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Introduction to DPG

DPG in Brief
DPG approach:
• Petrov-Galerkin: test and trial spaces differ
• discontinuous test and trial spaces
• optimal test functions computed on the fly so that

(vopt
ei , v)V = b(ei, v)∀v ∈ V

• key choice: which norm to use on the test space?
DPG features:
• automatic stability
• SPD stiffness matrix
• Error in uh is minimized in the energy norm

||uh||E = sup
v∈V

b(uh, v)

||v||V
= ||b(uh, ·)||V ′

• Can measure the error in the energy norm to drive adaptivity.
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Introduction to DPG

DPG in Brief: Concept Map

inf-sup 
stability

optimal test 
functions

discontinuous 
test space

computational
tractability

ultraweak
formulation

min. residual 
in

 � · �E

graph norm
on test space

Can we make
� · �U � � · �E ? 

∗ Note: we approximate the infinite-dimensional test space by taking the polynomial order
k for the trial and “enriching” it somewhat: ktest = ktrial + ∆k—in all that follows, ∆k = 1
or ∆k = 2.

Nathan V. Roberts Camellia October 28, 2014 5 / 28



Introduction to DPG

Building the ultraweak formulation
PDE

�� = f

First-Order System

� · � = f

� ��� = 0

Integration by Parts

(� · n, v)�h
� (�,�v)�h

= (f, v)�h

(�, q)�h
+ (�, q · n)�h

� (�,� · q)�h
= 0

Ultraweak (DPG) Variational Formulation

( ��n, v)�h
� (�,�v)�h

+(�, q)�h
+ (��, qn)�h

� (�,� · q)�h
= (f, v)�h

b((�, �, ��, ��n), (v, q)) = (f, v)�h

“b(u, v) = l(v)”
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Introduction to DPG

The DPG Solve

Computational steps for solving with DPG:

1 On each element, construct the Gram matrix Gjk
def
= (vj , vk)V .

2 On each element, solve: GjkTki = Bji
def
= b(ei, vj) for the optimal test

coefficients Tki.

3 Since the stiffness matrix is given by

Kij = b(ei, vej ) = (vei , vej )V ,

we can compute

(vei , vej )V = (G−1B)TGG−1B = BTG−1B = BT
kiTkj .

That is, once we’ve determined the optimal test functions, just need a
matrix-matrix multiply to determine the local stiffness matrix!
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Introduction to DPG

DPG Applications to Date

DPG is a general framework, and has been successfully applied to a host
of PDE problems, including:

• convection-dominated diffusion
• acoustics/wave propagation
• linear elasticity
• Maxwell’s equations (cloaking

problem)
• Burgers’ equations
• Euler equations
• compressible Navier-Stokes
• Stokes
• incompressible Navier-Stokes flow past a cylinder, Re = 40

1Bold items have Camellia-based implementations.
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Introduction to DPG DPG Formulations for Stokes and Navier-Stokes

Classical Stokes Problem

The classical strong form of the Stokes problem in Ω ⊂ R2 is given by

−µ∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = uD on ∂Ω,

where µ is (constant) viscosity, p pressure, u velocity, and f a vector
forcing function.
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Introduction to DPG DPG Formulations for Stokes and Navier-Stokes

DPG Applied to Stokes
To apply DPG, we need a first-order system. We introduce σ = µ∇u:

−∇ · σ +∇p = f in Ω,

∇ · u = 0 in Ω,

σ − µ∇u = 0 in Ω.

Testing with (v, q, τ ), and integrating by parts, we have

(σ − pI,∇v)Ωh
−
〈
t̂n,v

〉
Γh

= (f ,v)Ωh

(u,∇q)Ωh
− 〈û · n, q〉Γh

= 0

(σ, τ )Ωh
+ (µu,∇ · τ )Ωh

− 〈û, τn〉Γh
= 0,

where traction tn
def
= (σ − pI)n, and the hatted variables t̂n and û are new

unknowns representing the traces of the corresponding variables at the
boundary.
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Introduction to DPG DPG Formulations for Stokes and Navier-Stokes

Formulation for Navier-Stokes

To derive a corresponding Navier-Stokes formulation, recall that the
Navier-Stokes equations may be written

−∇p+∇ · σ = f + u · ∇u
σ − µ∇u = 0

∇ · u = 0

where µ = 1
Re . Since σ = µ∇u, we can write

−∇p+∇ · σ − 1

µ
u · σ = f

σ − µ∇u = 0

∇ · u = 0
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Introduction to DPG DPG Formulations for Stokes and Navier-Stokes

Formulation for Navier-Stokes

−∇p+∇ · σ − 1

µ
u · σ = f

σ − µ∇u = 0

∇ · u = 0

Linearizing about u+ du = (u+ du,σ + dσ, p+ dp), we have

bStokes(du, v)−
(
du · σ +

1

µ
u · dσ,v

)

Ωh

= (f ,v)Ωh
− bStokes(u, v) +

(
1

µ
u · σ,v

)

Ωh

.

For now, we use the graph norm for Navier-Stokes (for high Reynolds
numbers, we should do something else).
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Kovasznay Flow
A common test case for Navier-Stokes is an analytic solution due to
Kovasznay [3]:

u1 = 1− eλx cos(2πy)

u2 =
λ

2π
eλx sin(2πy)

p =
1

2
e2λx + C

where λ = Re
2 −

√(
Re
2

)2
+ (2π)2. We use Ω = (−0.5, 1.5)× (0, 2) as our

domain, and choose the constant C so that p has zero average on Ω.

(a) u1 (b) u2 (c) p

Figure : Kovasznay flow for Re = 40: u1, u2 and p.
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Kovasznay: ||(u, p,σ)||L2 Convergence
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Figure : Re = 40 flow results for DPG Navier-Stokes: L2 error of all field variables.
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Stokes Cavity Flow 3D

Starting with a 2× 2× 2 quadratic mesh, we refine 6 times. Refinement 0.
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Stokes Cavity Flow 3D

Starting with a 2× 2× 2 quadratic mesh, we refine 6 times. Refinement 1.
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Stokes Cavity Flow 3D

Starting with a 2× 2× 2 quadratic mesh, we refine 6 times. Refinement 2.
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Stokes Cavity Flow 3D

Starting with a 2× 2× 2 quadratic mesh, we refine 6 times. Refinement 3.
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Stokes Cavity Flow 3D

Starting with a 2× 2× 2 quadratic mesh, we refine 6 times. Refinement 4.
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Stokes Cavity Flow 3D

Starting with a 2× 2× 2 quadratic mesh, we refine 6 times. Refinement 5.
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Stokes Cavity Flow 3D

Starting with a 2× 2× 2 quadratic mesh, we refine 6 times. Refinement 6.

Nathan V. Roberts Camellia October 28, 2014 15 / 28



Introduction to DPG Navier-Stokes: A Numerical Experiment

Convecting Cone Problem

Beginning with 2D data in the range [0, 1] in the shape of a cone as initial
condition, we convect it in a circle, and examine the range of the final
solution. Want to assess the spatial method, so we use Crank-Nicolson
with ∆t = 2π

2000 where the time for one revolution is 2π.

k = 1, 64× 64 mesh, initial value. k = 1, 64× 64 mesh, final value.
Range: [−0.050, 0.66].
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Convecting Cone Problem

Beginning with 2D data (in the shape of a cone) as initial condition in the
range [0, 1], we convect it in a circle, and examine the range of the final
solution.

k = 8, 8× 8 mesh, initial value. k = 8, 8× 8 mesh, final value.
Range: [−0.016, 0.89].
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Introduction to DPG Navier-Stokes: A Numerical Experiment

Convecting Cone Problem

Convecting cone solution for k = 8, 8× 8 mesh: one revolution.
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Camellia Design Goals

Camellia1

Design Goal: make DPG research and experimentation as simple as
possible, while maintaining computational efficiency and scalability.

FEniCS libMesh

deal.IIdist. stiffness
hp-adaptiveRAD for

var'l forms

Camellia
(built atop Trilinos)

1Nathan V. Roberts. Camellia: A software framework for discontinuous Petrov-Galerkin methods.
Computers & Mathematics with Applications, 2014.
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Camellia From Math to Code

Camellia: Rapid Specification of Inner Products

Suppose we wish to specify a test space norm

||(v, q)||2V = ||v||2 + ||q||2 +

∣∣∣∣
∣∣∣∣
∂v

∂x
− ∂v

∂y
+∇ · q

∣∣∣∣
∣∣∣∣
2

.

To specify this in Camellia, simply do:

VarFactory varFactory;
VarPtr v = varFactory.testVar("v", HGRAD);
VarPtr q = varFactory.testVar("q", HDIV);
IPPtr ip = IP::ip();
ip->addTerm(v);
ip->addTerm(q);
ip->addTerm(v->dx() - v->dy() + q->div());
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Camellia From Math to Code

Camellia: Rapid Specification of Inner Products

What if you wanted a test norm that varied in space? Maybe something
like:

||(v)||2V = ||v||2 +

∣∣∣∣
∣∣∣∣∇v ·

(
1− x
y

)∣∣∣∣
∣∣∣∣
2

.

We can handle that, too.

VarFactory varFactory;
VarPtr v = varFactory.testVar("v", HGRAD);
IPPtr ip = IP::ip();
ip->addTerm(v);
FunctionPtr x = Function::xn(1);
FunctionPtr y = Function::yn(1);
FunctionPtr weight = Function::vectorize(1-x, y);
ip->addTerm(weight * v->grad());

It is also simple to specify your own custom functions by subclassing
Function.
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Camellia Applications

Example Camellia Applications

(a) Ramp Shock (b) Sod Shock Tube (space-time)

(c) Carter Mesh (d) Carter u1
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Camellia Applications Feature List

Camellia Features
Important features of Camellia:

• mechanisms for rapid specification of DPG variational forms, inner
products, etc.

• distributed computation of stiffness matrix

• distributed representation of the solution

• 2D: curvilinear elements

• 2D: meshes of triangles and/or quads

• 3D: nonconforming hexahedra

Adaptivity features:

• h- and p-refinements (anisotropic in h in 2D)

• arbitrarily irregular meshes

• modular interface: simple to implement new adaptive strategies
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Camellia Applications Feature List

Camellia Features (Coming Soon)

Features under development:

• robust iterative solver for the global solve (nearly there)

• space-time elements (partway there)

• distributed mesh representation (not yet there)

spatial mesh

space-time slab
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Camellia and Trilinos
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Camellia and Trilinos

Camellia and Trilinos

Camellia relies heavily on several Trilinos packages:

• Epetra—distributed matrices and vectors

• Intrepid—basis functions, pullbacks, FieldContainer

• Shards—cell topologies

• Teuchos—RCP, CLI options parsing, LAPACK interface

• Amesos—direct solver interface (MUMPS, SuperLUDist, KLU)

• AztecOO—CG and GMRES iterative solvers

• IfPack—additive Schwarz preconditioners

• Zoltan—mesh partitioning
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DPG and HPC
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DPG and HPC

Suitability of DPG for HPC

DPG has several attractive features for HPC:

• locality: optimal test functions embarrassingly parallel

• intensity: high-order computations take advantage of “free” flops

• automaticity: robust adaptivity means less human involvement
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DPG and HPC

DPG for HPC: Software Checklist

Feature Camellia
parallel optimal test function determination
distributed stiffness matrix
high-order basis functions
static condensation
hp-adaptivity
robust iterative solver (multigrid-preconditioned CG)
distributed solution representation
distributed mesh representation
support for curvilinear geometry
3D support
time-domain support (space-time)
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DPG and HPC

DPG for HPC: Software Checklist

Feature Camellia
parallel optimal test function determination X
distributed stiffness matrix X
high-order basis functions X
static condensation X
hp-adaptivity X
robust iterative solver (multigrid-preconditioned CG) to-do
distributed solution representation X
distributed mesh representation to-do
support for curvilinear geometry X(2D)
3D support X
time-domain support (space-time) to-do
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Questions

Thank you for your attention!

Questions?

For more info:
nvroberts@alcf.anl.gov
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Questions

Flow Past a Cylinder: Initial Mesh
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Starting with a minimal mesh on a domain 30× 15 cylinder diameters, we
refine anisotropically to make the (cubic) mesh approximately isotropic
and 1-irregular. The mesh on the right has 256 elements and 23,488
degrees of freedom.
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Questions

Deriving DPG

Recall Babuška’s Theorem:
Suppose we have a bilinear form b(u, v) defined on Hilbert spaces U and
V , and suppose that

|b(u, v)| ≤M ||u||U ||v||V

for continuity constant M ,

and suppose that the inf-sup condition holds:

inf
||u||U=1

sup
||v||V =1

b(u, v) ≥ γ.
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Questions

Deriving DPG

Now, consider a discretization Uh ⊂ U , Vh ⊂ V , where dimUh = dimVh.
If we have the discrete inf-sup condition

inf
||u||Uh

=1
sup

||v||Vh=1
b(u, v) ≥ γh > 0,

then Babuška’s Theorem tells us that the continuous and discrete
problems have unique solutions u and uh, and that

||u− uh||U ≤
M

γh
inf

wh∈Uh

||u− wh||U .
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Questions

Originating Idea
Can we choose our test space Vh so that the discrete inf-sup condition
automatically holds?

For each basis function ei ∈ Uh, find vei ∈ V that realizes the supremum:

sup
||v||V =1

b(ei, v) = b(ei, vei).

We can find this by solving (vei , v)V = b(ei, v) ∀v ∈ V . If we solve this

exactly and use the vei as our (optimal) test space, we can show that
Babuška’s Theorem gives us

||u− uh||E = inf
wh∈Uh

||u− wh||E ,

where
||u||E

def
= sup
||v||V =1

b(u, v).
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Questions

The Abstract Problem and Minimization of the Residual
Take U, V Hilbert.

We seek u ∈ U such that

b(u, v) = l(v) ∀v ∈ V

where b is bilinear and and l is linear in v. Writing in operator form

Bu = l,

and fixing discrete space Uh ⊂ U , we seek to minimize the residual

Buh − l.

Specifically, we seek

uh = arg min
wh∈Uh

1

2
||Bwh − l||2V ′ .
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Questions

The Abstract Problem and Minimization of the Residual

uh = arg min
wh∈Uh

1

2
||Bwh − l||2V ′ .

Now, the dual space V ′ is not especially easy to work with; we would
prefer to work with V itself. Recalling that the Riesz operator RV : V → V ′

defined by

RV v = (v, ·)V ,

is an isometry—||RV v||V ′ = ||v||V —we can rewrite the term we want to
minimize as a norm in V :

1

2
||Bwh − l||2V ′ =

1

2

∣∣∣∣R−1
V (Bwh − l)

∣∣∣∣2
V

=
1

2

(
R−1
V (Bwh − l) , R−1

V (Bwh − l)
)
V
.
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Questions

The Abstract Problem and Minimization of the Residual

We seek to minimize

1

2

(
R−1
V (Bwh − l) , R−1

V (Bwh − l)
)
V
.

The first-order optimality condition requires that the Gâteaux derivative be
equal to zero for minimizer uh; since B is linear, we have

(
R−1
V (Buh − l) , R−1

V Bδuh
)
V

= 0, ∀δuh ∈ Uh.

By the definition of RV , this is equivalent to

〈Buh − l, R−1
V Bδuh〉 = 0 ∀δuh ∈ Uh.
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Questions

The Abstract Problem and Minimization of the Residual

We have:

〈Buh − l, R−1
V Bδuh〉 = 0 ∀δuh ∈ Uh.

Now, if we take ei as a basis for Uh and identify vei = R−1
V Bei as test

functions, we can rewrite this as

b(uh, vei) = l(vei).

Thus, the discrete solution that minimizes the residual is exactly attained
by testing the original equation with appropriate test functions. We call
these optimal test functions.2

2L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov–Galerkin methods. Part II:
Optimal test functions. Numerical Methods for Partial Differential Equations, 27(1):70–105, 2011.
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Questions

Technical Assumptions (true for VGP Stokes)

Under modest technical assumptions (true for Stokes), we have3

||Au|| ≥ γ ||u|| =⇒ sup
v∈HA∗

b((u, û), v)

||v||HA∗

≥ γDPG

(
||u||2 + ||û||2

ĤA(Γh)

)1/2

where γDPG = O(γ) is a mesh-independent constant, and ||·||
ĤA(Γh)

is
the minimum energy extension norm.

In the next slides, we detail the assumptions.

3Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz. The DPG method for the Stokes
problem. Computers and Mathematics with Applications, 2014.
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Questions

Technical Assumptions (true for VGP Stokes)

||Au|| ≥ γ ||u|| =⇒ sup
v∈HA∗

b((u, û), v)

||v||HA∗

≥ γDPG

(
||u||2 + ||û||2

ĤA(Γh)

)1/2

Define C as the operator arising from integration by parts:

(Au, v)Ω = (u,A∗v)Ω + 〈Cu, v〉.

We split C into C1 and C2 such that

〈Cu, v〉 = 〈C1u, v〉+ 〈C2u, v〉
= 〈C1u, v〉+ 〈u,C ′2v〉

where C1u = fD corresponds to the Dirichlet BCs imposed.
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Questions

Technical Assumptions (true for VGP Stokes)

||Au|| ≥ γ ||u|| =⇒ sup
v∈HA∗

b((u, û), v)

||v||HA∗

≥ γDPG

(
||u||2 + ||û||2

ĤA(Γh)

)1/2

Assumptions:
• Theorem Hypothesis: with homogeneous boundary condition
C1u = 0 in place, operator A is bounded below in the L2-orthogonal
component of its null space.

• C1 and C2 are defined in such a way that
(
〈u,C ′2v〉 = 0 ∀u : C1u = 0

)
=⇒ C ′2v = 0.

• A and A∗ are surjective.
• Both graph spaces HA(Ω) and HA∗(Ω) admit corresponding trace

spaces ĤA(∂Ω) and ĤA∗(∂Ω).
• The boundary term 〈Cu, v〉 arising from integration by parts is

definite.
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Questions

Naive Test Norm4

What if we don’t use the graph norm, but a naive choice instead?

||(τ ,v, q)||2naive = ||τ ||2 + ||∇ · τ ||2 + ||v||2 + ||∇v||2 + ||q||2 + ||∇q||2 .

4N.V. Roberts, D. Ridzal, P.N. Bochev, L. Demkowicz, K.J. Peterson, and C. M. Siefert. Application
of a discontinuous Petrov-Galerkin method to the Stokes equations. In CSRI Summer Proceedings
2010. Sandia National Laboratories, 2010.
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Questions

Naive Test Norm: u1 convergence

Figure : h-convergence with the naive norm: u1. Dashed lines: best
approximation error.
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Questions

Naive Test Norm: u2 convergence

Figure : h-convergence with the naive norm: u2. Dashed lines: best
approximation error.
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Questions

Naive Test Norm: p convergence

Figure : h-convergence with the naive norm: p. Dashed lines: best approximation
error.
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Questions

Graph vs. Naive Test Norm

What’s the difference between the two norms? Why are the results better
with the graph norm?

||(τ ,v, q)||2naive = ||∇ · τ ||2 + ||∇ · v||2 + ||∇q||2 + ||τ ||2 + ||v||2 + ||q||2

||(τ ,v, q)||2graph = ||∇ · τ −∇q||2 + ||∇ · v||2 + ||τ +∇v||2

+ ||τ ||2 + ||v||2 + ||q||2

The naive norm is stronger—e.g. it requires ∇ · τ ∈ L2 and ∇q ∈ L2,
whereas the graph norm merely requires that ∇ · τ −∇q ∈ L2.

Nathan V. Roberts Camellia October 28, 2014 28 / 28



Questions

Graph vs. Naive Test Norm

What’s the difference between the two norms? Why are the results better
with the graph norm?

||(τ ,v, q)||2naive = ||∇ · τ ||2 + ||∇ · v||2 + ||∇q||2 + ||τ ||2 + ||v||2 + ||q||2

||(τ ,v, q)||2graph = ||∇ · τ −∇q||2 + ||∇ · v||2 + ||τ +∇v||2

+ ||τ ||2 + ||v||2 + ||q||2

The naive norm is stronger—e.g. it requires ∇ · τ ∈ L2 and ∇q ∈ L2,
whereas the graph norm merely requires that ∇ · τ −∇q ∈ L2.

Nathan V. Roberts Camellia October 28, 2014 28 / 28



Questions

Camellia5

Design Goal: make DPG research and experimentation as simple as
possible, while maintaining computational efficiency and scalability.

FEniCS libMesh

deal.IIdist. stiffness
hp-adaptiveRAD for

var'l forms

Camellia
(built atop Trilinos)

5Nathan V. Roberts. Camellia: A software framework for discontinuous Petrov-Galerkin methods.
Computers & Mathematics with Applications, 2014.
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Questions

L. Demkowicz and J. Gopalakrishnan.
A class of discontinuous Petrov–Galerkin methods. Part II: Optimal test functions.
Numerical Methods for Partial Differential Equations, 27(1):70–105, 2011.

Jiten C. Kalita and Shuvam Sen.
Triggering asymmetry for flow past circular cylinder at low Reynolds numbers.
Computers & Fluids, 59(0):44 – 60, 2012.

L. I. G. Kovasznay.
Laminar flow behind a two-dimensional grid.
Mathematical Proceedings of the Cambridge Philosophical Society, 44(01):58–62, 1948.

Nathan V. Roberts.
Camellia: A software framework for discontinuous Petrov-Galerkin methods.
Computers & Mathematics with Applications, 2014.

Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz.
The DPG method for the Stokes problem.
Computers and Mathematics with Applications, 2014.

N.V. Roberts, D. Ridzal, P.N. Bochev, L. Demkowicz, K.J. Peterson, and C. M. Siefert.
Application of a discontinuous Petrov-Galerkin method to the Stokes equations.
In CSRI Summer Proceedings 2010. Sandia National Laboratories, 2010.
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