SANDIA REPORT

SAND2007-7040
Unlimited Release
Printed October 2007

Daily Integration and Testing of the
Development Versions of Applications
and Trilinos

A stronger foundation for enhanced collaboration in application and

algorithm research and development

Roscoe A. Bartlett

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2007-7040
Unlimited Release
Printed October 2007

Daily Integration and Testing of the Development Versions
of Applications and Trilinos

A stronger foundation for enhanced collaboration in application and
algorithm research and development

Roscoe A. Bartlett
Department of Optimization and Uncertainty Estimation

Sandia National Laboratories, Albuguerque NM 87185-1383U

Abstract

Daily integration of the development versions of the agilan code Charon and the
numerical solvers collection Trilinos has help us to createw vision for a deeper level of
collaboration between solver developers and applicatemeldpers which benefits everyone
involved. The bridge for this deeper collaboration is basethe foundation of nightly
building and testing of the combined development versidniseapplication code (e.g.
Charon) and Trilinos. Here we outline the proposed dailggnation and testing process,
describe potential advantages and disadvantages, anibeesar experiences with Charon +
Trilinos Dev during the ASC FYQ7 Level-2 Vertical Integrati Milestone.

Acknowledgments

I would like to thank Scott Collis, Mike Heroux, Russell HawpRoger Pawlowski, Andy

Salinger, Jim Willenbring and many others for helpful casadions that helped shape this idea. |
would also like to thank all of the members ASC FYO07 Level-2t\al Integration Milestone

effort in helping to provide an environment where these sdemuld be formed and take hold and in
helping to set up and maintain Charon + Trilinos Dev.

Contents

1 IntrodUCtion oo 7
2 Outline of proposed APP + Trilinos Dev development andydatiegration and testing... 9
3 Advantages and disadvantages to daily integration atidgesf APP + Trilinos Dev.... 11
3.1 Research advantages to daily integration and testiddPBf+ Trilinos Dev 11
3.2 Production advantages to daily integration and testfi®PP + Trilinos Dev 11
3.3 Potential disadvantages to daily integration andrtggif APP + Trilinos Dev 12
4 Suggested practices to support proposed APP + Trilinosdeeslopment and daily inte-
gration and testingot 14
5 Experience from the ASC Vertical Integration MilestonéghaCharon + Trilinos Dev 18
5.1 Charon + Trilinos Dev daily integration and testing 18
5.2 Ana/SIERRA+ THlINOS DEV.ot e e 21
B CONCIUSIONS . ..o e e 22
REeferENCES . . o o e 23
Appendix

1 Introduction

During the course of the ASC Level-2 Vertical Integrationiédtone work [3], we found that in
order to keep moving forward and avoid backslides in cajlfivhich happened early on), we
needed to implement nightly building and testirf the development versions of Charon and
Trilinos [4]. Every night, we take what is in the Charon andiios development repositories and
build the combined Charon + Trilinos application and runrgdsset of regression tests. This work
had broad implications on the nature of the interaction gliagtions (APPs) and Trilinos solvers.

In the execution of this daily integration and testing pssxave have learned many things about
how to do quasi-continuous integratfoof application and algorithms software and we have
realized many important unplanned benefits. This will allesito reap many more benefits in the
future if this process is maintained and extended. Therbatireproduction-related benefits and
research-related benefits to daily integration that heth b application developers and the
algorithm developers to achieve their goals. On the rebeside, this significantly reduces the
overhead required for algorithm developers to try theipatgms out on production quality
problems. Developing a numerical solver with a productiorbfem exposes the algorithm
developer to a whole host of issues (e.g. poor scalingpiiditioning, convergence difficulties,
etc.) that are hard to replicate with model problems. On theygction side, constant integration
insures that the application and Trilinos are always up te dad satisfying the application’s
requirements. Therefore, when it is time for a release, arfigal set of acceptance tests are
required and then the codes can be branched and releasé#y after. This helps to reduce a
whole host of risks such as slipped schedules and brokeurésat

| have seen several different scenarios over the years wimerdaily integration and testing
infrastructure would have facilitated collaboration beém application and algorithm developers
for the advantage of both. For example, suppose an applicdéveloper is running a new
problem and discovers some strange behavior from a nurhedker. The algorithm developer
may look at the results and speculate what the cause of ttaibemight be or if a different
variation of the algorithm might help. However, if the alijlom developer is stuck having to use a
released version of Trilinos, it will be more difficult to makny major changes in order to
investigate the behavior. Also, there may already be imgmm@nts made to the algorithm in the
development branch of Trilinos that may be able to addresgtbblem. Without the infrastructure
of daily integration and testing, it may not be cost effeztor practical to bring the development
versions of the application and Trilinos up to date in oradery the updated algorithm. The
algorithm and application developers may have to wait tindinext major release of Trilinos
before the new algorithms can be accessed. This time delggsw@no one’s advantage and can
kill the collaboration. With daily integration and testingplace, an easy path for collaboration is
maintained where the Trilinos algorithm developer canhagjrtlatest and greatest algorithms on
these types of challenging production problems and thernmdtion learned from trying to solve
these production problems can feed back into algorithmIdpugent. To some extent, this back
and forth development and integration already happengyitiibut a foundational process in place
to streamline it, the bidirectional flow can be greatly riestd.

1Charon Dev and Trilinos Dev has been nightly built and testgshrately for many years. It was the combined Dev
versions of Charon + Trilinos that was not nightly built aedted until the milestone work.

2By quasi-continuous integration, we mean that we are stiggeistegrating and testing once a day and not every
few hours as some have advocated [1].

3Also known as regressions

Another example where daily integration and testing of txetbpment versions of the

application and Trilinos would ease the path for collaborais when an application developer
wants to try a new capability in Trilinos without a lot of wdtkWhen the up-to-date development
version of Trilinos is available from within an applicaticm new algorithm or capability from
Trilinos can be accessed much more easily. Typically, ev@naill increase in the overhead needed
to try out a new Trilinos capability in an application can lm@egh to kill a potentially fruitful
collaboration between application and algorithm develepBaily integration and testing of the
development versions of the application and Trilinos reesc& unexciting (and therefore
demoralizing) but critical obstacle to collaboration antgpact.

Daily integration and testing of an application code andirios brings algorithm developers and
application developers closer together — exchanging idedsoncerns — and refocuses Trilinos
developers on customer efforts while still helping drivddlighable numerical algorithm solver
research and reduces barriers for new algorithms to havedintiprough production application
codes.

For the reminder of this paper, | will refer to the combinedalepment versions of the application
(e.g. Aria [2], Charon, Xyce® etc.) and Trilinos as APP + Trilinos Dev.

4This example really happened and it was the inability to igatcess the development version of Trilinos within
the application that killed the collaboration.

Shttp://micro.sandia.gov/charon.html

Bhttp:/www.cs.sandia.gov/Xyce

2 Outline of proposed APP + Trilinos Dev development and day
integration and testing

The basic idea of this new approach goes like this (which isttpevhat we already do with
Charon + Trilinos Dev right now):

APP developers mainly work with APP + Trilinos Releasehe developers of APP (e.g. Charon,
Alegra, SIERRA) would mostly do their production develogrhand run their production test
suite against a stable released version of Trilinos.

Trilinos developers mainly work with Trilinos DevMost of the developers of Trilinos would do
their development work primarily just within Trilinos andrr the Trilinos test suite. If radical
changes are make, then there should be a way for Trilinodaj®ss to build and run APP +
Trilinos Dev and it's test suite to see if anything will bre@efore a check in). This will require
some effort to set up and maintain for each APP (see pragticeésction 4).

Hide APP + Trilinos Dev “research” work in APP behind ifdefsAny “research” development
done in APP against Trilinos Dev must be hidden behind #sfdefas not to impact the other
production-focused development work being done with ARR tblies on the more stable release
of Trilinos. Differences between Trilinos versions witlspect to current APP code would also be
handled with #ifdefs.

Perform nightly building and testing of APP + Trilinos Relese and APP + Trilinos Devin
performing this process, it is our goal to avoid unnecessdeyactions between APP and Trilinos
developers. If a Trilinos developer breaks some softwar&ilmos, then we want to avoid
bothering an APP developer that has nothing to do with thisremreason to know about this.
Likewise, if an APP developer breaks the APP code in some hatydoes not expose a Trilinos
defect, we want to avoid bothering Trilinos developers wiils’. The following builds are
designed to help avoid unnecessary communication betw&éhaid Trilinos developers while
still catching APP + Trilinos Dev integration problems aBagéntly as possible:

e APP + Trilinos Release tested against “production” test s1iThe Dev version of APP
would be built and tested against the static/stable curedease of Trilinos.

— Send “production” failures only to APP developerdest failures for APP + Trilinos
Release should only be forwarded to APP developers, nahdsildevelopers, since
these failures are most likely caused by a defect added byP&hdeveloper. It is
possible that latent defects in the current release ofribslimay be the cause of the
failure, but this should be less likely.

e APP + Trilinos Dev tested against “research” and “produciid test suites The combined
APP + Trilinos Dev code with enabled #ifdefs and extendedéaech” test suite would be
built and tested (with both “production” and “research’t&s

— Only send “production” failures that did not also fail in APP+ Trilinos Release to
Trilinos developers (representativenly “production” tests that failed in this version

"We did not have unnecessary interactions totally underebfur Charon + Trilinos Dev during the milestone work
and it resulted in some waisted time. See the practices ferthis can be addressed.

that did not fail in the production APP version would be forded to Trilinos
developers (e.g. to the dedicated APP + Trilinos Represeataee below).

— Send “research” failures only to Trilinos developers (repsentative) By default,
average APP developers would not see these “researchateses (unless they
wanted to in which case they could be added to an e-mail list).

Release APP + Trilinos together or staged\ release of the APP + Trilinos would go one of two
routes:

e a) Combined tagging and release of APP + TrilinoRight before a release of APP, the
APP and Trilinos would be tagged and branched at the samddimeke sure both are as
current as possible. This could be very challenging to pifisiace it would require that
Trilinos be releasable at almost any time.

e b) Staggered releases of Trilinos and APRPP developers make a decision to target a
release of APP against a very recent release of Trilinoshé\pbint of the release (or branch
for the release) of Trilinos, the Dev version of APP dropsmupfor older release of
Trilinos, moves code from within the protected #ifdefs intain Dev build and then any
new work with Trilinos Dev is hidden behind new #ifdefs. Asaiation of this, the APP
may not be in a position to upgrade to the most recent reldaBdlinos right away. In this
case, the nightly test harness can be setup to build the A&RIRsaghree versions of Trilinos:
i) the old Trilinos release, ii) the new Trilinos released i) the development version of
Trilinos. This requires a little more effort but it guaraesethat when the APP developers
decide to transition the APP code base to the new Trilinasasa, that this will happen
smoothly without any problems. At this point, support foe tid Trilinos release can be
dropped, and the APP developers can do a release of APP atremthat is convenient.

Continue APP + Trilinos Dev nightly building and testing aét APP upgrades to new Trilinos
release After APP is upgraded to the next release of Trilinos, using of the approach
approaches described above, the nightly building of APPFilinds Dev continues where future
incompatibilities between Dev versions of APP and Triliaos hidden behind new #ifdefs.

10

3 Advantages and disadvantages to daily integration and tésg of
APP + Trilinos Dev

There are many research and production advantages to imaigtthe daily integration and
testing of the development versions of production appbcafAPP) and Trilinos. Some of the
more significant advantages are described in the followaugiens.

3.1 Research advantages to daily integration and testing &PP + Trilinos Dev

Here are some of the research advantages to maintainingillgerdegration and testing APP +
Trilinos Dev:

Reduces overhead for initial algorithm integrationThis massively reduces the overhead needed
for a Trilinos algorithms developer to try out a new algamtion a production quality problem
implemented in APP because the codes will build right awaye 6f the most difficult aspects of
doing serious algorithm research is having access to sefpmssibly messy) production quality
problems.

Improves chances that new algorithms will have impa&educing overhead of the initial
software integration effort improves the chances that aagarithm or package will benefit a real
application and therefore show real “impact” which is al&aycriticism for research-driven
algorithm developers. This is related to the previous ploiritis worth mentioning by itself.

Preserves interesting/challenging problemihis preserves really interesting problems that will
be constant drivers for future algorithm research. A reeliigllenging numerical test problem that
is encountered after an initial algorithm integration ardezimentation effort can be preserved so
that algorithm researchers can come back to it later agairagain to try out new versions of their
algorithms. Spending a lot of effort to get an algorithm gntged with some production code and
then having that connection and the working examples Iggbéras again and again with our
current environment. Even more important is the abilityhovg “progress” as our algorithms
improve by running them on the same basic production physmslems. Note that preserving
interesting test problems is more of an issue for highegtlalgorithms like sensitivity solvers and
optimization than it is for more basic algorithms like linesalvers (and the associated
preconditioners). The ability to solve a linear system iseagyuisite for any (semi)implicit
forward simulation solver and therefore challenging lm&gstems are ubiquitous in scientific
computing. Since higher-level analysis problems are natgidow-level modeling and forward
solver work, they are often overlooked by APP developersvameh the time comes to perform
these higher-level analysis, the APP infrastructure tsttsuch methods is gone. Daily
integration and testing for these higher-level analysiblams preserves them for future research
and future use on critical problems.

3.2 Production advantages to daily integration and testingpf APP + Trilinos Dev

Here are some of the production advantages to maintainadalty integration and testing of the
development versions of a production application andogi

11

Expands testing for Trilinos The tests in the APP’s test suite represents an extendesligsfor
Trilinos. In our work with Charon, we have already seen cagesre the Charon test suite caught
an error that the Trilinos test suite did not. Most APPs alstdtagainst an installed version of
Trilinos so nightly building and testing of APP + Trilinos Dhelps to test the installation of
Trilinos which is very hard to do for Trilinos by itself.

Enables better scalability testing for TrilinasProduction APPs provide ready access to
large-scale parallel problems that can serve as a vehictedting the parallel scalability of
Trilinos algorithms. Teuchos timers can be used which miagady to isolate timings for specific
algorithm features and will show load imbalances if theysexAutomated scripts can query these
timings (from the output) and can catch any problems witheddlity that are seen.

Reduces time to detection of defecthis is directly related to expanded testing describedthén t
above items but defects introduced in Trilinos code betwebsases that break customer
functionality (but may not be caught by native Trilinos 8swill be caught right away. Even if a
test failure is not fixed right away, knowing exactly when st failed is an extremely useful piece
of information in being able to track down and fix the defetetaThe cost of fixing defects
increases the longer the time between when the defect iglinted and the time it is first detected
[5]. Daily testing reduces the risk that a release of Triindgll regress and/or helps to contain
costs and the schedule if a broken feature must be presertied hext combined release of APP +
Trilinos.

Reduces release time and effott reduces (or eliminates) the time needed to create a bdndl
release of APP + Trilinos. This removes uncertainty about lomg it will take to put out a release
of Trilinos and/or APP.

Allows for more aggressive refactorings and code improvenselt allows for more aggressive
refactorings of Trilinos code since the impact of the refeogs on important APP customers can
be ascertained and fixed right away. This will allow the aeatture to evolve as needed in a safer
and less demanding way. The ability to refactor code is timel®r one issue in making sure a
code does not become “legacy code”. Without the ability faat®r a code, you automatically
insure that the code will be thrown away or relegated to ‘tggapde” at some point [5].

Better address customer needghis will bring Trilinos algorithm developers closer to fiortant
Trilinos APP customers so that customer needs can be addreaxre effectively in a timely
manner.

Reduces all kinds of riskOverall, this simply reduces all kinds of risks, increapesdictability of
the development and release process, and makes Trilinasnegponsive to important customers.

3.3 Potential disadvantages to daily integration and testig of APP + Trilinos Dev

Here are some of the potential disadvantages to maintaihedaily integration and testing of the
development versions of a production application andiogi

Will slow down day-to-day development to varying degrdésvill slow down the day-to-day
development of Trilinos and the APP to some extent in thablpras are dealt with as they are
uncovered by daily building and testing. The amount of eatrarhead will depend on how

12

aggressively failing tests are addressed (see the pratiéection 4). Just keeping APP +
Trilinos Dev building should not impart much overhead aisithost cases.

Will require better, more coordinated management pracscd his will require some more
sophisticated management practices and tools to keepthlisafunning smoothly. This will
require some additional effort over what is done now with engp-front effort to set up.

Will impose greater responsibility to meet customer neetislinos developers will have a greater
responsibility to meet important APP customer needs. Aflaigorithm researchers don't want to
sign up for that kind of responsibility. However, such irdivals don't have to write or maintain
production algorithmic capabilities. There will alwaysdelace for more pure algorithms
research and more theoretical (i.e. less applied) algorigsearchers.

Could increase overall development effolit may increase the overall development time for
Trilinos if not managed well. However, experience by oth@ijgcts and organizations suggests
that the overall development time and effort to create anidtaia production capabilities should
actually decrease! [5].

13

4 Suggested practices to support proposed APP + Trilinos Dev
development and daily integration and testing

Successfully implementing APP + Trilinos Dev daily inteipa and testing will require, or will be
made much more effective, by the adopting several pract®esie of the more important
practices and issues consider are described below (andrarearized in the Appendix).

Separate “production” and “research” testsAny new test or example added to APP’s test suite
based on new features in Trilinos Dev must be added as neediras’ tests as not to affect
existing “production” tests. In this way, we can easily ei#ntiate between “production”
regression tests and new “research” or “pre-productiostster his is not full-proof in
differentiating defects in APP code verses Trilinos codg this will go a long way in helping to
suggest where the problem is and avoid unnecessary comationi®etween APP and Trilinos
developers.

Refactor APP code to isolate and separate ifdefed cddeorder improve the maintainability of
the APP code to handle new features and changes in Trilinesv@&ses the current Trilinos
release, the APP code should be carefully refactored t@gety and isolate ifdefed code. As
much as possible, developers should try to refactor codeat@hanges that are made in the APP
are orthogonal to differences between Trilinos Dev and thtesat release of Trilinos. This can be
done by separating the essence of the differences into effiet! functions where one ifdefed
version contains code for the current Trilinos release hadther ifdefed version contains code
for Trilinos Dev. New features implemented against Triridev are typically easier to handle
since these should be put into new classes and new functi@reby not disturbing existing code.
This type of refactoring should be performed to avoid lotgadéfs in long functions that can result
in defects entering the code and can complicate developrAést, segregating the ifdefed code
for APP + Trilinos Dev is needed to remove APP + Trilinos Deanfirthe daily consciousness of
the average APP developer who should not have to be consthstilacted by an unrelated
ongoing APP + Trilinos Dev development efforts.

Maintain a dedicated machine for building and testing APP +ilinos Dev: Having a dedicated,
powerful machine for supporting APP + Trilinos Dev would reakeasy to maintain an
environment to build and test APP + Trilinos Dev. It wouldaajsovide Trilinos developers a
quick and easy way to access, build and test APP + Trilinos Bsues like keeping third party
libraries up to date would only need to be handled on this ocaehine. Accounts would be
granted as needed and would only require SRN access. Thid aitmw any Trilinos or APP
developer with an SRN account to quickly log onto the dedidahachine, and then be able to
quickly build APP + Trilinos Dev and run the “research” anddguction” test suites. Some helper
scripts and examples also need to be in place to show how taslo t

Appoint a dedicated APP + Trilinos Representativene member of the Trilinos or APP
development teams should be designated as the point penstirefAPP + Trilinos Dev effort.

This person would be responsible for filtering test faillaad forwarding issues to APP or Trilinos
developers. This person must be familiar with the APP ankh®s for this to be effective. Ideally,
this person will be a co-developer of APP and Trilinos, sodheould be little-to-no learning
curve. Having only one person be responsible (with perhd@kup person in their absences)
will make it clear who is accountable for making sure issuesdealt with in a timely manner.
This person would take the major responsibility of maintairthe dedicated APP + Trilinos

14

machine described above. The goal is that this job shoultakettoo much effort if everyone else
is doing their job. However, this job could be a nightmardigteffort is not taken seriously by
everyone involved (including management). In additiois thsponsibility should come with a
specific project/task (P/T). Having a specific P/T servesisd\purposes. First, it lets the APP +
Trilinos Representative know that this task is ordained eumported from management. Second, it
allows us to track how much time and expense is going intoikgefPP + Trilinos Dev working.

Provide easy access for any Trilinos or APP developer to thuiest, and develop APP + Trilinos
Dev. Trilinos and APP developers need a quick and painless whyitd APP + Trilinos Dev in
order to diagnose and fix failures. This may include the @tiiti checkout and change APP code
and Trilinos code to fix the problem. Of course, modified AP&ecavould need to go through a
code review by APP developers before it was checked into &ARIpository. Likewise, an APP
developer should be able to change and fix Trilinos code ¥f #te so motivated. Again, a code
review by Trilinos developers should be done before an ARRIdper checks in any code changes
to Trilinos. Having a dedicated machine maintained by th& AFTrilinos Representative as
described above would make this easy to support. Obvicasbther large benefit to providing
easy access to APP + Trilinos Dev is that it makes it easieARI? or Trilinos developers to try
out new Trilinos algorithms at any time based on the mosttetalinos code.

Fix failed builds of APP + Trilinos Dev ASAPIt is critical that fixing broken builds of APP +
Trilinos Dev be given a high priority and be addressed immedyy. Without the software at least
building and linking in order to run the tests, we can haveawmback at all about the state of our
software and the entire daily integration and testing msdalls apart. There can be no exception
to this.

Address failing “research” and “production” tests on a scluelle appropriate for the APP +
Trilinos collaboration: While fixing failed builds of APP + Trilinos Dev must alwayg lgiven a
high priority and fixed immediately, addressing failingsearch” and “production” runtime tests
can be done on a variety of different schedules, dependirigeonature of the APP and/or the APP
+ Trilinos collaboration at any time. We can imagine two ertes in how and when failing tests
are addressed.

One one extreme, every day, each and every failing testé&ngivhigh priority and fixed ASAP
While this approach results in the least risk of experiegp@megression, it can significantly harm
overall productivity (especially for the APP + Trilinos Repentative).

On the other extreme, we might not address any failing testh between releases and wait until
the next upcoming release before any of the failed testsdatesased. While this other extreme has
more risk associated with it as opposed to fixing failingg@sstantly, it still offers significant
advantages to not performing any daily building or testinhglla First, by keeping APP + Trilinos
Dev building, we can address any of the failures at any timevisa. Second, knowing the exact
24 hour period when code changes were made that causedhg fatit is a huge piece of
information to help find the cause of a test failure. Lettiaijrig tests fail for long periods of time
and only requiring that APP + Trilinos Dev keeps building gldoonly impart a very minimal
overhead to day-to-day development activities.

In between these two extremes, every morning that one or faibee tests were reported, the APP
+ Trilinos Representative would spend five to ten minutegitwgpover the new failing tests and try

8This was mostly our policy on the ASC Vertical Integrationléitone but we did not completely keep up with this.

15

to diagnose them. If the problem can be quickly diagndstmkn an e-mail can be sent (or a bug
report can be filed) to the parties that can fix the bug. If tleblem can not be easily diagnosed in
five to ten minutes, then the APP + Trilinos Representativghtrjust make a note of this (e.g. file
a general bug report, send a general e-mail, etc.) and thea amowith the day’s other activities.
Then when time becomes available, the root causes of tliegfédsts can be diagnosed when it
will not disturb the flow of other work. Again, knowing the ex@4 hour period when a test first
failed is a huge piece of information in finding the root caakthe problem.

In summary, depending on the nature of APP and the relatijpfstween APP and Trilinos, any
level of urgency between these two extremes may be accemadlthis will still be much better
than not doing any daily building or testing at all. The agmto taken to addressing failing tests for
APP + Trilinos Dev, for any specific APP, will change as thdatmbration goes through periods of
greater intensity and lesser intensity. During periods ofarintense APP + Trilinos collaboration,
we will be more aggressive about addressing failing testsing periods of less intense (or
nonexistent) APP + Trilinos collaboration, we can let téaiisfor longer periods of time.

Archive test results for sufficiently long periods of tim&est results from APP + Trilinos Release
and APP + Trilinos Dev should be archived for long periodsmogt Typically, only smaller output
files are needed to diagnose most problems and thereforargest of output files should typically
be excluded from the test results archive. However, alldegiut files should be archived between
24 hour periods. Having ready access these test resultbeimgl able to compare the outputs from
a passing and a failing version of a test (separated by 24h@ueritical in helping to diagnose
failing tests. Older test results should be pruned and #udras needed to conserve disk space. For
example, test results from three months ago could be dedsimabt for tests on Friday (or some
other day) of each week. One exception would be that teslisesn consecutive days where a test
went from passing to failing should be preserved for a lonippeof time (perhaps a year or more)
since this is critical evidence in tracking down failingteeéespecially in the extreme where tests
are allowed to fail for very long periods of time). Easy acctstest results can be provided
through a website that anyone with SRN access can dfqessimit access to those individuals
with Need-to-Know in the case of more sensitive APPs).

Transition “research” to “production” appropriately afte each Trilinos release If a “research”
algorithm or feature becomes stable enough and the softm@lementation is of high enough
quality (i.e. a “phase 2" package in Trilint3, then after the next Trilinos release the “research”
APP code and tests for that algorithm/feature should be thtwvéhe APP’s “production” code and
tests. In this way, if the test fails later, the APP develspeitl be the first to face the bug since it is
most likely an APP developer that introduced a new defect.

Perform APP + Trilinos Release and APP + Trilinos Dev nighttgsting on the same set of
platforms The nightly building and testing of APP + Trilinos Releasel &PP + Trilinos Dev
should be performed on the same set of platforms. In this fayproduction” test fails with APP
+ Trilinos Dev but not with APP + Trilinos Release on the sarafprm, then we have some
assurance that something has been broken by in the “re$eavdhand not the “production”
work being done by APP developer. If testing is done on dffieiplatforms, then a “production”
test failure with APP + Trilinos Dev may just be due to smaffatience is rounding or other small

9Approximately 80% or so of the failing Charon + Trilinos Dests were diagnosed in just ten minutes or less.
10we have provided web access to the test results archiveddaZliaron + Trilinos Dev test suite.
11See The Trilinos Software Life-cycle Modétip://www.cs.sandia.gov/ maherou

16

issues that result from using different platfofths

Enable more communication between APP and Trilinos devedop All of this will require and
foster more communication and cooperation between Talared APP developers. This means
that Trilinos developers will have to have a closer relatfop with their customers.

Provide for instantaneous releasabiliy of Trilinos to imp@nt customers In order to allow for

the option of the Dev versions of the APP and Trilinos to bgéat branched, and released
together, the Trilinos release process for such custonemdstto be doable in only a few days at
most. This will require a change in a great many of the curTeilinos practices. For example, this
will require that we port Trilinos Dev to various platformsere the APP runs on a frequent basis
(perhaps every few months or less). Also, this will requiivat tve have completely automated
tarball testing and installation testing. There are othsués that would also need to be changed
and/or improved in how we develop Trilinos. If a staggerddase of Trilinos and APP is
performed, then instantaneous releasabiliy is not rea@gdr(but is useful as a general principle in
any case).

12In the ASC Vertical Integration Milestone work with CharoriT#ilinos Dev, we did not have this in place. As a
result, there were several occasions that new “productiest’s failed when run with Charon + Trilinos Dev that passed
with Charon + Trilinos Release on a different platform. Mokthese “production” test failures were just due to minor
rounding or other porting issues. The time waisted trackimgn these “production” test failures could have been aaid
if we had had this policy in place.

17

5 Experience from the ASC Vertical Integration Milestone wih
Charon + Trilinos Dev

The purpose of this section is to describe what was done irRY0Y ASC Level-2 Vertical
Integration Milestone with Charon + Trilinos Dev. The mtlese work served as the inspiration
for APP + Trilinos Dev and served as a prototype and case $tudyPP + Trilinos Dev daily
integration and testing in practice. | will describe whatdhi@, what worked well, and what needs
to be improved for this and other such efforts. Many of thegested practicies given in Section 4
came from feedback provided by the Charon + Trilinos DeMti@tahip conducted during the
milestone. As a contrast, | also describe a smaller effaititivolved an integration of
Aria/SIERRA + Trilinos Dev that was not supported by dailyeigration and testing.

5.1 Charon + Trilinos Dev daily integration and testing

Here | describe the basic elements of the Charon + Trilinosd2dy integration and testing
process that we had in place for the milestone. First, n@ieGharon has had its own native
nightly test harness in place for many years. However, thev@htest harness was only set up to
checkout and build Charon against a static set of third gémtsries (TPLs), including Trilinos,
and it was not clear how these scripts would be updated tav &iobuilding with Trilinos Dev
updated daily. Also, lack of Charon tool developer suppateit difficult to see how to add this
capability. Therefore, the decision was made to developmamimimal test harness framewaork
specifically for nightly building and testing of the Dev vierss of Charon and Trilinos. Starting in
February of 2007, we set up and ran nightly building andrigsttharon + Trilinos Dev in debug
(dbg) and optimized (opt) mode on my own 64 bit, 4-core, AMIhuUx workstation using GCC
3.4.6 for the compiler.

The Charon + Trilinos Dev test harness itself used the n&texeada/Alegra/Charon test harness to
define and run the tests. Therefore, we did not reinvent tretest harness since the existing
Nevada/Alegra/Charon test harness is quite good in mang.wide Charon + Trilinos Dev test
harness shell scripts just focused on checking-out/upgldlie sources, running the builds,
invoking the Nevada/Alegra/Charon test harness, intérgre¢he results, archiving the results, and
sending out e-mail notifications.

A set of shell-based (i.sh) scripts were written to perform all tasks of the test hasnés

top-level script was written that was directly invoked byrardab job. Every night (starting at
midnight), the test harness script checks out the Dev wessid Charon, the Charon TPLs, and
Trilinos (within the Charon TPL directory structure) andlts and tests various sets of build
options of Charon + Trilinos Dev. These scripts were not aldgigned to be used from the
automated test harness but were also designed to be useclitoeiat how to perform various
development and testing tasks. The scripts that are cakedesigned to show developers how to
run the various tools to checkout, build, and test Charoh thié Charon TPLs (which have
Trilinos Dev embedded in them). Therefore, the nightly tesnhess not only tests Charon +
Trilinos Dev, but it also tests the scripts that documentviiméous tasks and which developers can
directly use to perform these tasks.

Two directory trees were established and built from.Usdated base directory was used where

18

CVS updates were done into an existing tree for Charon, @h@Rd., and Trilinos. From this tree,
the optimized (opt) version of Charon + Trilinos Dev was baild tested. This is an important use
case for continuing developers that will typically updatéstng working directories and then
rebuild the code. A secorfefomScratch base directory was used where the working directories
for code, object files, libraries, and executables wereadditdd. Then, all of the source code was
checked out from scratch, and built and tested. This is aldmportant use case since it ensures
that new developers can checkout and build all of the code foratch at any time.

As mentioned above, the Charon + Trilinos Dev test harnessmy builds Charon + Trilinos Dev
every night, it also builds all of the Charon TPLs (includifiglinos). Early on in the milestone, a
change was made to one of the Charon TPLs that resulted im€abreak. However, the
existing Charon nightly test harness maintained by the @hdevelopers themselves on another
machine did not (and still does not at the time of this wrijibgild the Charon TPLs every day.
This delayed integration represents an increased risKl(dslayed integration does) which the
Charon + Trilinos Dev test harness has addressed. A singlayed integration for Charon exists
with the Nevada/Alegra framework itself but that integatrisk is owned by Charon is beyond the
scope of this discussion.

The test harness shell scripts also archive the test reésudtsveb-accessible directory tree. The
URLs to these directories for each test are given in passktife-mail notifications that are sent
out at the end of build & test invocation for each set of buiidians (i.e. opt vs. dbg) of Charon +
Trilinos Dev. All of the test input and output files are savedhis archive directory tree. However,
to avoid massive increases in storage, all files above 1Meletatl. This removes mostly large
mesh input files and exodus input and output files but maisitaligorithm output traces which are
the most useful in diagnosing failed tests. The test haroggait clearly records the exact time
and date that the source code is checked out which allowsoarteetk out exactly the same
versions at a latter time to reproduce the test results.r@hat we archive all of the test results
and a clear time stamp is given to each build, we can go badka(months in some cases) to
examine the behavior of a test and can then checkout theowersf the code for that build and
should be able to more-or-less reproduce the test outputo@se, many issues make it almost
impossible to do this if too much time passes (e.g. the OS #rat gystem tools on the test
machine may be updated, the Alegra TPLs (which are not tdippthe Charon + Trilinos Dev test
harness) may have changed, etc.).

The notification e-mails sent out every night give the URL loa test machine running an Apache
server to the archive directory that contain the test restitherefore, a few simple clicks of the
mouse are all that is needed to view the details of the teslisesom the night before (or for any
prior nightly test for that matter). Mornings where therergveew test failures, | was able to use
the archived test results on the web server to diagnose ai@esd tests in less than 10 minutes. In
many cases, | was the cause of the failed Charon “researshdue to a change in Trilinos that |
committed that was not verified against Charon before bdiegked 2. In these cases, | was
responsible for addressing the failed tests. In other chsest off a short e-mail to the person or
persons that | suspected was the cause of the problem anthgavesome tips on what | suspected
the problem might be given my brief analy<is

13Note that later in the milestone, | never checked in codeTnlinos that | did not first build and test Charon against.
This massively cut down on the number of failed builds ank:fhiests.

14adding some suggestion on what the problem might be provésta very effective catalyst for getting people to
address the problems in a timely manner.

19

All'in all, the daily integration and testing process thatset up for Charon + Trilinos Dev was
very effective at keeping Charon + Trilinos Dev on track amdiding backslides in functionality
that we were adding during the milestone. However, therewdew aspects of the process that
caused some unnecessary effort. Some of these problemesanibed below.

One problem that we had was that we did not build and test @haifrilinos 7.0 (the current
Trilinos release at the time) and Charon + Trilinos Dev ongdime platforms. As a result, there
were several instances where a new “production” test wagenieand checked into Charon that
worked just fine when run as part of Charon + Trilinos 7.0 on3Rdit platform, where the same
test failed or diffed on the 64 bit platform where Charon Hifids Dev was being built and tested.
As aresult, | spent a fairly significant amount of time diagjng failing “production” tests that
were unrelated to any changes in Trilinos and unrelatedaortiestone effort. This has since been
addressed by adding nightly building and testing of Chardnilinos 7.0 on the same 64 bit
machine where the rest of the Charon + Trilinos Dev testsiarésee the Section 4 about this
practice).

Another problem involved the transition to the post-mibest period. The end of the milestone
was marked by the release of Trilinos 8.0 which included nelestone-related capabilities. This
would have been an ideal time to upgrade Charon from Trilth6do Trilinos 8.0. Since all of the
Charon “production” tests were already passing againin®s 8.0 which where run every day ,
performing the upgrade would have been as simple as remaviegifdefs and removing the
tridev keyword from all of the “research” tests that were ready toobee “production” tests.
However, Charon has a dependency on an internal circuitlaiion code called Xyce which was
not being built and tested nightly against Trilinos Dev ayquldally takes several months or longer
to be upgraded to a new release of Trilinos. Therefore, wlawat simply upgrade Charon to
Trilinos 8.0 since it would have broken the combined Charofyee + Trilinos application.
Therefore, we decided to go ahead and put in place nightingest Charon against both Trilinos
8.0 and Trilinos Dev. To accomplish this, we had to add a defive macroCHARONRI8 and a
new test keywordri8 , and we had to add new test builds for Charon + Trilinos 8.Gi¢onightly
test harness. At the time of this writing my personal compigtstill running the following five
builds of Charon + Trilinos every night:

Charon + Trilinos Dev (opt, all tests, updated sources)
Charon + Trilinos Dev (dbg, only tridev tests, sourcesckbd out from scratch)
Charon + Trilinos 8.0 (opt, all tests, updated sources)

Charon + Trilinos 8.0 (dbg, only tri8 tests, updated ses)yc

a > w NP

Charon + Trilinos 7.0 (opt, all tests except tridev and teists, static Charon TPLs
(including Trilinos 7.0))

Above, only theridev andtri8 tests were run in theébg builds since running all of the tests
would have taken too long to complete in a single night. Evéh this, the builds and tests took
from midnight to after 6:00 AM to fully complete. Note thagtlexisting Charon test harness did
not do nightly building or testing for dbg build and therefore the milestone test harness actually
improves their testing. By performing all of these nightlyilds, we will be guaranteed that when
Charon is upgraded to Trilinos 8.0 that this will go smoothigh few, if any, issues.

20

With all of the new milestone-related “research” tests tamidy being built and tested every night,
these tests will be preserved such that when we come backamko advance our work, we will
be assured that we have a solid foundation to augment furaditip As a result, Charon has
become a very attractive foundation for our future algonithresearch. Without the daily
integration and testing in place, we could experience fggmit problems getting our problems
running again and the difficulties that we could encounteunldidikely be enough to cause us to
delay or abandon our efforts. This was exactly what happenedr earlier efforts (for example,
with MPSalsa).

5.2 Aria/SIERRA + Trilinos Dev

To contrast our experience with Charon + Trilinos Dev, cdesthe auxiliary effort where
Aria/SIERRA was updated to build against Trilinos Dev and ®ICHO™ was interfaced to Aria

to solve a prototype design problem. This effort was meadetaonstrate that the milestone work
was more general than just Charon and also served a numbtresfrurposes as well. However,
while Charon + Trilinos Dev was supported by nightly testamgl Charon + Trilinos Dev was (and
still is) instantly available to anyone with SRN access af8IERRA + Trilinos Dev was only
periodically built by a single developer and was not easilgeasible to others. The immediate
impact of this approach was that some amount of effort wasired) to get Aria/SIERRA +

Trilinos Dev to build again each time development pausea@ fime and then was continued. Also,
the combined Aria/SIERRA + Trilinos Dev application was easily accessible to the MOOCHO
expert on the milestone team so when difficulties solvingafrtbe problems surfaced, they where
difficult to addresses.

Of course, the long term implication of not having Aria/SIER + Trilinos Dev building and
testing in place is that the developed capability could kreihout anyone ever knowing it. It is
very possible that the code may not even build by the time &&Rpgrades to Trilinos 8.0.
Therefore, the developed MOOCHO/Aria capability is fragihd is susceptible to being broken
and may be lost if too much time goes'By

L5http:/ftrilinos.sandia.gov/packages/moocho
16At the time of this writing, planning is under way to establiaily integration and testing of Aria/SIERRA + Trilinos
Dev that will protect MOOCHO/Aria and other future algoritft developments.

21

6 Conclusions

There are a number of conclusions that we have drawn for thy@oped daily integration and
testing of the development versions of an application ailthds:

e Dalily integration and testing of the development versidihe application and Trilinos:

— results in better production capabilities and better netea

— brings algorithm developers and application developearsesitogether allowing for a
better exchange of ideas and concerns,

— refocuses Trilinos developers on customer efforts,
— helps drive research-quality algorithm development, and
— reduces barriers for new algorithms to have impact on pribsluapplications.

e Other application projects and scientific support softwamgects should consider adopting
the type of continuous integration that is used with Chardmitinos that was developed as
part of the ASC Vertical Integration Milestone work.

22

References

[1] Paul M. Duvall. Continuous Integration: Improving Software Quality and Reducing Risk.
Addison-Wesley, 2007.

[2] Pat K. Notz et. al. Aria 1.5 user manual. Technical Re@AND2007-2734, Sandia National
Laboratories, 2007.

[3] Roscoe A. Bartlett et. al. ASC vertical integration nsilene. Technical Report
SAND2007-5839, Sandia National Laboratories, 2007.

[4] Mike A. Heroux, Teri Barth, David Day, Rob Hoekstra, Ricbhoucq, Kevin Long, Roger
Pawlowski, Ray Tuminaro, and Alan Williams. Trilinos : objeoriented, high-performance
parallel solver libraries for the solution of large-scatenplex multi-physics engineering and
scientific applicationshttp:/software.sandia.gov/Trilinos

[5] Steve C. McConnellCode Complete 2nd Edition: A practical handbook of software
construction. Microsoft Press, 2004.

23

APP + Trilinos Dev Daily Integration and Testing Checklist

O Do you havefdef s in place in APP code that are needed to build against Tsilibev and
against a stable release (or multiple releases) of Trifinos

O Have you separated “production” and “research” tests soythacan better differentiate APP
defects from Trilinos defects?

O Have you appointed an official APP + Trilinos Representdiivmake sure APP + Trilinos Dev
is maintained and is responsible for making sure issuesamafded to the appropriate parties?

O Have you set up a dedicated machine to do daily integratidrtesting of APP + Trilinos Dev?

O Have you provided easy access to APP and Trilinos develapémsmediately build a private
version of APP + Trilinos Dev to try out new algorithmic capiies?

O Do you fix failing builds of APP + Trilinos Dev right away, witho exceptions?

O Do you address failing “production” and “research” testthvein urgency that is appropriate for
the nature of APP and the APP + Trilinos collaboration?

O Do you archive test results long enough to allow developeiagnose failing tests?
O After each major release of Trilinos, do you upgrade APP ¢ontdw release in a timely way?

O During the transitionary period between when Trilinos iartmhed for a release and when the
APP finally gets updated for the new Trilinos release, do yaldAPP against the old Trilinos
release, the current Trilinos release, and Trilinos Dev?

24

DISTRIBUTION:

2 MS 9018 Central Technical Files, 8944
2 MS 0899 Technical Library, 4536

25

26

v1.27

@ Sandia National Laboratories

