, … 

• Phalanx:  DAG Assembly manager 
– DAG for multiphysics complexity 

– Explicitly manages fields/kernels for different evaluation/scalar types 

• Stokhos: UQ Scalar Types 
– PCE and multipoint/ensemble scalar type classes/overloaded operators 

– Simultaneous ensemble propagation classes, overloaded operators 

– Tools and data structures for forming, solving embedded SG systems 

• Sacado: AD Scalar types 
– AD scalar types 

– Parameter library – tools to manage model parameters 

– MPL – simple implementation of some metaprogramming constructs 

• Kokkos (shards mda deprecated) 
– Multi-dimensional array for next-gen architectures 
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