
Panzer: A Finite Element Assembly

Engine for Multiphysics Simulation

Sandia National Laboratories is a multi-program laboratory managed and

operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy's National Nuclear

Security Administration under contract DE-AC04-94AL85000.

Roger Pawlowski, Eric Cyr, and John Shadid

Sandia National Laboratories

European Trilinos User Group Meeting

MArch 3rd, 2015

SAND2011-8261C

What is Panzer?

• A general finite element assembly engine for multiphysics simulation:

– User Physics Kernels + Problem Description =

Thyra::ModelEvaluator

• Quantities need for advanced solution and analysis algorithms: residuals,

Jacobians, parameter sensitivities, stochastic residual/Jacobians, etc.

– A unification of Trilinos discretization tools: Shards, Intrepid, Phalanx,

Sacado, Stokhos, (Optionally: STK, SEACAS)

– Supports 1D, 2D, and 3D unstructured mesh calculations

• A library and a Trilinos package – NOT a terminal application

• Contains NO physics specific code

– Generic assembly tools

• Leverages Template-based Generic Programming to assemble

quantities of interest

Use Case

Panzer

Register Problem

Build Thyra::ModelEvaluator

Register Problem Description

Register Equation Set Factory

Register BC Factory

Register Model Factory

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Build Piro::NOXSolver

(ModelEvaluator)

<<uses>>

Physics applications are light

weight front end

(External Trilinos Repo?)

A Research Tool for DOE/OS: ASCR/AMR, ASCR/UQ

• Formulations: fully coupled fully implicit, semi-implicit, FCT

• Compatible discretizations:

– Mixed basis for DOFs within element block

– Arbitrary element types (not restricted to nodal basis)

– “Node” specific code is eliminated (or treated as specializations)

• Multiphysics:

– Fully coupled systems composed of different equation sets in different

element blocks

– Preconditioning: Approximate block factorization/physics based

– Recent work on IMEX

• Supports advanced analysis techniques:

– Modern software techniques for advanced architectures

– Supports Template-based Generic Programming

– Adjoint-based error analysis

– Stability, bifurcation, embedded (SAND) optimization, embedded uncertainty

quantification (Stokhos/PCE)

New Research Requirements

Production Requirements

Production Quality Software (ASC, CASL)

• Strict and extensive unit testing (TDD)

• Integration with legacy code components

• NOT restricted to any mesh database or I/O format

• Control over granularity of assembly process (efficiency vs flexibility)

• Applications:
– ASC: Semiconductor Device (Next-generation Charon) for QASPR

– CASL: CFD component for VERA simulator

DOE / NNSA

Panzer Components

• Problem Description

– Maps equations sets and boundary conditions into nodes of

Phalanx assembly DAG.

• Assembly Engine

– A collection of Phalanx Field Managers to control assembly

– Produces a Model Evaluator for User

• Data Mapping Utilities

– DOF Manager for mapping field values into linear algebra

– Connection Manager: Abstraction of Mesh

• STK Adaptors (Optional)

– Concrete implementation Panzer objects for using

STK::Mesh and SEACAS for I/O

– Specialized evaluators

Element Level Fill

Material Models

Derivatives

Variable Manager

Discretization Library

Remeshing

UQ Solver

Nonlinear Solver

Time Integration

Optimization

Objective Function

Local Fill

Mesh Database

Mesh Tools

I/O Management

Input File Parser

Utilities

UQ (non-invasive)

Parameter Studies

Solution Control

Mesh I/O

Optimization

Geometry Database

Discretizations

Derivative Tools

Sensitivities

UQ / PCE
Propagation

Constraints

Error Estimates

Continuation

Constrained Solves

Sensitivity Analysis

Stability Analysis

Agile Components (A. Salinger):

Trilinos has a coordinated integration

effort (ASC) to support all aspects of a

simulation!
V&V, Calibration

Parameter List

Feature Extraction

Verification Tools

Visualization

PostProcessing

Data Reduction

Adaptivity

Model Reduction

Memory Management
System Models

MultiPhysics Coupling

OUU, Reliability

Computational Steering

Communicators

MultiCore

Parallelization Tools

Partitioning

Load Balancing

Analysis Tools
 (non-invasive)

Physics Fill

Composite Physics

Data Structures

Direct Solvers

Linear Algebra

Architecture-
Dependent Kernels

Preconditioners

Iterative Solvers

Eigen Solver

System UQ

Analysis Tools
 (invasive)

Matrix Partitioning

Inline Meshing

MMS Source Terms

Grid Transfers

Mesh Quality

Mesh Database

Solution Database

Runtime Compiler

Preconditioners

Software Design
(Composition of Trilinos Packages)

I/O

Assembly

Nonlinear Analysis

(Nonlinear solvers,

Time Integration,

Optimization,

Stability/Bifurcation)

Linear/Eigen Solvers

Mesh Database
Utilities

(Memory

Management,

Parameters, etc.)

Linear Algebra

Problem Description

• Drekar is a Trilinos package

• Building Drekar enables 32

Trilinos packages!

• TPLs: Boost, (Optionally:

netcdf, HDF5)

Models

Drekar::CFD PIRO

Stratimikos

Panzer

Teuchos
Panzer::STK

Introducing Drekar
(Named for the Viking Longship)

• A light-weight front end

“Trilinos package” that

provides Stabilized Galerkin

CFD and MHD physics

• Provides mathematical

kernels to evaluate the

discretized PDEs using

TBGP concepts

• Panzer/Drekar package

dependencies:

– 10 required

– 9 optional

• Indirect dependencies: 32

enabled packages

(including Drekar itself)

Panzer and Drekar
Trilinos Discretization Tool Stack

(Pawlowski,Cyr, Shadid, Smith)

Thyra Model

Evaluator

SEACAS

(I/O, Partitioning)

STK

(Mesh Database)

Shards

(Cell Topology)

Sacado (AD)

Stokhos (UQ)

Intrepid

(FE Basis/IR)

Phalanx

(TBGP) Panzer
• Multiphysics

Assembly Engine:
• Fully coupled

Multiphysics

• Compatible

discretizations

• Multiple Equation sets

• Arbitrary BCs

• DOF Manager
• Mapping DOFs

• ConnectionManager

FEI

(DOF Mapping

 Strategy)

Equation Set Factory

Evaluator Factory

PIRO

(Solvers)

NOX

Rythmos

MOOCHO

LOCA

LIME

Drekar::CFD
Input ParameterList

BC Factory

Kokkos

Data Mapping

Assembly Engine

Panzer Unifies Trilinos Discretization Tools

Shards::MDArray

Phalanx

Sacado

Stokhos

Intrepid

Panzer

AssemblyEngine

Connection Manager STK Mesh

STK

FEI

Evaluators

SEACAS

STK Evaluators

Thyra::ModelEvaluator

Epetra

Tpetra

Teuchos

ME_Factory

Thyra::Operator_Vector

• NOTE: NO Solver

Relationships

• NOTE: No

internal

relationships

shown

STK Adaptors

Linear Object Factory

DOF Manager

Problem Specification

Physics Blocks

Boundary Conditions

Integration/Basis Layouts

Shards::CellTopology

STK Connection Manager

TBGP

Data Mapping

Assembly Engine

Panzer Unifies Trilinos Discretization Tools

Shards::MDArray

Phalanx

Sacado

Stokhos

Intrepid

Panzer

AssemblyEngine

Connection Manager STK Mesh

STK

FEI

Evaluators

SEACAS

STK Evaluators

Thyra::ModelEvaluator

Epetra

Tpetra

Teuchos

ME_Factory

Thyra::Operator_Vector

• NOTE: NO Solver

Relationships

• NOTE: No

internal

relationships

shown

STK Adaptors

Linear Object Factory

DOF Manager

Problem Specification

Physics Blocks

Boundary Conditions

Integration/Basis Layouts

Shards::CellTopology

STK Connection Manager

Data Mapping

Computes global unknown indices
1. Serves as interface to mesh

2. Allows Panzer to be mesh agnostic

3. Handles unknowns for mixed discretizations

4. Handles unknowns for multiphysics (multiple element blocks)

5. Uses FEI for producing unknowns

Composed of 3 primary pieces
1. FieldPattern – Describes the basis layout and continuity of fields

2. DOFManager – Manages and computes unknown numbers on fields

3. ConnManager – (User implemented) Mesh topology from field pattern

Features not implemented but supported by design
1. Higher order discretizations – geometric symmetries

2. Heterogeneous meshes – quadrilaterals and triangles

Data Mapping: New Directions

Finite Element discretizations have changed

 Charon used nodal-equal-order-finite elements

 New code embraces mixed discretizations

 Also using “Compatible Discretizations”

 Requires extra data management: orientations

Hcurl(Edge elements) Hdiv(Face elements) Hgrad(Nodal elements)

Data Mapping Handles These Elements

Intrepid: toolbox for discretizations (Bochev, Ridzal, Peterson).

Advanced Discretizations

• allows access to finite element, finite volume, and finite difference methods via a common API

• compatible node-, edge-, face-, and cell-based discretizations

• enables hybrid discretizations (FE, FV, FD) on unstructured grids

• reference-map-based low- and high-order FE discretizations on standard cells

• “direct” low-order FV and FD discretizations on arbitrary polyhedral cells

1

 Lagrange elements of order 1,2,3 Nedelec element Raviart-Thomas element

Completed development of basic finite element reconstruction operators (Bochev, Ridzal):

Data Mapping: Field Pattern

u p

For stable Navier-Stokes pair:
 Linear pressures

 Quadratic velocities

Field Pattern specifies basis layout

 Continuity across subcells (continuity of field)

 Unknowns on each element

 Communicates required topology

Data Mapping: DOFManager

Input

Element Block 1

u as

p as

T as

Element Block 2

T as

ConnManager

Output

Element Block 1
u,p,T GIDs on all

elements

Element Block 2
T GIDs on all

elements

panzer::DOFManager

Magic!
(FEI)

Data Mapping: ConnManager

Must generate mesh connectivity
 DOFManager passes in field pattern

 Provides unique global node, edge, volume ids for each element

 Optionally provides orientation for edge and face elements

 Uniform field pattern across all element blocks

 Makes multiphysics easy
0 1 2

3 4 5

6 7 8

9 0 1 2

3 4 5

6 7 8

10

11 12 13 14 15

16 17

18 19 20 21 22

23 24

Data Mapping: ConnManager

0 1 2

3 4 5

6 7 8

Piecewise linear p

Piecewise linear u

9 0 1 2

3 4 5

6 7 8

10

11 12 13 14 15

16 17

18 19 20 21 22

23 24

Piecewise linear p

Piecwise quadratic u

Data Mapping: Unknown Ordering

Same ConnManager can be used multiple times

 Produce DOFManager for each type of physics

 Good for Block Preconditioning

Old code used “interlaced” unknown ordering by node

Panzer data mapping allows for greater control of ordering

 You can still interlace (the default)

 Blocked physics is also possible

Comments

• Adjoint capabilities supported

• Use of Kokkos MDArray for multi-/many-

core/GPGPU support

• Expression templates for MDFields

• Phalanx: transition to Kokkos

