

SAND2012-1207 C

Template-based Generic Programming Techniques for Finite Element Assembly

Roger Pawlowski, Eric Cyr, Eric Phipps, Andrew Salinger and John Shadid Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Challenges in Multiphysics Simulation

Physics Model Complexity

- Solving multiphysics PDE systems generates complexity:
 - Complex interdependent coupled physics
 - Multiple proposed mathematical models
 - Different numerical formulations (e.g. space-time discretizations)
- Supporting multiplicity in models and solution techniques often leads to complex code with **complicated logic** and **fragile software designs**

Analysis Beyond Forward Simulation

- Forward solves are not enough we want to explore complex solution spaces:
 - Simultaneous analysis and design adds requirements (typically sensitivities)
 - Do not burden analysts/physics experts with analysis algorithm requirements: i.e. programming sensitivities for implicit solvers, optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!

Challenges in Multiphysics Simulation

Physics Model Complexity

• Solving multiphysics PDE systems generates complexity:

Complex interdependent coupled physics

Directed Acyclic Graph-based Assembly

- Different numerical formulations (e.g. space-time discretizations)
- Supporting multiplicity in models and solution techniques often leads to complex code with complicated logic and fragile software designs

Analysis Beyond Forward Simulation

- Forward solves are not enough we want to explore complex solution spaces:
 - Simultaneous analysis and design adds requirements (typically

Template-based Generic Programming

requirements: i.e. programming sensitivities for implicit solvers, optimization, stability, bifurcation analysis and UQ

Engine must be flexible, extensible, maintainable and EFFICIENT!

DAG-based Assembly

- Widely used idea in both research and production codes. Codes leveraging this:
 - Albany: Salinger
 - Amanzi: Moulton
 - Charon/Drekar/Panzer: Pawlowski and Cyr
 - SIERRA/Aria: Notz, ...
 - Uintah: Berzins and Sutherland

P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, **Graph-Based Software Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software,** ACM Transactions on Mathematical Software, Vol. 39, No. 1 (2012).

Lightweight DAG-based Expression Evaluation

- Decompose a complex model into a graph of simple kernels (functors)
- Supports rapid development, separation of concerns and extensibility.
- A node in the graph evaluates one or more fields:
 - Declare fields to evaluate
 - Declare dependent fields
 - Function to perform evaluation
- Separation of data (Fields) and kernels (Expressions) that operate on the data
 - Fields are accessed via multidimensional array interface
- Can use for asynchronous task
 management on node!

Navier-Stokes Example

- Graph-based equation description
 - Automated runtime dependency tracking (Topological sort to order the evaluations)
 - Each node is a point of extension that can be swapped out
 - Easy to add equations
 - Easy to change models
 - Easy to test in isolation
 - User controlled granularity
 - No unique decomposition
- Multi-core research:
 - Spatial vs algorithmic decomposition
 - Kernel launch: fused vs separate

Analysis Beyond Forward Simulation

Model problem

 $f(\dot{x},x,p)=0, \hspace{1em} \dot{x},x\in \mathbb{R}^n, \hspace{1em} p\in \mathbb{R}^m, \hspace{1em} f: \mathbb{R}^{2n+m}
ightarrow \mathbb{R}^n$

• Direct to steady-state, implicit time-stepping, linear stability analysis

$$\left(lpha rac{\partial f}{\partial \dot{x}} + eta rac{\partial f}{\partial x}
ight)\Delta x = -f$$

Steady-state sensitivity analysis

$$egin{aligned} f(x^*,p) &= 0, \quad s^* = g(x^*,p) \implies \ & rac{ds^*}{dp} &= -rac{\partial g}{\partial x}(x^*,p) \left(rac{\partial f}{\partial x}(x^*,p)
ight)^{-1}rac{\partial f}{\partial p}(x^*,p)) + rac{\partial g}{\partial p}(x^*,p) \end{aligned}$$

• Bifurcation analysis

$$\begin{aligned} f(x,p) &= 0, \\ \sigma(x,p) &= 0, \end{aligned} \quad \sigma = -u^T J v, \quad \frac{\partial \sigma}{\partial x} = -u^T \frac{\partial}{\partial x} (J v), \quad \frac{\partial \sigma}{\partial p} = -u^T \frac{\partial}{\partial p} (J v), \\ \begin{bmatrix} J & a \\ b^T & 0 \end{bmatrix} \begin{bmatrix} v \\ s_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} J^T & b \\ a^T & 0 \end{bmatrix} \begin{bmatrix} u \\ s_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{aligned}$$

Template-based Generic Programming (TBGP)

- Implement equations templated on the scalar type
- Libraries provide new scalar types that overload the math operators to propagate embedded quantities
 - Expression templates for performance
 - Derivatives: FAD, RAD
 - Stochastic Galerkin: PCE
 - Multipoint: Ensemble

Fad:
$$\frac{df}{dx}(x_0)V$$

 $V \in \mathbb{R}^{n \times p}$

$$dx/dz = V$$

Seeding/initializing V For J: V = IFor Jw: V = w

double Fad<double> Operation Forward AD rule $c = a \pm b$ $\dot{c} = \dot{a} \pm b$ $\dot{c} = a\dot{b} + \dot{a}b$ c = ab $\dot{c} = (\dot{a} - c\dot{b})/b$ c = a/b $c = a^r$ $\dot{c} = ra^{r-1}\dot{a}$ $c = \sin(a)$ $\dot{c} = \cos(a)\dot{a}$ $c = \cos(a) \mid \dot{c} = -\sin(a)\dot{a}$ $c = \exp(a)$ $\dot{c} = c\dot{a}$ $c = \log(a)$ $\dot{c} = \dot{a}/a$

$$\dot{u} := \frac{du}{dz}$$

TBGP Example

$$f_0 = 2x_0 + x_1^2$$

$$f_1 = x_0^3 + \sin(x_1)$$

```
template <typename ScalarT>
void computeF(double* x, double* f)
{
    f[0] = 2.0 * x[0] + x[1] * x[1];
    f[1] = x[0] * x[0] * x[0] + sin(x[1]);
}
template <typename ScalarT>
void computeF(ScalarT* x, ScalarT* f)
{
    f[0] = 2.0 * x[0] + x[1] * x[1];
    f[1] = x[0] * x[0] + sin(x[1]);
}
```

```
void computeJ(double* x, double* J)
{
    // J(0,0)
    J[0] = 2.0;
    // J(0,1)
    J[1] = 2.0 * x[1];
    // J(1,0)
    J[2] = 3.0 * x[0] * x[0];
    // J(1,1)
    J[3] = cos(x[1]);
```

}

```
double* x;
double* f;
```

```
computeF(x,f);
```

```
DFad<double>* x;
DFad<double>* f;
```

```
computeF(x,f);
```

Same accuracy as writing analytic derivative: No differencing error involved!

Example Scalar Types

(Trilinos Stokhos and Sacado: E. Phipps)

Evaluation Types

• Residual F(x,p)

- <u>Jacobian</u> $J = \frac{\partial F}{\partial x}$
- <u>Hessian</u> $\frac{\partial^2 F}{\partial x_i \partial x_j}$
- Parameter Sensitivities $\frac{\partial F}{\partial p}$
- <u>Jv</u> Jv
- Stochastic Galerkin Residual
- Stochastic Galerkin Jacobian

DFad< PCE<double> >

- 1. All evaluation types are compiled into single library and managed at runtime from a non-template base class via a template manager.
- 2. Not tied to double (can do arbitrary precision)
- 3. Can mix multiple scalar types in any evaluation type.
- 4. Can specialize any node: Write analytic derivatives for performance!

Scalar Types

double

DFad<double>

DFad< DFad<double> >

DFad<double>

DFad<double>

PCE<double>

TBGP in Multiphysics PDE Assembly

PDE Equation: $\dot{u} + \nabla \cdot \mathbf{q} + s = 0$ $\mathbf{q} = -k\nabla u$

Galerkin Weak form ignoring boundary terms for simplicity:

$$\begin{split} R_u^i &= \int_{\Omega} \left[\phi_u^i \dot{u} - \boldsymbol{\nabla} \phi_u^i \cdot \boldsymbol{q} + \phi_u^i s \right] \, \mathrm{d}\Omega \\ \\ \mathsf{FEM Basis:} \quad u &= \sum_{i=1}^{N_u} \phi_u^i u^i \end{split}$$

Residual Equation:

$$\hat{R}_u^i = \sum_{e=1}^{N_E} \sum_{q=1}^{N_q} \left[\phi_u^i \dot{u} - \boldsymbol{\nabla} \phi_u^i \cdot \boldsymbol{q} + \phi_u^i s \right] w_q |j| = 0$$

TBGP + DAG: Global Evaluation

Handling Complexity in Analysis Requirements

Node (functor) Example

template<typename EvalT, typename Traits> class NonlinearSource : public PHX::EvaluatorWithBaseImpl<Traits>, public PHX::EvaluatorDerived<EvalT, Traits> {

public:

NonlinearSource(const Teuchos::ParameterList& p); void postRegistrationSetup(typename Traits::SetupData d, PHX::FieldManager<Traits>& vm); void evaluateFields(typename Traits::EvalData d); void preEvaluate(typename Traits::PreEvalData d); void postEvaluate(typename Traits::PostEvalData d);

KOKKOS_INLINE_FUNCTION void operator () (const int i) const;

private:

};

typedef typename EvalT::ScalarT ScalarT;

PHX::MDField<ScalarT,Cell,Point> source; PHX::MDField<const ScalarT,Cell,Point> density; PHX::MDField<const ScalarT,Cell,Point> temp;

std::size_t cell_data_size;

Node (functor) Example

```
template<typename EvalT, typename Traits> NonlinearSource<EvalT, Traits>::
NonlinearSource(const Teuchos::ParameterList& p) : ...
```

this->addEvaluatedField(source); this->addDependentField(density);

this->addDependentField(temp);

```
this->setName("NonlinearSource");
```

```
template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void NonlinearSource<EvalT, Traits>::operator () (const int i) const
{
    for (int ip = 0; ip < density.dimension(1); ++ip)
        source(i,ip) = density(i,ip) * temp(i,ip) * temp(i,ip);
    }
</pre>
```

```
template<typename EvalT, typename Traits>
void NonlinearSource<EvalT, Traits>::
evaluateFields(typename Traits::EvalData d)
{
    Kokkos::parallel_for (d.num_cells, *this);
}
```


Rapid Development of New Physics (Single driver and collection of interchangeable evaluators)

Jacobian Evaluation Efficiency

Relative Jacobian Evaluation Time

- Tremendous savings in development time
- Coding sensitivities is error prone and time consuming, especially when accounting for changing models/parameters!
- Vector intrinsics are hidden in the scalar types

Sensitivity Analysis Capability Demonstrated on the QASPR Simple Prototype

Correct Digits

10⁰

0.5

10-4

1e–5 1e–6

10⁻³

10⁻²

Time (s)

10⁻¹

10[°]

Sensitivity

-3

-5

10

Parameter 16 Parameter 46

 10^{-6}

10⁻⁴

Time (s)

 10^{-2}

Comparison to FD: ✓ Sensitivities at all time points ✓ More accurate ✓ More robust ✓ 14x faster!

Large-Scale Semiconductor Device Simulations on IBM Blue Gene Platform (P. Lin)

- Generic programming (via AD tools) is applied at the element level, not globally.
- Weak scaling to 65k cores and two billion DOF: Jacobian evaluation via AD scales
- Using all four cores per node with MPI process on each core.

cores	DOF	Jacobian time
256	7.93m	52.19
1024	31.5m	52.28
4096	126m	52.09
8192	253m	52.82
16384	504m	52.74
32768	1.01b	52.96
65536	2.01b	52.94

Example: JFNK (2D Diffusion/Rxn System: 2 eqns)

• JFNK (FD)

$$Jv \approx \frac{F(x+\delta v) - F(x)}{\delta}$$

 $t \approx (\mathsf{num_Its}) * cost(F)$

- JFNK (AD)
 - Machine precision accurate
 - Ex: Solution varies 10^12 over domain

 $Jv \le 2.5 * cost(F)$ $t \approx 1.53 * (num_Its) * cost(F)$

- Explicit Jacobian (AD generated)
 - Machine precision accurate
 - Complexity ideas allow for storing individual operators for preconditioning!
 - Larger memory requirements

 $J(x) \le 13 * cost(F)$ $t \approx 4.45 + (num_Its) * cost(Mv)$

	Relative times	
JFNK (AD)	F(x)	1.00
Explicit J (AD)	J(x)	4.45
JFNK (AD)	Jv (AD)	1.53
Explicit J (AD)	Mv (matvec)	0.06

Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting H₂, O₂, Ar, Opposed Flow Jet Reactor

Embedded UQ in Drekar:

Rod to Fluid Heat Transfer

Issues

- Very flexible, maybe too much so?
 - Extreme flexibility allows you to shoot yourself in the foot!
 - Blind Application of TBGP can be inefficient (Minimize Scatter, AD sensitivities at the local element level)
- Efficient expression templates may require more recent compilers:
 Gnu 4.6+, Intel 11+
- AD can be slower than hand coded derivatives
 - For implicit methods, assembly is usually not the bottleneck inverting the Jacobian is the bottleneck
 - Adding new parameter sensitivities is difficult for (multiple) ever-changing physics models, …
 - Can use AD as first cut for Jacobian, then go back and replace terms with hand coded where appropriate
 - Development time spent debugging hand coded Jacobians is significant!
- Advanced C++ language features (templates) can be intimidating
 - Error reporting of templated code is improving
 - Expended significant effort to minimize/hide templates from node impls

Conclusions

DAG + TBGP:

- Exascale hardware → multiphysics → combinatorial explosion of sensitivity requirements.
 - Changing equation sets, formulations will change sensitivity requirements!
- We can write very advanced multiphysics software that is efficient, flexible and maintainable but templates are crucial
- Decoupling algorithms from equations is powerful:
 - We don't write Jacobians anymore enormous savings of manpower!
- Generic programming allows:
 - Segregation of technologies
 - Easily adaptive environment (from SE standpoint)
- Machine precision accuracy of required quantities is achieved
- Future: Integration of ATM for functional parallelism

Trilinos Tools for Supporting TBGP

- **Panzer:** Multiphysics assembly framework
- Intrepid: Discretizations tools for PDEs
 - Basis functions, quadrature rules, ...
- **Phalanx**: DAG Assembly manager
 - DAG for multiphysics complexity
 - Explicitly manages fields/kernels for different evaluation/scalar types
- Stokhos: UQ Scalar Types
 - PCE and multipoint/ensemble scalar type classes/overloaded operators
 - Simultaneous ensemble propagation classes, overloaded operators
 - Tools and data structures for forming, solving embedded SG systems
- Sacado: AD Scalar types
 - AD scalar types
 - Parameter library tools to manage model parameters
 - MPL simple implementation of some metaprogramming constructs
- Kokkos (shards mda deprecated)
 - Multi-dimensional array for next-gen architectures
- 1. R. P. Pawlowski, E. T. Phipps and A. G. Salinger, Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part I:Template-based Generic Programming, Scientific Programming 20 (2012) 197–219.
- R. P. Pawlowski, E. T. Phipps, A. G. Salinger, S. J. Owen, C. M. Siefert and M. L. Staten, Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part II: Application to Partial Differential Equations, Scientific Programming 20 (2012) 327–345.

