Exceptional service in the national interest

New Multiphysics Coupling Tools for Trilinos: PIKE and DTK

Roger Pawlowski

Sandia National Laboratories

Roscoe Bartlett, Stuart Slattery, Mark Berrill, Kevin Clarno, and Steve Hamilton

Oak Ridge National Laboratory

European Trilinos User Group Meeting Tuesday March 3rd, 2015

SAND2014-19290 PE

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Driving Project

- The Consortium for Advanced Simulation of LWRs (CASL) is a DOE program to improve modeling and simulation of nuclear reactors
- Flagship product is a "Virtual Reactor" Simulation Suite based on code-to-code couplings
- Integrating both modern and legacy codes
 - Familiar, validated codes are valued in the community
 - Providing residuals for Newton-based coupling can require significant redesign
 - Production tools use simple Picard iteration
 - CASL does use Newton-based solvers for research and assessment of coupling algorithms
 - New Trilinos multiphysics tools (packages) have been abstracted

<u>A Domain Model</u>

A Theory Manual for <u>Multiphysics Code</u> <u>Coupling in LIME</u>, R. Pawlowski, R. Bartlett, R. Schmidt, R. Hooper, and N. Belcourt, SAND2011-2195 $\dot{f}(\dot{x}, x, \{p_l\}, t) = 0$ $f(\dot{x}, x, \{p_l\}, t) = 0$ $f(\dot{x}, x, \{p_l\}, t) = 0$ $\dot{x} = \frac{\partial x}{\partial t}$ Set of parameters State (DOF)

$$\begin{split} &x \in \mathbb{R}^{n_x} \text{ is the vector of state variables (unknowns being solved for),} \\ &\dot{x} = \partial x / \partial t \in \mathbb{R}^{n_x} \text{ is the vector of derivatives of the state variables with respect to time,} \\ &\{p_l\} = \{p_0, p_1, \dots, p_{N_p-1}\} \text{ is the set of } N_p \text{ independent parameter sub-vectors,} \\ &t \in [t_0, t_f] \in \mathbb{R}^1 \text{ is the time ranging from initial time } t_0 \text{ to final time } t_f, \\ &f(\dot{x}, x, \{p_l\}, t) : \mathbb{R}^{\left(2n_x + \left(\sum_{l=0}^{N_p-1} n_{p_l}\right) + 1\right)} \to \mathbb{R}^{n_x} \end{split}$$

$$g_j(\dot{x}, x, \{p_l\}, t) = 0, \text{ for } j = 0, \dots, N_g - 1$$

Response Function

 $g_j(\dot{x}, x, \{p_l\}, t) : \mathbb{R}^{\left(2n_x + \left(\sum_{l=0}^{N_p - 1} n_{p_l}\right) + 1\right)} \to \mathbb{R}^{n_{g_j}}$ is the j^{th} response function.

• Input Arguments: state time derivative, state, parameters, time

• Output Arguments: Residual, Jacobian, response functions, etc...

Extension to Multiphysics

Split parameters into "coupling" and truly independent.

parameters

$$f_i(\dot{x}_i, x_i, \{z_{i,k}\}, \{p_{i,l}\}, t) = 0$$
Set of coupling
parameters
$$f_i(\dot{x}_i, x_i, \{z_{i,k}\}, \{p_{i,l}\}, t) = 0$$
Set of independent
parameters

Require transfer functions:

Can be complex nonlinear functions themselves

$$z_{i,k} = r_{i,k}(\{x_m\}, \{p_{m,n}\})$$
Transfer Function

Response functions now dependent on z

Can be used as coupling parameters (z) for other codes

$$g_{i,j}(\dot{x}_i, x_i, \{z_{i,k}\}, \{p_{i,l}\}, t$$

Response Function

Application Classification

Inputs and outputs are **optionally** supported by physics model \rightarrow restricts allowed solution procedures

Name	Definition	Required Inputs	Required Outputs	Optional Outputs	Time Integration Control	
Response Only Model (Coupling Elimination)	p ightarrow g(p)	p	g		Internal	
State Elimination Model	$p \to x(p)$	p	x	g	Internal	
Fully Implicit Time Step Model	f(x,p) = 0	x,p	f	W,M,g	Internal	
Transient Explicitly Defined ODE Model	$\dot{x} = f(x, p, t)$	x, p, t	f	W,M,g	External	
Transient Fully Implicit DAE Model	$f(\dot{x}, x, p, t) = 0$	\dot{x}, x, p, t	f	W,M,g	External or Internal	
$W = \alpha \frac{\partial f}{\partial \dot{x}} + \beta \frac{\partial f}{\partial x} M = \text{preconditioner}$						

Application Classification

Inputs and outputs are **optionally** supported by physics model \rightarrow restricts allowed solution procedures

Name	Definition	Required Inputs	Required Outputs	Optional Outputs	Time Integration Control	
Response Only Model (Coupling Elimination)	$p \rightarrow g(p)$	BlackBo	X g		Internal	
State Elimination Model	$p \to x(p)$	p	x	g	Internal	
Fully Implicit Timef (n n)r nfIIIInternalStep ModelImplicit (Invasive)Implicit (Invasive)Implicit (Invasive)						
Transient Explicitly Define ODE Model- Requires Advanced Solver abstractions:- Vectors, Operators, (Thyra)						
Transient Fully	$f(\dot{x}, x, p, t) = 0$		•	W, M, g	External or Internal	
$W = \alpha \frac{\partial f}{\partial \dot{x}} + \beta \frac{\partial f}{\partial x} M = \text{preconditioner}$						

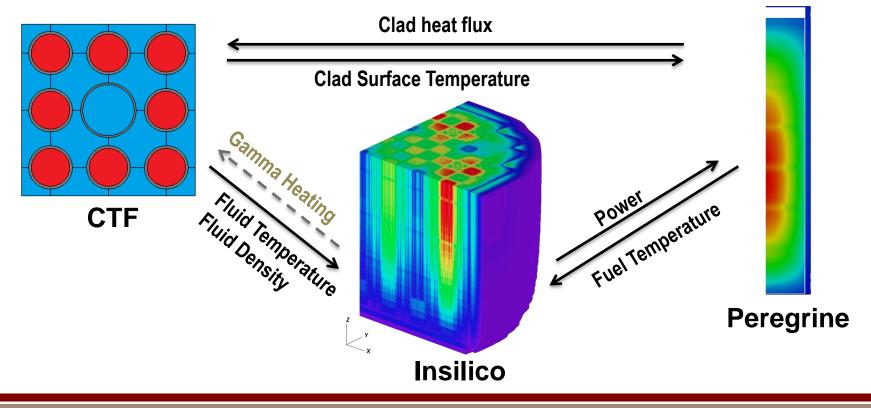
Trilinos Implicit Multiphysics Capabilities

- Trilinos already supports Newton-based strong coupling
 - Block composite linear systems: Thyra product objects and Model Evalautor

$$\begin{bmatrix} \frac{\partial f_0}{\partial x_0} & \frac{\partial f_0}{\partial z_{0,0}} \frac{\partial r_{0,0}}{\partial x_1} \\ \frac{\partial f_1}{\partial z_{1,0}} \frac{\partial r_{1,0}}{\partial x_0} & \frac{\partial f_1}{\partial x_1} \end{bmatrix} \begin{bmatrix} \Delta x_0^{(k)} \\ \Delta x_1^{(k)} \end{bmatrix} = -\begin{bmatrix} f_0(x_0^{(k-1)}, r_{0,0}(x_1^{(k-1)})) \\ f_1(x_1^{(k-1)}, r_{1,0}(x_0^{(k-1)})) \end{bmatrix}$$

- Sensitivities: Sacado
- Blocked physics-based preconditioners: Teko (ML, MeuLu, Ifpack, Ifpack2)
- Inexact Newton, Jacobian-Fee Newton-Krylov: NOX
- Transient DAE: Rythmos
- Multiphysics FE assembly engine: Phalanx, Panzer
 - DOF Manager: Fully coupled Newton with mixed basis (Intrepid), different equation sets in different element blocks
 - Basic framework for describing equation set, boundary conditions
 - Provides a Thyra::ModelEvaluator for solvers
- Demonstrated on leadership class machines (Drekar)!
- See TUG 2011 (Hierarchical Toolchains for Nonlinear Analaysis, Panzer)

Physics Integration KErnels (PIKE)



- Code coupling drivers for fixed point iteration
- L3 milestone in PoR3 outlined the design of a "LIME 2"
- Generalization of Coupled drivers in CASL products
 - 2000 lines of c++
 - Received DOE copyright for release in Trilinos
- Benefits
 - Simplified and unified model interfaces
 - Explicit separation of global and local convergence
 - User defined convergence test hierarchy
 - User defined solvers
 - Unified control via observers
 - Unit testing, output summary, initialization
 - Timing control
 - Consistent with Trilinos coding guidelines

SANDIA REPORT		
SAND2011-2195 Unlimited Release Printed March, 2011		
A Theory Manu Code Coupling	al for Multi-physics in LIME	
Version 1.0		
Roger Pawlowski, Roscoe Bartle	tt, Noel Belcourt, Russell Hooper, Rod Schmidt	
Preparad by Sandia National Laboratories Abuquargue, Naw Maxice 87185 and Livernee	California ALEEO	
Sanda National Laboratives is a multips and operated by Sanda Corporations are Lockneed Wartin Corporation, for the U.S. National Nuclear Security Administration A perived for public release; further deser	View Racceo A. Bartlett (ORINNL), and Roger Pawlo (SNI) View	wski
	Executive Summary The architecture and design of LIME 2.0 is described. LIME 2.0 provides the foundation for multi- physics coupling in the CASL VEDA software collection and will be reased in a number of other software efforts country of CASL.	_
	Contents	_
Sandia Nationa	1 Introduction	2
	2 Additional background	2
	Subpackage and dependency structure for LIME 2.0 LIME 2.0 subpackages 4.1 LIMELTer Limetric constant of the structure of the	2 2 3 4 8 9
	5 Coding and development standards for LIME 2.0	10
	6 Summary and next steps	11
	7 Endorsers of LIME 2.0 design plan	11
		_

Tiamat: Core Simulator for Pellet Clad Interaction

- CTF: Multiphase thermal hydraulics
- Insilico: SP_N neutronics
- Peregrine: Thermal conductivity, solid mechanics with contact

Sandia

Example: Tiamat CPI

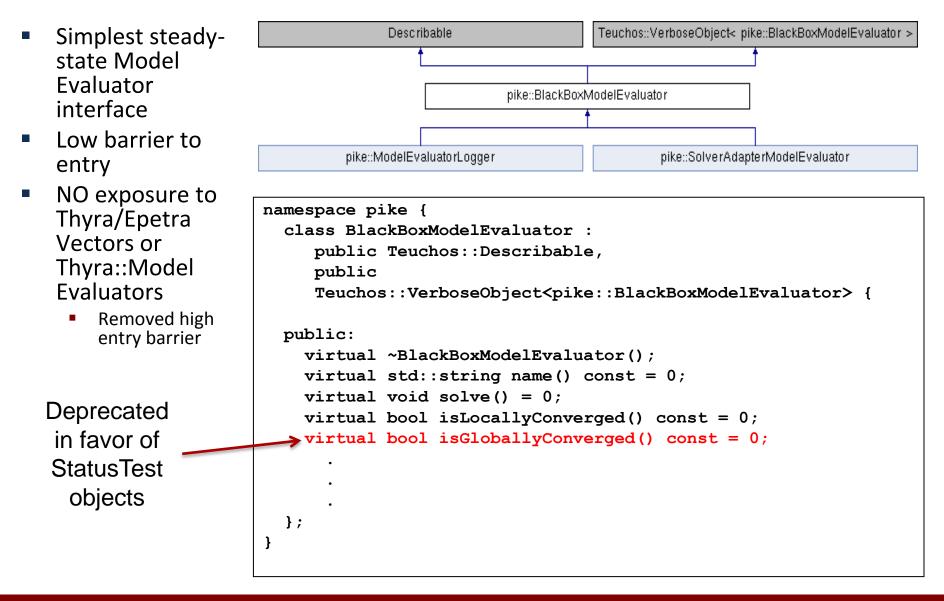
 Application codes are a "black box" 	Almenithus CS. Die als Course Saidel
 Set parameters 	Algorithm GS: Block Gauss-Seidel
 Call Solve 	GIVEN x_n^0, x_c^0, x_i^0 .
	For $k = 0, 1, \ldots$ (until converged) do:
 Evaluate responses 	$k = k{+}1$
$f_p(x_p,z_p)=0$ Peregrine	TRANSFER TO p :
$f_c(x_c,z_c)=0$ CTF	$z_{p,c}^k = r_{p,c}(\bar{x_c^{k-1}})$
$f_i(x_i,z_i)=0$ Insilico	$z_{p,i}^k = r_{p,i}(x_i^{k-1})$
$z_{p,c} = r_{p,c}(x_c)$ Clad Temp	Solve $f_p(x_p^k, r_{p,c}(x_c^{k-1}), r_{p,i}(x_i^{k-1})) = 0$ for x_p^k
$z_{p,i} = r_{p,i}(x_i)$ Power	TRANSFER TO c :
$z_{c,p} = r_{c,p}(x_p)$ Clad Heat Flux	$z_{c,p}^k = r_{c,p}(x_p^k)$
	Solve $f_c(x_c^k, r_{c,p}(x_p^k)) = 0$ for x_c^k
$z_{i,p} = r_{i,p}(x_p)$ Fuel Temp	TRANSFER TO i :
$z_{i,c} = r_{i,c}(x_c)$ Fluid Temp/density	$z_{i,c}^k = r_{i,c}(x_c^k)$
leasting of Original antique	$z_{i,p}^k = r_{i,p}(x_p^k)$

Solve $f_i(x_p^k, r_{i,c}(x_c^k), r_{i,p}(x_p^k)) = 0$ for x_i^k

- Jacobi and Gauss-Seidel options available.
- Transient, steady-state, and pseudo steady-state
- Strong coulping: All codes are subcycled to converge state within each time step!

Pros and Cons of Picard

Advantages:


- Simple to implement
- Black-Box: Driver requires minimal knowledge of components (no solutions or residuals required)
- Allows optimized/tuned solvers on individual physics
- Easy for analysts to understand

Disadvantages:

- Linear convergence rate
- Robustness controlled by damping parameter selection
- Inner/outer tolerance selection and convergence criteria
- Sequential in physics domains (Gauss-Seidel)

Minimal Model Evaluator Interface

Expanded for Parameter, Response and Transient (support mixes pseudo SS)

virtual bool supportsParameter(const std::string& pName) const;

virtual int getNumberOfParameters() const;

virtual std::string getParameterName(const int 1) const;

virtual int getParameterIndex(const std::string& pName) const;

virtual void setParameter(const int 1, const Teuchos::ArrayView<const double>& p);

virtual bool supportsResponse(const std::string& rName) const;

virtual int getNumberOfResponses() const;

virtual std::string getResponseName(const int j) const;

virtual int getResponseIndex(const std::string& rName) const;

virtual Teuchos::ArrayView<const double> getResponse(const int j) const;

virtual bool isTransient() const;

virtual double getCurrentTime() const;

virtual double getTentativeTime() const;

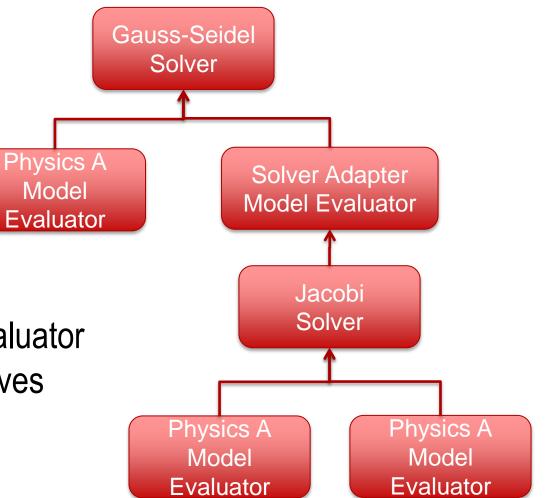
virtual bool solvedTentativeStep() const;

virtual double getCurrentTimeStepSize() const;

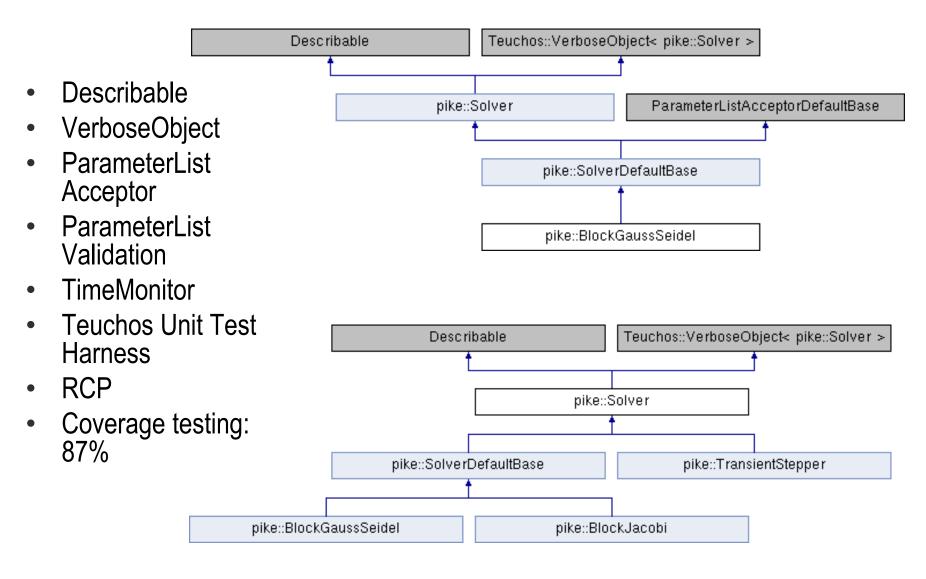
virtual double getDesiredTimeStepSize() const;

virtual double getMaxTimeStepSize() const;

virtual void acceptTimeStep();

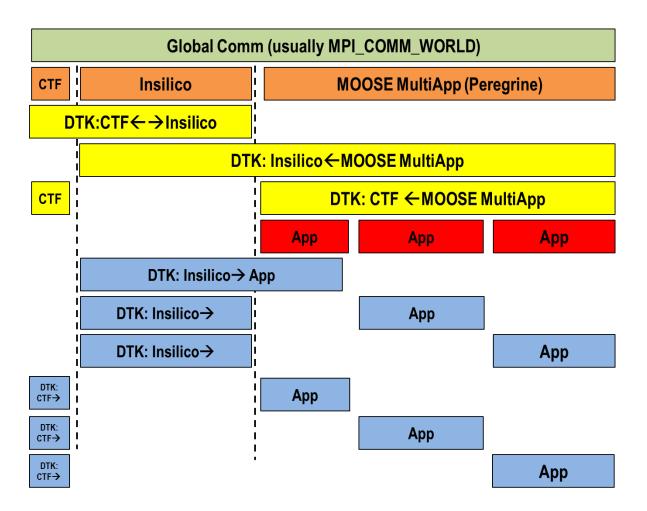

Flexibility

- Sovlers:
 - pike::SolverObserver for user injection of code at specific points in the solve
 - pike:AbstractSolverFactory for users to inject new solvers
 - pike::Factory for aggregating solver factories
- Status Tests
 - Splits convergence into local (application) and global (coupled problem)
 - Also defines Abstract Factory and Factory classes
 - Follows NOX::StatusTest abstract base class for convergence criteria, combined into user defined hierarchy
- Utilities: Default Solver and ME classes, Logger Wrappers
- Hierarchical Solves are supported via SolverAdapterModelEvaluator wrapper

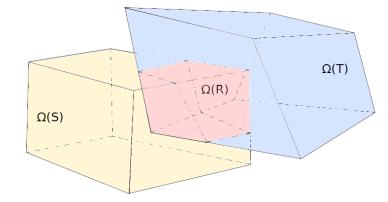


- SolverAdapterModelEvaluator
 allows for hierarchic solves
- Optimal data transfer

Follows Trilinos Coding Standards



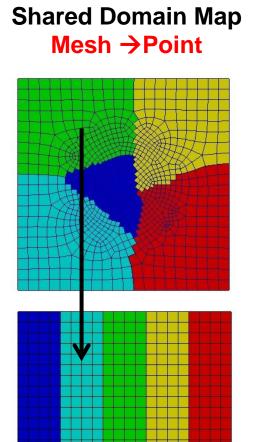
The pike::MultiphysicsDistributor Class


Sandia National Laboratories

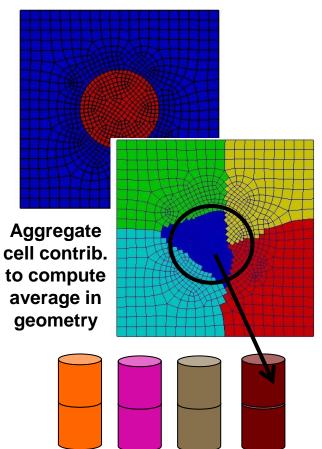
- Creates MPI
 Communicators and provides
 information for
 coupled problems
- Can overlap or segregate codes in MPI process space
- Data Transfers: DTK
 - In memory
 - Rendezvous algorithm

Data Transfer Kit (Slattery, Wilson, Pawlowski)

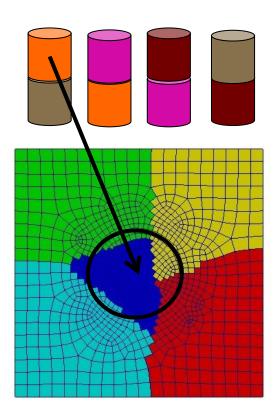
- In-memory data transfers are critical for efficiency: NO file I/O for transfers
- Determines efficient point-to-point communication pattern for parallel transfer between codes
- Provides both volume and interfacial:
 - Volume-to-Volume: (Shared Domain)
 - Point Interpolation (post-scale for conservation)
 - Both mesh and Geometry based
 - Surface/Interfacial: Common Refinement (Jiao and Heath 2004)
 - Spline interpolation (de Boer et al. CMAME 2007)
- Uses Rendezvous algorithm (Plimpton et al., Journal of Parallel and Distributed Computing 2004)
 - N log(N) time complexity in parallel map generation



 $\mathbf{M}: \mathbb{R}^D o \mathbb{R}^D, orall r \in \Omega_R$ $\mathbf{G}(t) \leftarrow \mathbf{M}(\mathbf{F}(s))$



DTK Implements Mappings for Various Transfers (Rendezvous used by all Mappings)



Integral Assembly Map Mesh →Geometry

Shared VolumeMap Geometry → Point

Colors represent different MPI processes

Simplified Pseudocode for Transfers


```
setupDTKAdapters {
```

- if (mpd->transferExistsOnProcess(DREKAR_TO_INSILICO)) {
 RCP<DataTransferKit::GeometryManager<...> > drekar_geom;
 RCP<DataTransferKit::FieldContainer<...> > insilico target points;
 - if (mpd->appExistsOnProcess(DREKAR))
 drekar geom = drekar me->getSourceGeom();
 - if (mpd->appExistsOnProcess(INSILICO))
 insilico_target_points = insilico_me->getTargetPoints();

```
dtk_map->setup(drekar_geom, insilico_target_points);
}
doTransfer() {
```

Solver Comparisons

- Picard
 - Generalized Davidson eigensolver for SP_N
 - JFNK for thermal/subchannel solve
 - Damping factor = 0.4
- Anderson
 - Anderson(2)
 - Mixing parameter: β = -1.0
- JFNK-based methods
 - Block diagonal preconditioner on physics components:

ж С	f	Ö ÷	é ê	$\mathbf{A}(T) - / \mathbf{B}(T)$	0	0	ù ú
				0			
ل ونو ف	Т	÷ Ø	ê ë	0	0	$\mathbf{L}(T)$	Ú Û

- Diagonal blocks approximately inverted with Trilinos/ML
- Trilinos/NOX JFNK solver with Belos GMRES
- Stopping tolerance: 10⁻⁴ nonlinear, 10⁻⁵ linear

Why Anderson Acceleration?

Minimal change to "black-box" codes: x = g(x)

Algorithm AA: Anderson Acceleration

GIVEN x_0 AND $m \ge 1$. SET $x_1 = g(x_0)$. FOR $k = 1, 2, \ldots$ (UNTIL CONVERGED) DO: SET $m_k = min\{m, k\}$. DETERMINE $\gamma^{(k)} = (\gamma_0^{(k)}, \ldots, \gamma_{m_k-1})^T$ THAT SOLVES $min_{\gamma^{(k)} = (\gamma_0^{(k)}, \ldots, \gamma_{m_k-1})^T} ||f_k - \mathcal{F}_k||_2$. SET $x_{k+1} = g(x_k) - \mathcal{G}_k \gamma^{(k)}$.

$$f_i = g(x_i) - x_i$$

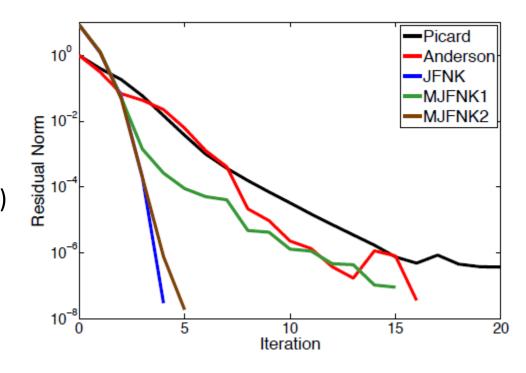
$$\mathcal{F}_k = (\Delta f_{k-m_k}, \dots, \Delta f_{k-1}) \text{ with } \Delta f_i = f(x_{i+1}) - f(x_i).$$

$$\mathcal{G}_k = (\Delta g_{k-m_k}, \dots, \Delta g_{k-1}) \text{ with } \Delta g_i = g(x_{i+1}) - g(x_i).$$

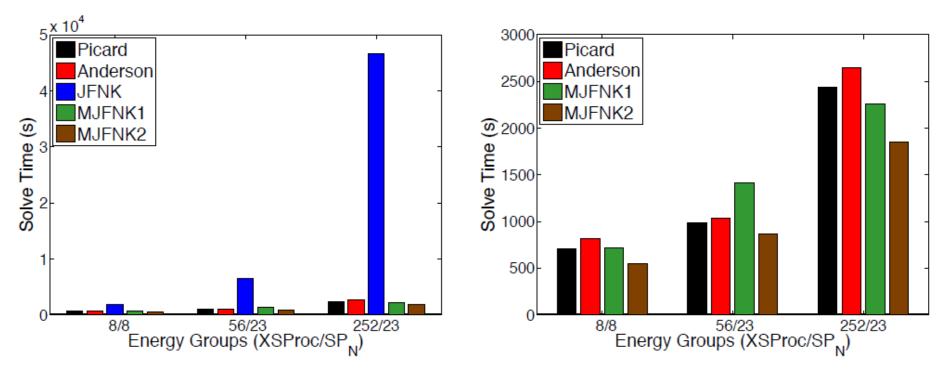
Anderson, ACM 1965

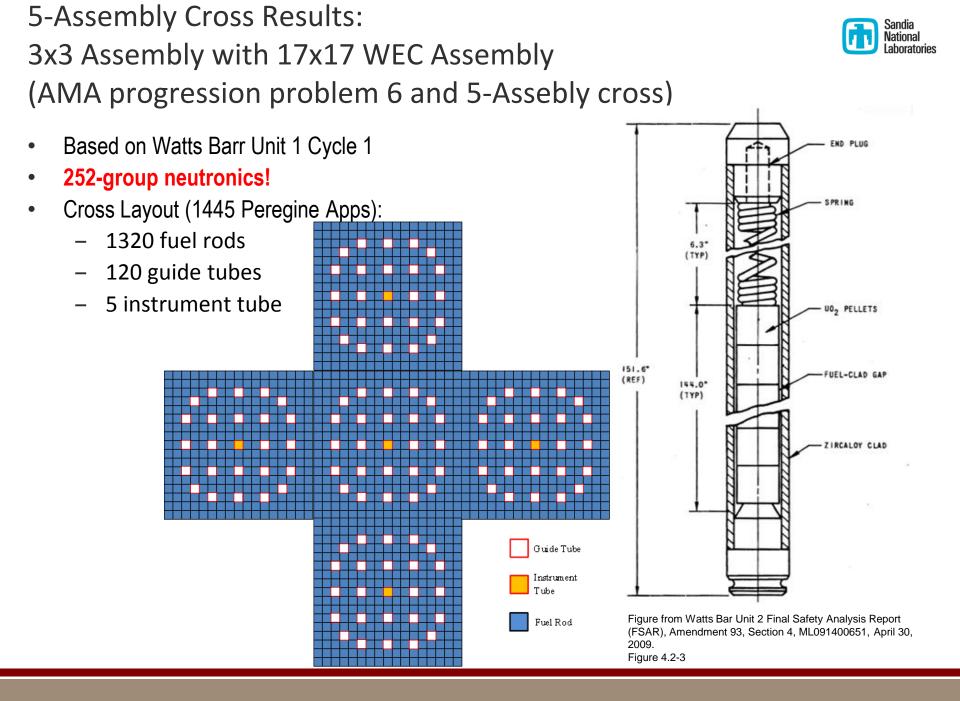
Comparison Problem – CASL AMA Problem 6

- Standard 17x17 PWR Fuel Assembly
 - 264 fuel pins
 - 24 guide tubes, 1 instrumentation tube
 - 1.26 cm pitch, 365 cm active fuel height
- 3.1% enriched UO₂
 - water moderator w/650 ppm boron
 - Zirc-4 clad
- 8 spacer grids, top/bottom nozzle
- 30,000 W/kg operating power
- Finite volume simplified P_N (SP_N) transport
 - SP₃ in angle, P₁ scattering
 - 23 energy groups
 - Cross sections collapsed and homogenized from 56/252 groups on 49 axial levels per fuel pin
 - 290,000 mesh cells on Cartesian mesh
 - 13M DOFs, 524M nonzeros in matrix
- Unstructured mesh CFEM thermal diffusion
 - 4M mesh cells on unstructured hexahedral mesh
- Pin-by-pin subchannel flow model
- Spatially decomposed on 289 cores



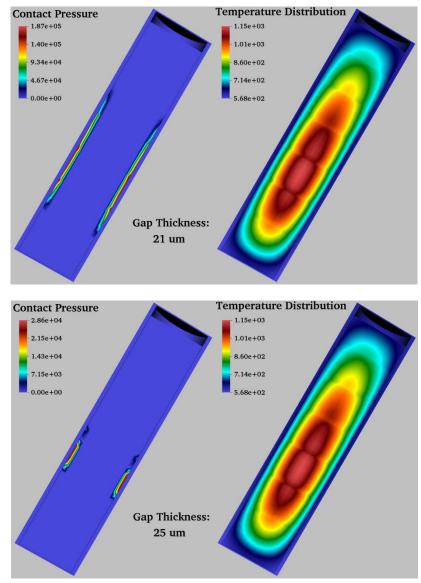
Comparison of Solvers


- Watts-Bar Cycle 1 single assembly
- Multiple Solvers:
 - Picard iteration (PIKE)
 - Anderson acceleration (NOX)
 - JFNK (NOX)
 - Modified JFNK 1 & 2 (NOX)
- Direct to steady-state
- Submitted to JCP special issue for CASL


Method	Total	SP_N	Thermal	XSProc
Picard	2437 (9)	81 (296)	470 (296)	1507(9)
Anderson	2647(9)	92 (332)	483 (305)	1673(10)
JFNK	46653(4)	173(252)	417 (252)	45472 (252)
MJFNK1	2263(5)	210 (323)	499 (323)	1003(6)
MJFNK2	1846 (4)	145 (224)	346 (224)	835 (5)

Total Runtime Comparison

- > 90% of runtime at 252 energy groups is in the online cross section calculation
- Blind application of JFNK was terrible due to cross section recalculation in Jacobian-vector products
- Better performance of JFNK is not enough to justify the effort needed in refactoring legacy codes (but for new codes JFNK is the preferable from a V&V/UQ standpoint!)


Contact Assessment for PCI

- Changed fuel pellet radius to initiate contact at early times.
- Peregrine (and thus Tiamat) robustly converged through contact events.

Initial Gap Thickness (um)	Maximum Contact Pressure at HFP	Maximum Fuel Temperature (C)	Simulation Phase at Initial Contact
84	0	1040	Never
42	0	911	Never
26	0	860	HZP->Estimated HFP
25	2.86E+04	859	HZP->Estimated HFP
24	6.37E+04	858	HZP->Estimated HFP
23	1.05E+05	857	HZP->Estimated HFP
22	1.53E+05	857	HZP->Estimated HFP
21	1.87E+05	856	HZP->Estimated HFP
11.5	6.89E+05	856	HZP->Estimated HFP
5.75	9.39E+05	856	CZP->HZP

Contact is robust

5-Assembly Cross: Power and Flux

Power Distribution

1.06e-04

- 7.09e-05

- 3.55e-05

0.00e+00

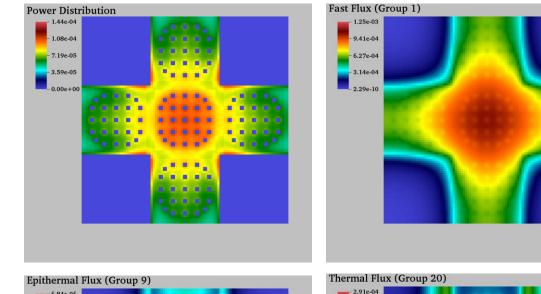
Epithermal Flux (Group 9)

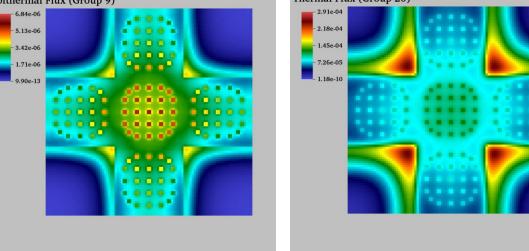

6.73e-06

5.05e-06

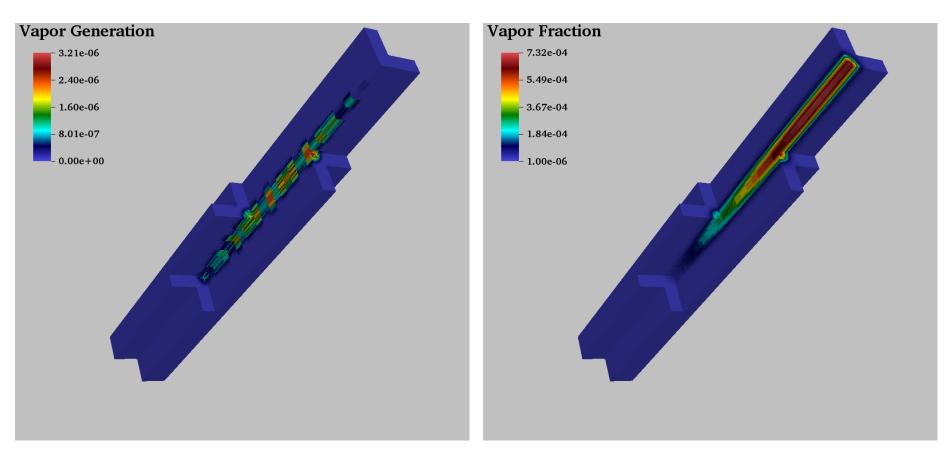
- 3.37e-06

1.68e-06

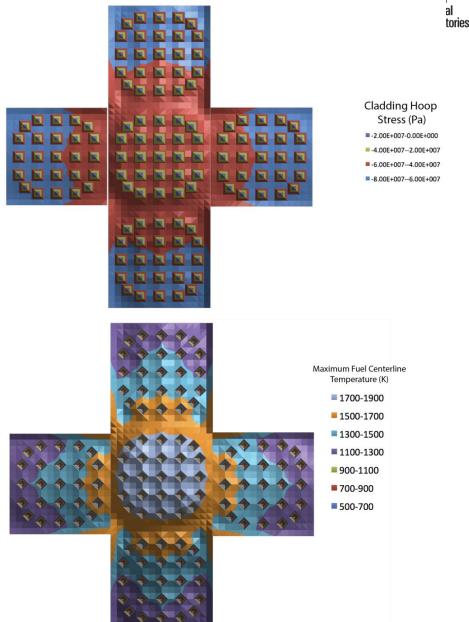

1.06e-12



5-Assembly Cross: Power and Flux



5-Assembly Cross Vapor Generation and Vapor Fraction


Sandia

Minimal amount of boiling

PCI Capability Demo

- "A multiple assembly simulation of coupled CTF/Insilico/Peregrine that computes figures of merit for PCI analysis."
- Important features:
 - Fully coupled feedback in each time step
 - Using 252-group neutronics
 - Solid mechanics, w/ history effects
- Significant coordination/collaboration between SNL, ORNL, INL, and PNNL

5-Assembly Cross: Timings

- Similar to single assembly layout
 - One MPI core per Peregrine pin
- Timings are dominated by Insilico cross section evaluations

Timings (S)	Tiamat	CTF/Ins
Num Cores	1735	289
Total time	22840	6919
Setup	2200	-
HFP Est/HFP Ramp	3641	-
Solve	16999	-
Num fixed-point Iterations	7	2

Application	Num Cores	Solve Time (s)	Num Solves	Avg/Solve (s)
CTF (HFP Est)	1	697	1	697
CTF (Solve)	1	963	7	138
Insilico (HFP Est)	289	2316	1	2316
Insilico (Solve)	289	15600	7	2229
Peregrine (HFP Ramp)	1445	96.4	12	8
Peregrine (Solve)	1445	94.48	7	14

Transfer	Phase	Time (s)				
		Number	Min	Mean	Max	Mean/Trans
CTF to Insilico	Setup	1	4.40E-01	19.46	1991	19.46
	Transfer	7	1.93E-01	1.93E-01	1.93E-01	2.75 E- 02
CTF to Peregrine	Setup	1	89.91	89.91	89.91	89.91
	Transfer	7	4.92	4.92	4.92	0.702
Peregrine to CTF	Setup	1	4.67E-01	4.67E-01	4.69E-01	4.67E-01
	Transfer	7	1.90E-03	2.36E-03	4.83E-02	3.38E-04
Insilico to Peregrine	Setup	1	102.3	102.3	102.3	102.3
	Transfer	7	332.9	332.9	333.2	47.56
Peregrine to Insilico	Setup	1	7.24 E- 02	7.24E-02	7.25E-02	7.24E-02
	Transfer	7	1.38E-03	1.47E-02	1.51E-02	2.10E-03

Summary and Future Work

- Black Box coupling is not ideal algorithmically, but is used in many industries
 - Very practical when working with Legacy code!
- Utility of PIKE is to provide a consistent set of interfaces for multiple couplings → reuse of model evaluators and data transfer operators
- Future Work
 - PIKE and DTK will be integrated/snapshotted into the next release of Trilinos
 - PIKE: Finish up TransientSolver support
 - Newton-based Coupling: Thyra::ProductModelEvaluator is under development but not yet completed (currently using AMP for model composite)
 - DTK: Addition/Refactoring of interfaces before Trilinos release
 - DAKOTA interfaces to PIKE
 - Add new solver that mimics SIERRA solution control?
- Questions
 - Trilinos integration: should PIKE be a separate package? NOX?