What's new in Isorropia? Coloring & Ordering

Cédric Chevalier

Erik Boman, Lee Ann Fisk (thanks to Karen Devine) Sandia National Laboratories, NM, USA Trilinos User's Group, Oct 21, 2008.

What is Isorropia?

- « equilibrium » in Greek:
 - First goal, providing load balancing in Trilinos
- Now, Isorropia is a toolbox to do combinatoric operations on matrices or graphs:
 - Partitioning and Load Balancing
 - Coloring
 - Sparse matrix ordering
- Mostly built on top of Zoltan

User/Application

Trilinos Package

Isorropia

Zoltan

Trilinos

How does it work?

- Dependance on Zoltan, now part of Trilinos
- Dependance on Teuchos
- Some advanced features with EpetraExt

- To compile: ./configure --enable-isorropia
- Works in parallel and in serial

Software design (1)

 An abstract interface, not dependent of the partitioning software or the input type

An Isorropia::Operator is NOT an Epetra Operator!

Software design (2)

- An implementation of the previous interface:
 - Only Epetra input is supported but the design allows to do the same for other packages
 - Only Zoltan is supported but other software can be easily integrated

 This model will be extended by several partitioner class to do different kind of partitioning

Coloring

Distance-1 Graph Coloring

 Problem (NP-hard)
 Color the vertices of a graph with as few colors as possible such that no two adjacent vertices receive the same color.

Applications

- Iterative solution of sparse linear sys
- Preconditioners
- Sparse tiling
- Eigenvalue computation
- Parallel graph partitioning

Distance-2 Graph Coloring

Problem (NP-hard)

Color the vertices of a graph with as few colors as possible such that a pair of vertices connected by a path on two or less edges receives different colors.

- Applications
 - Derivative matrix computation in numerical optimization
 - Channel assignment
 - Facility location
- Related problems
 - Partial distance-2 coloring
 - Star coloring

What Isorropia can do?

- Can compute:
 - Distance-1 coloring
 - Distance-2 coloring
- Deals with:
 - Undirected graphs, distributed or not (Epetra_CrsGraph)
 - Symmetric matrices, distributed or not (Epetra_RowMatrix)
- Isorropia uses Zoltan's coloring capabilities
- Isorropia doesn't implement any coloring algorithms

Software interface

- One abstract class: Colorer
- The coloring can be perform by the method color()
- Object Colorer provides different accessors:
 - operator[]
 - numColors(): global number of colors used
 - numElemsWithColor(): number of local elements with the given color
 - elemsWithColor(): array of these local elements
 - generateMapColoring(): Epetra_MapColoring object
 (requires EpetraExt)

Example

```
Epetra_CrsMatrix A;
Isorropia::Epetra::Colorer colorer(A,paramlist);
colorer.color(); /* Performs coloring */
 /* Parallel loop */
For (int c=1; c <= colorer.numColors(); ++c){
  int length = colorer.numElemsWithColor(c);
  int *columns = new int[length];
  colorer.elemsWithColor(c, columns, length);
  /* Do some computations of columns of A of
    color c */
```


Experimental Results

Future work

- May be extended to other colorings to be suitable for:
 - Automatic differenciation
 - Finite differences computations
- Possible interaction with other coloring software like ColPack (CSCAPES)

Sparse Matrix Ordering

Sparse Matrix Ordering problem

- When solving sparse linear systems with direct methods, non-zero terms are created during the factorization process ($A \rightarrow LL^t$, $A \rightarrow LDL^t$ or $A \rightarrow LU$).
- Fill-in depends on the order of the unknowns.
 - Need to provide fill-reducing orderings.

Fill Reducing ordering

- Combinatorial problem, depending on only the structure of the matrix A:
 - We can work on the graph associated with A.
- NP-Complete, thus we deal only with heuristics.
- Most popular heuristics:
 - Minimum Degree algorithms (AMD, MMD, AMF ...)
 - Nested Dissection

Nested dissection (1)

- Principle [George 1973]
 - Find a vertex separator S in graph.
 - Order vertices of S with highest available indices.
 - Recursively apply the algorithm to the two separated subgraphs A and B.

Nested dissection (2)

- Advantages:
 - Induces high quality block decompositions.
 - Suitable for block BLAS 3 computations.
 - Increases the concurrency of computations.
 - Compared to minimum degree algorithms.
 - Very suitable for parallel factorization.
 - It's the scope here: parallel ordering is for parallel factorization.

Isorropia interface

- One abstract class: Orderer
- The ordering can be perform by the method order()
- Input : Epetra_RowMatrix or Epetra_CrsGraph
- Object Orderer provides:
 - Operator[]: associates to a Local ID the permuted
 Global ID
 - Only the permutation vector is available (for more advanced uses, Zoltan provides more informations)

How do we compute ordering?

- Computations are done via Zoltan, but in third party libraries:
 - Metis
 - ParMetis
 - Scotch (PT-Scotch)
 - Easy to add another

Usages

- Focused on Cholesky factorization:
 - Limited to symmetric matrices
 - Can be use for symmetrised matrices (AA^t or A+A^t), but not automatically converted
- In the future, can deal with ordering for unsymmetric LU factorization:
 - Will be available also directly in Zoltan by using Hypergraph model

Example

Experimental results (1)

- Metric is OPC, the operation count of Cholesky factorization.
- •Largest matrix ordered by PT-Scotch: 83 millions of unknowns on 256 processors (CEA/CESTA).
- Some of our largest test graphs.

Graph	Size (x1000)		Average	0	Description	
	V	E	degree	O _{SS}	Description	
					3D mechanics mesh,	
audikw1	944	38354	81.28	5.48E+12	Parasol	
qimonda07	8613	29143	6.76	8.92E+10	Circuit simulation, Qimonda	
23millions	23114	175686	7.6	1.29E+14	CEA/CESTA	

Experimental results (2)

Test	Number of processes							
case	2	4	8	16	32	64		
audikw1								
O _{PTS}	5.73E+12	5.65E+12	5.54E+12	5.45E+12	5.45E+12	5.45E+12		
O _{PM}	5.82E+12	6.37E+12	7.78E+12	8.88E+12	8.91E+12	1.07E+13		
t _{PTS}	73.11	53.19	45.19	33.83	24.74	18.16		
t _{PM}	32.69	23.09	17.15	9.80	5.65	3.82		

Experimental results (3)

•ParMETIS crashes for all other graphs.

Test	Number of processes							
case	2	4	8	16	32	64		
Qimonda07								
O _{PTS}	-	-	5.80E+10	6.38E+10	6.94E+10	7.70E+10		
t _{PTS}	-	-	34.68	22.23	17.30	16.62		
23millions								
O _{PTS}	1.45E+14	2.91E+14	3.99E+14	2.71E+14	1.94E+14	2.45E+14		
t _{PTS}	671.60	416.45	295.38	211.68	147.35	103.73		

Future directions

- Add unsymmetric LU ordering (not available elsewhere)
- Direct integration in Amesos ?
 - Current interface is enough for SuperLU (even with the next LU ordering)
 - How it works for other solvers?
 - Do users call directly their solver?
- Adaptation to provide other matrix ordering?
 - Bandwith reduction by RCM or GPS
- Add more powerful interface? Like in Zoltan?

General Summary

- Isorropia is ready to be in production
- Isorropia offers some interesting tools for helping/improving parallelisation in solvers
- Isorropia is wider than Partitioning:
 - Access to (at least a big part of) the power of Zoltan with minimal effort

The End

Thank You!

Software design (2)

- An implementation of the previous interface:
 - Only Epetra input is supported but the design allows to do the same for other packages
 - Only Zoltan is supported but other software can be easily integrated
- This model will be extended by several partitioner class to do different kind of partitioning

Distance-1 Graph Coloring

Problem (NP-hard)

Color the vertices of a graph with as few colors as possible such that no two adjacent vertices receive the same color.

Applications

- Iterative solution of sparse linear sys
- Preconditioners
- Sparse tiling
- Eigenvalue computation
- Parallel graph partitioning

Distance-2 Graph Coloring

• Problem (NP-hard)

Color the vertices of a graph with as few colors as possible such that a pair of vertices connected by a path on two or less edges receives different colors.

- Applications
 - Derivative matrix computation in numerical optimization
 - Channel assignment
 - Facility location
- · Related problems
 - Partial distance-2 coloring
 - Star coloring

What Isorropia can do?

- · Can compute:
 - Distance-1 coloring
 - Distance-2 coloring
- · Deals with:
 - Undirected graphs, distributed or not (Epetra_CrsGraph)
 - Symmetric matrices, distributed or not (Epetra_RowMatrix)
- · Isorropia uses Zoltan's coloring capabilities
- Isorropia doesn't implement any coloring algorithms

Example

```
Epetra_CrsMatrix A;
...
Isorropia::Epetra::Colorer colorer(A,paramlist);
colorer.color(); /* Performs coloring */

/* Parallel loop */
For (int c=1; c <= colorer.numColors(); ++c){
  int length = colorer.numElemsWithColor(c);
  int *columns = new int[length];
  colorer.elemsWithColor(c, columns, length);
  /* Do some computations of columns of A of
  color c */
  ...
}</pre>
```


Future work

- May be extended to other colorings to be suitable for:
 - Automatic differenciation
 - Finite differences computations
- Possible interaction with other coloring software like ColPack (CSCAPES)

Sparse Matrix Ordering problem

- When solving sparse linear systems with direct methods, non-zero terms are created during the factorization process (A→LL¹, A→LDL¹ or A→LU).
- Fill-in depends on the order of the unknowns.
 - Need to provide fill-reducing orderings.

Fill Reducing ordering

- Combinatorial problem, depending on only the structure of the matrix *A*:
 - We can work on the graph associated with A.
- NP-Complete, thus we deal only with heuristics.
- Most popular heuristics:
 - Minimum Degree algorithms (AMD, MMD, AMF ...)
 - Nested Dissection

How do we compute ordering?

- Computations are done via Zoltan, but in third party libraries:
 - Metis
 - ParMetis
 - Scotch (PT-Scotch)
 - Easy to add another

Usages

- Focused on Cholesky factorization:
 - Limited to symmetric matrices
 - Can be use for symmetrised matrices (AA^t or A+A^t), but not automatically converted
- In the future, can deal with ordering for unsymmetric LU factorization:
 - Will be available also directly in Zoltan by using Hypergraph model

Example

Future directions

- Add unsymmetric LU ordering (not available elsewhere)
- Direct integration in Amesos ?
 - Current interface is enough for SuperLU (even with the next LU ordering)
 - How it works for other solvers?
 - Do users call directly their solver ?
- Adaptation to provide other matrix ordering?
 - Bandwith reduction by RCM or GPS
- Add more powerful interface ? Like in Zoltan ?

General Summary

- Isorropia is ready to be in production
- Isorropia offers some interesting tools for helping/improving parallelisation in solvers
- Isorropia is wider than Partitioning:
 - Access to (at least a big part of) the power of Zoltan with minimal effort

