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Mathematical Motivation 
Achieving Scalable Predictive Simulations of Complex Highly Nonlinear 

Multi-physics PDE Systems 
 

• Multiphysics systems are characterized by a myriad of complex, interacting, 

nonlinear multiple time- and length-scale physical mechanisms: 
 

– Dominated by short dynamical time-scales 

– Widely separated time-scales (stiff system) 

– Evolve a solution on a long time scale relative 

   to component time scales  

– Balance to produce steady-state behavior.  
 

 

 

• Our approach: 

–  Stable and higher-order accurate implicit formulations and discretizations  

–  Robust, scalable and efficient prec. for fully-coupled Newton-Krylov methods 

–  Integrate sensitivity and error-estimation to enable UQ capabilities. 

 

 

 

e.g. Nuclear Fission / Fusion Reactors; Conventional /Alternate Energy 

Systems; High Energy Density Physics; Astrophysics; etc …. 

Explicit Methods 

Typically requires some 

form of Implicit Methods 



Tools for Multiphysics Simulation 
(Spanning Individual Applications and Coupled Systems) 

• Domain Model (SAND2011-2195) 
 

• Abstraction Layer ANAs 
– Thyra::ModelEvaluator: Application Interface 

– Thyra: Operator, Vector 
 

• Implicit Nonlinear Solution Algorithms 
– NOX: Globalized Newton-Krylov and JFNK 

– LIME/PIKE: Multiphysics coupling driver. Picard iteration and 
tools to assemble block aggregate systems to call with NOX 

 

• Linear Algebra and Linear Solution Algorithms 
– Epetra, Tpetra: Concrete Linear Algebra 

– Stratimikos, Belos, AztecOO, Amesos: Linear Solvers 

– ML, MueLE, Ifpack,Teko: Preconditioners 
 

• Examples 
 

 



    Implicit Climate Simulators can be Built 

on Trilinos Solvers and Software 

POP Ocean Model 
THCM Ocean Model 

HOMME Atmospheric Model 

Data Structures 
Direct Solvers 

Linear Solvers 

Preconditioners 

Iterative Solvers 

Eigen Solver 
Partitioning 

Load Balancing 

Parallelization Tools 

UQ Algorithms 

Nonlinear Solver 

Time Integration 

Optimization 

Stability Analysis 

Analysis Tools 
Regression Testing 

Bug Tracking 

Version Control 

Software Quality 

Release Process 

Web Documentation 

Build System 

Verification Tests 

Multi-Level Algs 
Architecture- 

Dependent Kernels 

Glimmer Ice Sheet Model 
FELIX Ice Sheet Model 

+ IBECS, Sea Ice 



A Domain Model 

• Input Arguments: state time derivative, state, parameters, time 

• Output Arguments: Residual, Jacobian, response functions, etc… 

A Theory Manual for 

Multiphysics Code 

Coupling in LIME, 

R. Pawlowski, R. 

Bartlett, R. Schmidt, 

R. Hooper, and N. 

Belcourt,  

SAND2011-2195  State (DOF) 
Set of parameters 

Time 
Residual 

Response Function 



Extension to Multiphysics 

Set of independent 

parameters 
Set of coupling 

parameters 

Transfer Function 

Response Function 

Split parameters into “coupling” and truly independent. 

Require transfer functions: 

• Can be complex nonlinear functions themselves 

Response functions now dependent on z 

• Can be used as coupling parameters (z) for other codes 



Abstract Interfaces 



An ANA is a numerical algorithm that can be expressed abstractly solely in terms of vectors, 

vector spaces, linear operators, and other abstractions built on top of these without general 

direct data access or any general assumptions about data locality 

What is an abstract numerical algorithm (ANA)? 

Introducing Abstract Numerical Algorithms 

Vector 

Axpy() 

Dot() 

Norm() 

… 

Operator 

Apply() 

… 

ModelEvaluator 

supportsF() 

evaluate() 

… 
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Concrete Implementations 

Epetra, PETSc, Tpetra, … 

A
N

A
 

Linear 

Krylov 

Nonlinear 

Glob. N-K 

Optimization 

 

Block composition 

operators and 

vectors: 

Block Factorization 

Preconditioners: 



Fundamental Thyra ANA Operator/Vector Interfaces 

The Key to success! 
    Reduction/Transformation 

Operators  

• Supports all needed element-wise 

vector operations 

• Data/parallel independence 

• Optimal performance 

R. A. Bartlett, B. G. van Bloemen Waanders and M. A. Heroux. Vector 

Reduction/Transformation Operators, ACM TOMS, March 2004 

LinearOpBase

VectorSpaceBase

VectorBase

MultiVectorBase

1

columns1..*

RTOpT

rangedomain

space

A Few Quick Facts about 

Thyra Interfaces 

• All interfaces are expressed as 

abstract C++ base classes            

(i.e. object-oriented) 

• All interfaces are templated on 

a Scalar data type                                         

(i.e. generic) 

Matrix/Vector operations are handled in app’s native data structures! 



Application Interface: 

Model Evaluator 
Nonlinear 

ANA Thyra::ModelEvaluator 

createInArgs() : InArgs 

createOutArgs() : OutArgs 

create_W() : LinearOpWithSolveBase 

create_W_op() LinearOpBase 

… 

evalModel( in InArgs, out OutArgs ) 

• Set your inputs in an InArgs container:  
 

• Set your outputs in an OutArgs container: 
 

• model_evaluator->evalModel(in_args, out_args) 

• Common interface for ANAs: Nonlinear, Optimization, Bifurcation, … 

• Inputs and outputs are extensible without requiring changes to apps 

• Efficient shared calculations (e.g. automatic differentiation) 

• Self describing: query what inputs and outputs it supports 



Application Classification 

Name Definition Required 

Inputs 

Required 

Outputs 

Optional 

Outputs 

Time 

Integration 

Control 

Response Only 

Model  
(Coupling Elimination) 

Internal 

State Elimination 

Model 

Internal 

Fully Implicit Time 

Step Model 

Internal 

Transient 

Explicitly Defined 

ODE Model 

External 

Transient Fully 

Implicit DAE 

Model 

External 

or 

Internal 

Inputs and outputs are optionally supported by physics model  

restricts allowed solution procedures   



An Assortment of Coupling Algorithms 

• Picard-based (Black-Box) 

– Block Nonlinear Jacobi 

– Block Nonlinear Gauss-
Seidel 

– Anderson Acceleration   

• Newton Based (Block Implicit) 

– Jacobian-free Newton-Krylov 

– Newton-Krylov (Explicit 
Jacobian) 

– Nonlinear Elimination (Schur 
complement formulation) 

• Off-block diagonals may be hard to compute 

• Can avoid computing Jacobian by using JFNK, 

• BUT you still need to precondition (                  ) 

Example: Two  

Component system 

Picard Iteration: Nonlinear Block Gauss-Seidel 

Newton-based 



Implicit Solvers 

NOX and LOCA: Nonlinear Solution and Homotopy 

Globalizations 

Line Search 

Backtracking 

Quadratic 

Cubic 

More’-Thuente 

Trust Region 

Dogleg 

Inexact Dogleg 

Difficulties (Missing or Inaccurate J/M) 

• Jacobian-Free Newton-Krylov (JFNK) 

• Finite Difference 

• Colored Finite Difference 

• Broyden (rank-1 updates) 

Newton’s Method 

MN = F(xc) + Jcd 

Model 

Artificial 

Parameter 

Continuation 

 

Natural 

Parameter 

Continuation 

Homotopy 

(LOCA) 
     Tensor Method     

MT = F(xc) + Jcd + 1/2Tcdd 

Broyden’s Method 

MN = F(xc) + Bcd 

Residual or 

Newton-  

Based  

Alorithms 

• Efficient: Quadratic convergence rates, no CFL limit 

• Robust: globalization techniques 



Simple Nonlinear Solve 

 

Physics Application: 

Drekar 

Main() 

NOX::Solver 

Application 
Thyra::ModelEvaluator 

fDrekar

xk = xk¡1¡®J¡1f

Globalized  

Newton-Krylov 



Block Composite Model 
• The entire coupled system can be cast 

as a monolithic system: 



The Power of Decorators 

• Use inheritance and composition to wrap  

      analysis tools as model evaluators to build  

      a hierarchical chain. 

 

• Example ANA decorator subclasses 

• BlockCompositeModelEvaluator: Aggregate physics into blocked 

objects 

• FiniteDifferenceModelEvaluator: Global finite differences w.r.t. inputs 

• JacobianFreeNewtonKrylovModelEvaluator: Wraps a “residual-only” 

model evaluator to provide a Jacobian operator 

• StateEliminationModelEvaluator: Eliminates steady state 

equations/variables using a NonlinearSolverBase object 

• DiagonalScalingModelEvalautor: Apply a user defined diagonal 

scaling operator for outArgs 

• DefaultEvaluationLoggerModelEvaluator: Log evaluations vs. time and 

print out summary table 

Thyra::ModelEvaluator 

Thyra::BlockedComposedME 



f =

·
fDrekar

fExnihilo

¸

Uses Decorator to better condition a 

poorly scaled system of equations 

 

Thyra::Scaled 

Model Evaluator 

Physics set: 

Drekar 

Main() 

NOX::Solver 

Application 
Thyra::ModelEvaluator 

Applies Scaling 

Matrix,     , to 

Evaluated Quantities  

Thyra::Block  

Composite ME 

Physics set: 

Exnihilo 

Application 
Thyra::ModelEvaluator 

NOX::JFNK  

Model Evaluator 

fExnihilo fDrekar

xk = xk¡1¡®J¡1f

Globalized  

Newton-Krylov 



Linear Solvers  

and Preconditioners 



Nonlinear Algorithms and Applications : Thyra & Model Evaluator! 

Trilinos and non-Trilinos 

Preconditioner and Linear 

Solver Capability 

NOX / LOCA MOOCHO 

Xyce Charon Aria Tramonto Panzer 

… 

… 

Key Points 

• Provide single interface from nonlinear ANAs to applications 

• Provide single interface for applications to implement to access nonlinear ANAs 

• Provides shared, uniform access to linear solver capabilities 

• Once an application implements support for one ANA, support for other ANAs can 
quickly follow 

Nonlinear 
ANA Solvers 
in Trilinos 

Sandia 
Applications 

Rythmos 

Stratimikos! 

Model Evaluator 



All Linear Solvers in Trilinos can be 

selected at run time from an XML File 
<ParameterList name=”Stratimikos" > 

    <ParameterList name="AztecOO"> 

        <Parameter name="Aztec Preconditioner" type="string" value="ilu"/>      

         <Parameter name="Aztec Solver" type="string" value="GMRES"/> 

         <Parameter name="Maximum Iterations" type="int" value="100"/> 
            … 

    <ParameterList name="Belos"> 

        <ParameterList name="Solver Types"> 

             <ParameterList name="Block GMRES">  

                <Parameter name="Convergence Tolerance" type="double" value="1e-5"/> 

                <Parameter name="Maximum Iterations" type="int" value="100"/> 

                <Parameter name=”Flexible GMRES" type=”bool" value=”false"/> 

                <Parameter name="Orthogonalization" type="string" value="DGKS"/> 

             <ParameterList name="Block CG”> 
                … 

    <ParameterList name="Preconditioner Types"> 

        <ParameterList name="Ifpack"> 

            <Parameter name="Prec Type" type="string" value="ILU"/> 

            <Parameter name="Overlap" type="int" value="0"/> 

            <Parameter name=”Fill Factor" type="int" value=“1"/> 
            … 

        <ParameterList name="ML"> 

           <Parameter name=”nodes per aggregate" type="int" value=“27"/> 

           <Parameter name=”coarse: max size" type="int" value=“512"/> 
           …    

</ParameterList> 

Trilinos Linear Solvers: Heroux, Tuminaro, Hu, Bartlett, Thornquist, Hoemmen, Cyr,… 



Three Types of  

Preconditioning 
1. Domain Decomposition (Trilinos/IFPack) 

– 1 –level Additive Schwarz DD 

– ILU(k)  Factorization on each processor   (variable levels of overlap) 

– High parallel efficiency, non-optimal algorithmic scalability 

 

2. Multilevel Methods for Systems: (Trilinos/ML/MueLu) 
– Fully-coupled Algebraic Multilevel methods 

– Consistent set of DOF at each node (e.g. stabilized FE) 

– Uses block non-zero structure of Jacobian 

– Aggregation techniques and coarsening rates can be set 

• Smoothed aggregation (SA) 

• Aggressive Coarsening (AggC) 

– Jacobi, GS, ILU(k) as smoothers 

– Can provide optimal algorithmic scalability 

 

3. Approximate Block Factorization / Physics-based 
(Trilinos/Teko) 
– Applies to mixed interpolation (FE), staggered (FV), using segregated 

unknown blocking 

– Applied to systems where coupled AMG is difficult or might fail 

– Can provide optimal algorithmic scalability 

Aggregation based 

Multigrid: 

Vanek, Mandel, 

Brezina, 1996; Vanek, 

Brezina, Mandel, 2001; 

Sala, Formaggia, 2001 

 

 



• TFQMR: used to look at time/iteration of multilevel preconditioners. 

• W-cyc time/iteration not doing well due to significant increase in work on coarse levels (not shown) 

• Good scaled efficiency for large-scale problems on larger core counts for 31K Unknowns / core  

 

64K 

144K 

64K 

144K 

Weak Scaling Uncoupled Aggregation Scheme:  

Time/iteration on BlueGene/P 



Scalability 
(MHD Pump, Cray XT3) 

Preconditioners 

• 1-level ILU(2,1) 

• 1-level ILU(2,3) 

• 1-level ILU(2,7) 

• 3-level ML(NSA,Gal) 

• 3-level ML(EMIN, PG) 

ML: Tuminaro, Hu 

Ifpack: Heroux 

By 

Velocity 

MHD 

Pump 



Block preconditioning:  

CFD example 

Consider discretized Navier-Stokes equations 

Properties of block factorization 
1. Important coupling in Schur-complement 

2. Better targets for AMG → leveraging scalability 

Properties of approximate Schur-complement 
1. “Nearly” replicates physical coupling 

2. Invertible operators → good for AMG 

Fully Coupled Jacobian Preconditioner 

Required operators: 

•                       → Multigrid 

•                       → PCD, LSC,  

                                SIMPLEC 

Block Factorization 

• Coupling in Schur-complement 



Discrete N-S Exact LDU Factorization Approx. LDU 

Brief Overview of Block Preconditioning Methods for  Navier-Stokes:  

(A Taxonomy based on Approximate Block Factorizations, JCP – 2008) 

Now use AMG type methods on sub-problems.  

  Momentum transient convection-diffusion:  
 

  Pressure – Poisson type: 

Precond. Type References 

 Pres. Proj;  1st 
Term Nuemann 
Series  

Chorin(1967);Temam (1969); 
Perot (1993): Quateroni et. 
al. (2000) as solvers 

SIMPLEC Patankar et. al. (1980) as 

solvers; Pernice and Tocci 

(2001) smothers/MG  

Pressure 
Convection / 
Diffusion 

Kay, Loghin, Wathan, 
Silvester, Elman (1999 - 
2006); Elman, Howle, S., 
Shuttleworth, Tuminaro 
(2003,2008) 



Transient  
Kelvin-Helmholtz 



Incompressible MHD  
2D Vector Potential Formulation 

Magnetohydrodynamics (MHD) equations couple fluid flow to 

Maxwell’s equations 

Discretized using a stabilized finite element formulation 

Structure of discretized Incompressible MHD system is 

Matrices F and D are transient convection operators, C is stabilization matrix 



Teko Block Preconditioners 
Nested Schur Complements: 

Physics Based: Operator Splitting: 

• Eliminates nested Schur Complements 

• Requires two 2x2 solves 

• Navier-Stokes operator well studied 

• Magnetics-Velocity operator is difficult 



Physics-based/ABF Preconditioning 

JFNK + Block 

Scattering for 

Preconditioning 



Hydromagnetic Kelvin-Helmholtz 

• Velocity shear flow 

• Magnetic field in x-direction 

• Reynolds number = 10^3 

• Lundquist number =  10^4 

t = 0.012 t = 0.906 t = 1.956 



MHD Weak Scaling: Hydromangetic Kelvin-Helmholtz 

(Fixed time step) 

Take home: Split preconditioner scales algorithmically, 

more relevant for mixed discretizations, multiphysics  

Fully coupled Algebraic 

AggC: Aggressive Coarsening Multigrid 

DD: Additive Schwarz Domain Decomposition 

Block Preconditioners 

Split: New Operator split preconditioner 

SIMPLEC: Extreme diagonal approximations 

 

1024 Cores 

1 Core 
1024 Cores 

1 Core 



Hydromagnetic  

Rayleigh-Bernard 

Parameters:  

• Q ~ B0
2 (Chandresekhar number) 

• Ra (Rayleigh number) 

• Buoyancy driven instability initiates flow at high Ra numbers. 

• Increased values of Q delay the onset of flow.  

• Domain: 1x20 

Ra (fixed Q) 

No flow Recirculations 

B0 g 



Hydro-Magnetic Rayleigh-Bernard Stability: Direct 

Determination of Nonlinear Equilibrium Solutions 

(Steady State Solves, Ra=2500, Q=4) 

Temp 

Vx 

Vy 

Bx 

By 

Jz 



Hydro-Magnetic Rayleigh-Bernard Stability: Direct 

Determination of Linear Stability and Nonlinear 

Equilibrium Solutions (Steady State Solves) 

• 2 Direct-to-steady-state solves at a given Q 

• Arnoldi method using Cayley transform to determine 

approximation to 2 eigenvalues with largest real part 

• Simple linear interpolation to estimate Critical Ra* 

Temp. 

Vx 

Vy 

By 

Bx 

Leading Eigenvector at Bifurcation Point,  

Ra = 1945.78, Q=10 



Arc-length Continuation: Identification of 

Pitchfork Bifurcation, Q=10 

Nonlinear system: 

Newton System: 

Bordered Solver: Ra 



Q=10 

Q=0 

Design (Two-Parameter) Diagram 

Vx 

Ra 

Q 

Ra 

Q 

No Flow 

Buoyancy  

Driven Flow 

• “No flow” does not equal “no-structure” – pressure and magnetic 

fields must adjust/balance to maintain equilibrium.  

• LOCA can perform multi-parameter continuation 



• Turning point formulation: 

 

 

 

 

• Newton’s method (2N+1): 

 

 

 

 

• 4 linear solves per Newton iteration: 

 

 

 

 

 

 

 

 

 

Bifurcation Tracking 
(Govaerts 2000) 

• Widely used algorithm for small systems: 

 

 

 

 

• J is singular if and only if s = 0 

 

• Turning point formulation (N+1): 

 

 

 

• Newton’s method: 

 

 

 

 

• 3 linear solves per Newton iteration  

Moore-Spence Minimally Augmented 

Extension to large-scale 

iterative solvers 



Leading Mode is different  

for various Q values 

• Analytic solution is on an infinite 

domain with two bounding 

surfaces (top and bottom) 

• Multiple modes exist, mostly 

differentiated by number of 

cells/wavelength. 

• Therefore tracking the same 

eigenmode does not give the 

stability curve!!! 

• Periodic BCs will not fix this 

issue. 

 

Mode: 20 Cells: Q=100, Ra=4017 

Mode: 26 Cells: Q=100, Ra=3757 

Q 

Ra 

Leading mode 

 is 20 cells 

Leading mode 

 is 26 cells 

2000 

3000 

4000 



SEACISM: Parallel Glimmer-CISM2 

Evans, Worley, Nichols, Norman (ORNL) 

Price, Lipscomb, Hoffman (LANL) 

Salinger, Kalashnikova, Tuminaro (SNL) 

Lemieux (NYU), Sachs (NCAR) 

Glimmer Code ~2009: 

• First-Order Approx to Stokes: 3D for [U,V] 

• Structured Grid 

• Finite Difference 

• Serial 

• Picard Solver 

• Autoconf 

Glimmer Code  ~2013: 

• Parallel Assembly 

• Parallel Solve 

• Newton Solver 

• Cmake 

• Built in CESM development branch 



Convergence is not adequately robust 

reliable for Greenland problems 

Why the poor robustness? 

• Real, noisy data 

• Nonlinear viscosity model 

• Structured grid Finite Diff 

• Finite Diff for Stress BCs 

• Jacobian-Free perturbations 

• Picard matrices 



New FELIX Codes address many of 

these issues (PISCEES SciDAC-BER) 

FELIX Codes1,2: 

• Real, noisy data 

• Nonlinear viscosity model 
• Included in Jacobian 

• Unstructured Grid 

• Finite Element Stress BCs 

• Newton, Analytic Jacobian 

• Rigorous Verification 

• Hooks to UQ Algorithms 

• Numerous Trilinos Libraries 
• Discretization 

• Load Balancing 

1. Perego, Gunzberger, Ju (LifeV, Trilinos, MPAS) 

2. Salinger, Kalashnikova, Perego, Tuminaro (Albany, Trilinos, MPAS) 

Manufactured Solution 



Full Newton with Analytic Jacobian 

fixes some causes of robustness issues 

Perego, FSU 



Conclusions 

• Trilinos contains a diverse set of algorithms 
– Abstract Interfaces 

– Linear Algebra 

– Linear solvers 

– Preconditioners 

– Nonlinear solvers and Analysis 

– Discretization libraries 

• The toolkit approach is critical 
– Flexibility is key 

– Each physics is unique and requires its own strategy 

• Coupled codes must leverage large body of 
knowledge from stand-alone applications 
– Directly use app solver: Picard it 

– Use app solver in a physics-based preconditioner 

 

 
 

 


