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Abstract 

Epetra is a package of classes for the construction and use of serial and distributed parallel linear 
algebra objects [1].  It is one of the base packages in Trilinos [2].  Many Trilinos solver packages 
can use Epetra object to provide basic linear algebra computations.  In these cases, the 
performance of the solver is often determined primarily by the performance of the kernels in 
Epetra.  For this reason, it is often advantageous to make sure that Epetra kernels are performing 
optimally.  This document describes how to get the best performance from Epetra kernels.  The 
ideas presented here can make a significant difference in the performance of Epetra, sometimes a 
dramatic difference.  
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1. Introduction 
 
This document describes issues for the Epetra computational classes that have an impact on 
performance.  We present the topics class by class and indicate via the symbols presented in 
Section 1.1 the typical impact of each recommended practice. 
 

1.1 Practice Categories 

Each practice falls into one of three categories:  
 

Very Strongly Recommended - Practices necessary for Epetra to perform well.  
 
Strongly Recommended   - Practices that are definitely a good thing or that have 
proved to be valuable.  

 
Recommended - Practices that are probably a good idea. 
 

 
 

1.2 Epetra Computational Classes 

Epetra contains a base class called Epetra_CompObject.  This is a small class, but the classes that 
derive from it are exactly those which are the focus of this guide.  

 

 
Figure 1: Epetra Computational Classes 
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2. 3rd Party Libraries: BLAS and LAPACK 
The Basic Linear Algebra Subprograms (BLAS)  [3, 4, 5] provide a de facto standard interface 
for a variety of common dense linear algebra kernels such as vector updates and dot products, 
matrix-vector multiplication and matrix-matrix multiplication.  LAPACK [6] provides a very 
large collection of linear equation solvers, eigenvalue/eigenvector solvers and much more, and is 
built to get its performance from the BLAS.  A number of high-performance implementation of 
the BLAS exist.  In fact, every major computer platform has at least one high-performance 
BLAS implementation.  These high-performance BLAS kernels can provide a speed-up of a 
factor of ten or more for some important operations.  In particular, Level-2 and Level-3 BLAS 
[4, 5] can be much faster.  Two versions that are commonly used are ATLAS [7] and the GOTO  
[8] BLAS. 
 
A number of Epetra classes use BLAS and LAPACK to perform key calculations.  Figure 2  
shows the Epetra classes that depend on BLAS via the Epetra_BLAS class. Epetra_BLAS is a 
simple wrapper class that provides portable interfaces to the BLAS Fortran interfaces.  It is 
convenient to use because calling FORTRAN from C++ varies from platform to platform, and 
Epetra_BLAS handles the details of this issue. 
 

  
Figure 2: Epetra classes affected by BLAS performance 

 
 

• 2.1 Link to high-performance BLAS for Epetra_MultiVector, Epetra_VbrMatrix 
and Epetra_SerialDense performance: Programs using Epetra should link to a high-
performance BLAS library if  

o Epetra_MultiVector objects are used for block vector updates and block dot 
products (via the Multiply() method in the Epetra_MultiVector class) or 

o Epetra_VbrMatrix objects are being used.  These matrix objects rely on BLAS 
kernels for performing matrix-vector and matrix-multivector multiplication. 
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o Any of the Epetra_SerialDense classes are used.  High-performance BLAS are 
critical to the performance of these classes. 
   

3. Epetra_MultiVector Data Layout 
An Epetra_MultiVector object is a collection of dense vectors.  Each vector in a multivector is a 
contiguous array of double-precision numbers.  Generally these arrays are managed by the 
Epetra_MultiVector object via an array of pointers.  However, whenever possible, 
Epetra_MultiVectors are created such that the arrays of double-precision numbers are 
contiguous, such that the last element of one array is next to the first element of the next array.  
Such an arrangement of the arrays is referred to as strided because the distance from the ith 
element of one array to the ith element of the next array is determined by a fixed length.  This 
type of storage association is commonly used because it is exactly how FORTRAN stores two-
dimensional arrays.  As a result, BLAS kernels assume this type of layout for matrices.  
Additionally, there is an essential performance advantage when performing matrix computations 
using strided arrays. 
 
 
3.1 Create Epetra_MultiVector objects with strided storage of vectors: Epetra kernels will 
tend to perform much better if the underlying vectors have a strided storage associated.  
Although Epetra_MultiVectors support non-strided storage, we recommend it be avoided when 
possible.  In particular, use strided storage if: 

o Epetra_MultiVector objects are used for block vector updates and block dot 
products (via the Multiply() method in the Epetra_MultiVector class) or 

o Epetra_MultiVectors are being used with Epetra_CrsMatrix or Epetra_VbrMatrix 
object for sparse matrix-vector multiplication or sparse triangular solves.  In these 
instances, the performance of kernels can be up to twice as fast if the multivector 
has strided storage. 
 

4. Epetra_CrsGraph Construction  
An Epetra_CrsGraph object contains the structural information (the non-zero pattern) for 
Epetra_CrsMatrix and Epetra_VbrMatrix objects.  An Epetra_CrsGraph can be constructed 
explicitly prior to constructing a matrix, and then passed in to the matrix constructor.  
Alternatively, if a matrix is constructed without passing in an existing Epetra_CrsGraph, the 
Epetra_CrsGraph will be constructed “on-the-fly”.  

Epetra_CrsGraph objects are constructed in a three-step process: 

1. Instantiate the Epetra_CrsGraph object. 
2. Insert graph indices. 

VSR 
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3. Call FillComplete() to process the graph data for efficient computation and 
communication. 

Step 1 involves a single call to the constructor and Step 3 to a FillComplete() method.  
However, Step 2 can be accomplished in a number of ways.  Indices can be inserted row-by-
row, index-by-index or any combination of these two approaches.  Indices can be inserted 
redundantly if the user does not want to track which indices are already in the graph and 
indices can be removed.  Although this flexibility is convenient, especially in prototyping 
stages of development, it does introduce overhead in memory and time costs.  Therefore, 
Epetra_CrsGraph objects can be constructed in more restrictive modes that require more 
information and attention from the user, but in return the user can significantly reduce 
memory and time costs. 

4.1 Construct Epetra_CrsGraph objects first: When constructing multiple 
Epetra_CrsMatrix or Epetra_VbrMatrix objects, much of the overhead in sparse matrix 
construction is related solely to the graph structure of the matrix.  By pre-constructing the 
Epetra_CrsGraph object, this expense is incurred only once and then amortized over multiple 
matrix constructions.  Note: Even when constructing a single matrix, it is often the case that 
matrix construction is done within a nonlinear iteration or a time-stepping iteration.  In both 
of these cases, it is best to construct the Epetra_CrsGraph object one time and then reuse it. 

4.2 When constructing Epetra_CrsGraph objects, carefully manage the nonzero profile 
and set StaticProfile to ‘true’ : Although it is very convenient to use the flexible insertion 
capabilities of Epetra_CrsGraph, the performance and memory cost can be substantial.  
StaticProfile is an optional argument to the Epetra_CrsGraph constructors that forces the 
constructor to pre-allocate all storage for the graph, using the argument NumIndicesPerRow 
as a strict upper limit on the number of indices that will be inserted.   

4.3 After calling FillComplete(), call OptimizeStorage() : (Note: With Trilinos 8.0 and 
later, OptimizeStorage() is called automatically.) The OptimizeStorage() method frees 
memory that is used only when submitting data to the object.  Also, the storage that remains 
is packed for better cache memory performance due to better spatial locality.  If StaticProfile 
is true, the packing of data is fast and cheap, if needed at all1.  If StaticProfile is false, then 
the graph data is not contiguously stored, so we must allocate contiguous space for all 
entries, copy data from the existing arrays, and then delete the old arrays.  This can be a 
substantial overhead in memory costs and could even double the high-water memory mark.  
However, the performance improvement for matrix operations can be 20% to a full doubling 
of performance.   

4.4 Use Epetra_FECrsMatrix if you have many repeated indices.  Then extract the 
associated Epetra_CrsGraph for subsequent use: Although there is no 
Epetra_FECrsGraph class (something that we may introduce in the future), it is typically best 
to use the Epetra_FECrsMatrix class to construct matrices when you have many repeated 
indices.  This is typically the case when forming global stiffness matrices from local element 

                                                
1 If the number of entries in the matrix exactly match the profile used to create the matrix, packing is does not need 
to move any data, but it is not a big performance hit if the profile is somewhat larger. 
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stiffness matrices in a finite element assembly loop.  Note:  Even though there is no 
Epetra_FECrsGraph class, once an Epetra_FECrsMatrix has been constructed, call it 
myFEMatrix, there is an Epetra_CrsGraph that can be accessed via myFEMatrix.Graph()  
and used to construct further matrices that have the same pattern as myFEMatrix. 

4.5 When inserting indices into Epetra_CrsGraph objects, avoid large numbers of 
repeated indices: To reduce time costs, indices that are inserted into a row are not checked 
for redundancy at the time they are inserted.  Instead, when FillComplete() is called, indices 
are sorted and then redundant indices are removed.  Because of this approach, repeated 
indices increase the memory used by a given row, at least until FillComplete() is called.  

4.6 Submit large numbers of graph indices at once: When inserting indices, submit many 
entries at once if possible.   Ideally, it is best to submit all indices for a given row at once. 

 

5. Epetra_CrsMatrix Construction  
An Epetra_CrsMatrix object stores a sparse matrix in a row-biased data structure (although 
column support is implicitly available because transpose operations are also supported).  An 
Epetra_CrsMatrix can be constructed using a previously constructed Epetra_CrsGraph object 
or from scratch, in which case the graph will be constructed “on the fly”.  Matrix entries can 
be inserted, summed-into or replaced one-at-a-time or as row fragments. 

Much like Epetra_CrsGraph objects,  Epetra_CrsMatrix objects are constructed in a three-
step process: 

1. Instantiate the Epetra_CrsMatrix object. 
2. Submit matrix values and corresponding column indices via: 

a. Insertion: New values that have no entry. 
b. Sum-into: Values that already exist. 
c. Replacement: Replace an existing value with a new one. 

3. Call FillComplete() to process the matrix for efficient computation and 
communication. 

Step 1 involves a single call to the constructor and Step 3 to a FillComplete() method.  
However, Step 2 can be accomplished in a number of ways.  Matrix entries can be submitted 
row-by-row, index-by-index or any combination of these two approaches.  Although this 
flexibility is convenient, especially in prototyping stages of development, it does introduce 
overhead in memory and time costs.  Therefore, Epetra_CrsMatrix objects can be constructed 
in more restrictive modes that require more information and attention from the user, but in 
return the user can significantly reduce memory and time costs. 

5.1 When constructing Epetra_CrsMatrix objects, carefully manage the nonzero profile 
and set StaticProfile to ‘true’ : As is true with Epetra_CrsGraph objects, it is very 
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convenient to use the flexible insertion capabilities of Epetra_CrsMatrix.  However, the 
performance and memory cost of this flexibility can be substantial.  StaticProfile is an 
optional argument to the Epetra_CrsMatrix constructors that forces the constructor to pre-
allocate all storage for the matrix entries (and the Epetra_CrsGraph, if it is being constructed 
on the fly), using the argument NumIndicesPerRow as a strict upper limit on the number of 
matrix entries that will be inserted.   Note: StaticProfile is false by default. 

5.2 After calling FillComplete(), call OptimizeStorage() : (Note: With Trilinos 8.0 and 
later, OptimizeStorage() is called automatically.) As is true with Epetra_CrsGraph objects, 
the OptimizeStorage() method frees memory that is used only when submitting data to the 
object.  Also, the storage that remains is packed for better cache memory performance due to 
better spatial locality.  If StaticProfile is true, the packing of data is fast and cheap, if needed 
at all2.  If StaticProfile is false, then the matrix data is not contiguously stored, so we must 
allocate contiguous space for all entries, copy data from the existing arrays, and then delete 
the old arrays.  This can be a substantial overhead in memory costs and could even double 
the high-water memory mark.  However, the performance improvement for matrix operations 
can be 20% to a full doubling of performance.   

5.3 Submit large numbers of matrix entries at once: When submitting entries via 
insertion, sum-into or replacement, submit many entries at once if possible.   Ideally, it is best 
to submit all entries for a given row at once. 

Also see Practices: 3.1, 4.1, and 4.3. 

6. Selecting the Right Sparse Matrix Class 
Epetra provides a base matrix class called Epetra_RowMatrix.  Epetra_RowMatrix is a pure 
virtual class that provides an interface to sparse matrices, allowing access to matrix 
coefficients, matrix distribution information and methods to compute matrix multiplication 
and local triangular solves.  Epetra provide four classes that are implementations of 
Epetra_RowMatrix.  Specifically: 

1. Epetra_CrsMatrix: Compressed Row Storage scalar entry matrix. 
2. Epetra_FECrsMatrix: Finite Element Compressed Row Storage matrix. 
3. Epetra_VbrMatrix: Variable Block Row block entry matrix. 
4. Epetra_FEVbrMatrix: Finite Element Variable Block Row matrix. 
Note: Epetra_JadOperator does not implement Epetra_RowMatrix, but is worth  
mentioning for users of vector processors.  This class is a first version to support 
vectorization of sparse matrix-vector multiplication. 
 

In addition, there are numerous other implementation of Epetra_RowMatrix provided in 
other packages.  For example: 

1. Epetra_MsrMatrix:  This class is provided within AztecOO.  The constructor for 
Epetra_MsrMatrix takes a single argument, namely an existing AZ_DMSR matrix as 

                                                
2 If the number of entries in the matrix exactly match the profile used to create the matrix, packing is does not need 
to move any data, but it is not a big performance hit if the profile is somewhat larger. 
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defined in the Aztec 2.1 User Guide [9].  Epetra_MsrMatrix does not make a copy of 
the Aztec matrix.  Instead it make the Aztec matrix act like an Epetra_RowMatrix 
object. 

2. Ifpack Filters:  Ifpack uses the Epetra_RowMatrix interface to provide modified 
views of existing Epetra_RowMatrix objects.  For example, Ifpack_DropFilter 
creates a new Epetra_RowMatrix from an existing one by dropping all matrix values 
below a certain tolerance. 

6.1 Use Epetra_FEVbrMatrix to construct a matrix with dense block entries and 
repeated summations into block entries: Epetra_FEVbrMatrix is designed to handle 
problems such as finite element, finite volume or finite difference problems where multiple 
degrees of freedom are being tracked at a single mesh point, and the matrix block entries are 
being summed into the global stiffness matrix one finite element or control volume cell at a 
time.  In these situations, one can construct an Epetra_CrsGraph object that encodes the mesh 
connectivity, using Eptra_BlockMap objects to describe how many degrees of freedom are 
being tracked at each mesh node.  Note: Epetra_FEVbrMatrix is derived from 
Epetra_VbrMatrix.  At the end of the construction phase, the Epetra_FEVbrMatrix object isa 
Epetra_VbrMatrix object. 

6.2 Use Epetra_VbrMatrix to construct a matrix with dense block entries and few 
repeated submissions: Epetra_VbrMatrix is designed to handle problems such as finite 
element, finite volume or finite difference problems where multiple degrees of freedom are 
being tracked at a single mesh point, but matrix block entries are typically not repeated 
summed into the global stiffness matrix one element or control volume cell at a time.  In 
these situations, one can construct an Epetra_CrsGraph object that encodes the mesh 
connectivity, using Eptra_BlockMap objects to describe how many degrees of freedom are 
being tracked at each mesh node. Note: Presently the Epetra_VbrMatrix class does not have 
optimal performance for small block entry matrices.  Block entries should be of size 4 or 
larger before Vbr formats are preferable to Crs formats. 

6.3 Use Epetra_FECrsMatrix to construct a matrix with scalar entries and repeated 
summations into entries: Epetra_FECrsMatrix is designed to handle problems such as finite 
element, finite volume or finite difference problems where a single degree of freedom is 
being tracked at a single mesh point, and the matrix entries are being summed into the global 
stiffness matrix one finite element or control volume cell at a time. 

6.4 Use Epetra_CrsMatrix in all other cases: Epetra_CrsMatrix is the simplest and most 
natural matrix data structure for people who are used to thinking about sparse matrices.  
Unless you have one of the above three situations, you should use Epetra_CrsMatrix. 

6.5 Use Epetra_RowMatrix to access matrix entries: If you are writing code to use an 
existing Epetra sparse matrix object, use the Epetra_RowMatrix interface to access the 
matrix.  This will provide you compatibility with all of Epetra’s sparse matrix classes, and 
allow users of your code to provide their own custom implementation of Epetra_RowMatrix 
if needed. 
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7. Parallel Data Redistribution  
Epetra has extensive capabilities for redistributing already-distributed objects.  Good load 
balancing and good scalability depend on a balanced work and data load across processors.  
EpetraExt provides an interface to the Zoltan load balancing library.  Zoltan can be used by 
EpetraExt to compute a redistribution of matrices, vectors and multivectors that has better 
load balance. 

7.1 Use EpetraExt to balance load: Although an advanced feature, any serious use of 
Epetra for scalable performance must ensure that work and data are balanced across the 
parallel machine.  EpetraExt provides an interface to the Zoltan library that can greatly 
improve the load balance for typical sparse matrix computations. 

7.2 Use Epetra_OffsetIndex to improve performance of multiple redistributions: Often 
the data distribution that is optimal for constructing sparse matrices is not optimal for solving 
the related system of equations.  As a result, the matrix will be constructed in one 
distribution, and then redistributed for the solve. Epetra_OffsetIndex precomputes the offsets 
for the redistribution pattern, making repeated redistributions cheaper. 

 

8. General Practices  
8.1 Check method return codes: Almost all methods of Epetra classes provide an integer 
return argument.  This argument is set to zero if no errors or warning occurred.  However, a 
number of performance-sensitive methods will communicate potential performance problems 
by returning a positive error code.  For example, if the matrix insertion routine must re-
allocate memory because the allocated row storage is too small, a return code of 1 is set.  
Since memory reallocation can be expensive, this information can be an indication that the 
user should increase the nonzero profile values (NumEntriesPerRow). 

8.2 Compile Epetra with aggressive optimization: Epetra performance can benefit greatly 
from aggressive compiler optimization settings.  In particular, aggressive optimization for 
FORTRAN can be especially important. Configuring Epetra (or Epetra as part of Trilinos) 
with the following compiler flags works well on 32-bit PC platforms with the GCC 
compilers: 

../configure CXXFLAGS="-O3" CFLAGS="-O3" \ 
 FFLAGS="-O5 -funroll-all-loops -malign-double"
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9. Extended Capabilities  
Epetra provides several general-purpose data structures for sparse computations.  However, 
there are other sources for high performance kernels and we provide access to several other 
libraries.  Furthermore, it is often the case that—for users who know their data—special-
purpose kernels can provide the best performance. 

Use OSKI if it performs well for your problems:  Trilinos provides an interface to OSKI 
[10] the sparse kernel package from UC Berkeley.  Information on its performance 
characteristics is available [11]. The primary class of interest is Epetra_OskiMatrix. 

Use PETSc AIJ Matrix wrappers if already using PETSc: Current PETSc [12] users who 
have already invested in PETSc data structures can use PETSc matrices and vectors with 
Trilinos solvers and preconditioners using the Epetra_PETScAIJMatrix class, which wraps 
the PETSc matrix and uses it to satisfy the Epetra_RowMatrix interface.  Only minimal extra 
storage is required.  This class is part of EpetraExt.  

Write your own custom matrix class for optimal storage and performance: Although 
any of the above approaches can be a good answer for good sparse matrix kernel 
performance, it is almost always possible for sophisticated users to provide their own 
implementation of Epetra_RowMatrix that specifically addresses their problem and performs 
better than a generic approach.  Trilinos is different than all other library packages that we 
know about in that all of our solvers and preconditioners use the Epetra_RowMatrix interface 
to access data.  Because of this, even if you use your own matrix data structures, you can still 
use all Trilinos preconditioners and solvers since they are not tied to a data structure, but 
instead access data through an interface. 
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