What’s New in Isorropia?

Erik Boman

Cedric Chevalier, Lee Ann Riesen

Sandia National Laboratories, NM, USA

SAND 2009-7611P.
Isorropia Overview

Isorropia
• is a package for combinatorial scientific computing:
 – Partitioning, load-balancing
 – Matrix/graph coloring
 – Matrix/graph ordering
• provides Epetra-based interface to Zoltan.

Trilinos application

Isorropia

Zoltan
Comparison Chart

Zoltan vs. Isorropia

<table>
<thead>
<tr>
<th></th>
<th>Zoltan</th>
<th>Isorropia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build system</td>
<td>CMake and Automake</td>
<td>CMake</td>
</tr>
<tr>
<td>Language</td>
<td>C (also C++ and F90 interfaces)</td>
<td>C++</td>
</tr>
<tr>
<td>Interface</td>
<td>Callback functions (user must provide)</td>
<td>Epetra data types</td>
</tr>
<tr>
<td>Package dependencies</td>
<td>None</td>
<td>Zoltan, Epetra, Teuchos</td>
</tr>
<tr>
<td>Features</td>
<td>Partitioning, Coloring, Ordering, Dist. data directory, Unstr. Comm. Lib.</td>
<td>Partitioning, Coloring, Ordering, Data redistribution</td>
</tr>
</tbody>
</table>
What’s New?

• Parameters
 – Expanded set of Isorropia parameters
 – Zoltan parameters are now optional (expert users)

• Automatic symmetrization
 – $A + A'$ is formed when algorithm requires sym. graph

• Partitioning
 – Geometric partitioning of points
 • Epetra_Multivector interface
 • Algorithms: RCB, RIB, HSFC (in Zoltan)

• Coloring
 – Support for Jacobian coloring
Coloring

- Isorropia supports graph/matrix coloring via the **Colorer** class
- Several variations of coloring (d1, d2)
- Scalable, parallel algorithm
 - Bozdag, Gebremedhin, Catalyurek, Manne, Boman, JPDC 2008.
- Default in Isorropia is to color matrix columns
 - Intended for sparse Jacobians
Coloring and Jacobians

Original Jacobian

\[
\begin{bmatrix}
 j_{11} & j_{12} & 0 & 0 & j_{15} \\
 0 & 0 & j_{23} & 0 & 0 \\
 0 & j_{32} & j_{33} & j_{34} & 0 \\
 j_{41} & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & j_{54} & j_{55}
\end{bmatrix}
\]

Compressed representation

Structurally orthogonal columns packed together

\[
\begin{bmatrix}
 j_{11} & j_{12} & 0 & 0 & j_{15} \\
 0 & 0 & j_{23} & 0 & 0 \\
 0 & j_{32} & j_{33} & j_{34} & 0 \\
 j_{41} & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & j_{54} & j_{55}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 j_{11} & j_{12} & 0 & 0 & j_{15} \\
 0 & 0 & j_{23} & 0 & 0 \\
 0 & j_{32} & j_{33} & j_{34} & 0 \\
 j_{41} & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & j_{54} & j_{55}
\end{bmatrix}
\]

D1 coloring formulation on column inter. graph

D2 coloring
POP

- POP is a parallel ocean simulator for climate
- SNL is working with LANL to use Trilinos in POP
- Solver uses JFNK
 - No explicit Jacobian
 - Forming Jacobian by finite differences is expensive
Coloring in POP (1)

Work led by Chris Siefert.
• Want to precondition Jacobian
• Need to explicitly form preconditioner
• Use coloring on graph of ~Jacobian
 – Approximation may be sufficient
• Form compressed ~Jacobian by finite diff.
• Uncompress ~Jacobian and precondition
Coloring in POP (2)

Example:
• 40x42x34 mesh -> 290K unknowns
• Isorropia parallel coloring gives 432 colors
 • # finite differences reduced from 290K (naïve) to 432!
• Jacobian build takes 30-50% of total time
 • Jac_build: 1377 s
 • Solve: 2618 s
 • Total: 4281 s

• Any reduction in #colors reduces total time
 • Work in progress: Use bipartite graph in Isorropia to reduce colors.
Ordering

- Ordering for sparse matrices can help:
 - Reduce fill in direct factorization (Amesos)
 - Improve convergence in iterative methods (IFPACK)
 - Improve memory/cache performance in sparse kernels (Epetra, Tpetra)

- So far focus on global (parallel) ordering for fill
 - Rely on TPL: ParMetis or Scotch
 - In progress: Native Zoltan ordering
 - HUND for unsymmetric problems
Sparse LU

- $A = LU \rightarrow$ Solve $Ly=b$, $Ux=y$
- Permute to keep L, U sparse
 - Fill-reducing ordering
- Need (partial) pivoting for numerical stability:
 - $PA = LU$
 - P is a row permutation from pivoting
- Can reorder columns to reduce fill
 - $PAQ = LU$
 - We choose Q but P is not known a priori
Hypergraph Unsymmetric Nested Dissection (HUND)

- Permute columns
 - Also permute rows but allow row pivoting
- Use hypergraph SBBD ordering recursively
 - Grigori, Boman, Donfack, Davis ('08)
 - Analogous to nested dissection for symmetric problems
 - Fill is limited to nonzero blocks for any pivoting
 - Useful both in serial and in parallel
HUND in Zoltan

• Design for handling matrices for parallel solvers
 – Minimum Degree heuristics do not provide enough parallelism (and cannot really be parallelized)
 – Block form is computed with Zoltan’s parallel hypergraph partitioner

• To improve quality inside the blocks, local heuristics may be applied (COLAMD, etc.)
 – Work in progress
Preliminary Results

• Using HUND with only the computation of the structure:
 – worst case but give a upper bound of the factorization cost
• Evaluation of the quality using SuperLU dist on 64 processors on Franklin XT4 at Nersc.
• Comparisons against current aproaches (A+A^t)
 – Nested Dissection codes: ParMetis and Scotch
 – Minimum Degree
• Test Cases from Florida Collection:
 – Sinc18: crack simulation
 – ASIC_680ks: circuit simulation (from Xyce)
Sinc18

<table>
<thead>
<tr>
<th></th>
<th>HUND</th>
<th>ParMetis</th>
<th>MMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+U</td>
<td>53.1e+6</td>
<td>38.7e+6</td>
<td>30.3e+6</td>
</tr>
<tr>
<td>Factorization</td>
<td>84.3e+9</td>
<td>225e+9</td>
<td>51.6e+9</td>
</tr>
<tr>
<td>Factorization</td>
<td>65</td>
<td>30.82</td>
<td>1.82</td>
</tr>
<tr>
<td>Time (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No ordering inside the blocks can explain the timings for HUND
- Matrix structure seems appropriate for dissection approach on the highest levels
Xyce: ASIC_680ks

<table>
<thead>
<tr>
<th></th>
<th>HUND</th>
<th>Scotch</th>
<th>ParMetis</th>
<th>MMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+U</td>
<td>37.2e+6</td>
<td>83.8e+6</td>
<td>12.3e+6</td>
<td>3.6e+6</td>
</tr>
<tr>
<td>Factorization</td>
<td>34.6e+9</td>
<td>362e+9</td>
<td>3.04e+9</td>
<td>1.5e+9</td>
</tr>
<tr>
<td>flops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factorization</td>
<td>34.49</td>
<td>88.19</td>
<td>36.90</td>
<td>25.82</td>
</tr>
<tr>
<td>Time (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- MMD does not provide enough parallelism
- Here, HUND is the fastest ordering to compute
Ordering Plans

• Davis’ SuiteSparse as TPL in Zoltan
 – Access to AMD, COLAMD, etc.
 – Use in HUND

• How to use orderings in Amesos?
 – A) Isorropia computes permutation, Amesos passes vector to solver (if supported by TPL)
 – B) Isorropia computes permutation, Amesos permutes matrix (copy?) before calling solver

• Local (serial) orderings in Zoltan
 – RCM and space-filling curves
 – Michael Wolf (for climate project)
The End