Sandia

Exceptional service in the national interest National
Laboratories

é\ Michael A. Heroux
A Sandia National Laboratories

productivity

.\ﬁ\\’i

*\\‘ U.S. DEPARTMENT OF //A ' ' b
@ V4 ENERGY ///’ v" D’" Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
> Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

/w

THE HPC SOFTWARE ENGINEERING
“CRISIS”.

National

A Confluence of Trends h) e,

Fundamental trends:
= Disruptive HW changes: Requires thorough alg/code refactoring.
= Demands for coupling: Multiphysics, multiscale.

Challenges:
= Need 2 refactorings: 1+€, not 2-€. Really: Continuous change.
= Modest app development funding: No monolithic apps.
= Requirements are unfolding, evolving, not fully known a priori.

Opportunities:
= Better design and SW practices & tools are available.
= Better SW architectures: Toolkits, libraries, frameworks.

Basic strategy: Focus on productivity.

The work ahead of us: Threads and vectors ()&
MiniFE 1.4 vs 2.0 as Harbingers

o Typical MPI-only run:
o Balanced setup vs sol¥e\

o First MIC run:

o Thread/vector sqlver 200
o No-thread setup\ | / \

MiniFE: Setup vs Solver Speedup

70.0
5V 2.0: Thread/vector o /
o Lots of work: — . / .

m Data placement, const £ o | Tr— Solve::SpMV
[restrict declarations, avoid ' i Solve::DOT
shared writes, find race 300 | Solve::AXPY
conditions, ... oo | S /

o Unique to each app o | 22\ s
ErS

/

o Opportunity: Look for new \ 50 /\ﬁ/ \ﬂ

0.0 \
crosscutting patterns, \u/
V 1.4/SB V 1.4/MKC-Vec V 2.0/MIC-NoV V 2.0/MAC-Vec
I I b ra rl eS Version/System

(e.g., libs of data containers)

Software Engineering and HPC: i) Neoar
Efficiency vs Other Quality Metrics

erfmtfofgl;g:g g ol o g 8 2?;52 eCi‘omplete
:)lioijcfgretcés g ;‘E é E E:‘o ’g § —% Steve McConnell
the right 8 - E 2| E :};’ Z | 2
Correctness t t 1 t *
Usability f j=i
<[y ¥ [F[¥[F[¥[¥][
Reliability 1 t (1 t *
Integrity * i)
Adaptability v| 4 t
Accuracy 4 v|4 v 4|V Helps it 4
Robustness + t * * * t * t Hurts it W

Better, Faster, Cheaper: Pick 2 of the 3 .

= Scenario:

= You run a software company with 30 employees, 15 of whom are
software engineers.

= Among other products, you sell a computational mechanics FEM
application to small businesses that enables them to prototype
designs. 6 SW engineers work on the product.

= The next release date for your customer portal app is Dec 1, 2015, but
your team is running 2 weeks behind on its upgrade of the mesh
quality improvement feature.

= What are your options to address the situation?

National

Must give up at least one thing.) .

= Better: Drop the mesh quality improvement feature set.
= When would this be the best option?
= When would you avoid this option?

= Or Easter: Delay the product release by two weeks (or
more?).
= When would this be best?
= When to avoid?
= Or Gheaper: Assign additional engineers to the project (higher
cost).
= When is this best or not a good idea?

=
=P
cr,:.n_
#—

If I had eight hours to chop down a tree,
| would spend six sharpening my axe.

- Abraham Lincoln

PRODUCTIVITY
BETTER, FASTER, CHEAPER: PICK ALL THREE

Software Productivity
for Extreme-Scale Science

Productivity Emphasis

January 13-14, 2014, Rockville, MD

« Scientific Productivity.
» Many design choices ahead.
* Productivity emphasis:
— Metrics.
— Design choice process.
« Software ecosystems: Rational option
— Not enough time to build monolithic.
— Too many requirements. T ofoware Productiviy:
_ Not enough funding. Baraesing e Fll CaabllyofBtrme Sl Computing
* Focus on actionable productivity metrics.
— Optometrist model: which is better?

- 13 . L [}) Hans Johansen (LBNL), David E. Bernholdt (ORNL), Bill Collins (LBNL),
— Global model: For “paradigm shifts”. g e a ey

Thomas Ndousse-Fetter (DOE/ASCR), Douglass Post (DOD), William Tang (PPPL)

Sandia
rl1 National
Laboratories

IDEAS: A NEW DOE PRODUCTIVITY-FOCUSED
PROJECT

| D EAS Institutional Leads (Pictured) (i) =,

productivity Full Team List

0
-

J. David Moulton
Tim Scheibe
Carl Steefel

“#8s Mike Heroux
Ulrike Meier Yang

Glenn Hammond
Jed Brown

Reed Maxwell Irina Demeshko

Scott Painter
Ethan Coon

Kirsten Kleese van Dam
Sherry Li

ASCR: M. Heroux and L.C. Mclnnes . .
Xiaofan Yang Daniel Osei-Kuffuor

BER: J. D. Moulton
Vijay Mahadevan

Barry Smith

Hans Johansen
Lois Curfman Mclnnes
Ross Bartlett
Todd Gamblin*
Andy Salinger*
Jason Sarich

David Bernholdt
Katie Antypas*
Lisa Childers*
Judith Hill*

Jim Willenbring
Pat McCormick

o .
Ulreach and Com‘“““‘w

I D E ﬂS Interoperable Design of Extreme-scale
productivity Application Software (IDEAS)

Enable increased scientific productivity, realizing the potential
of extreme- scale computing, through a new interdisciplinary
and agile approach to the scientific software ‘

Terrestrial ecosystem use cases tie IDEAS to modeling
and simulation goals in two Science Focus Area (SFA)
programs and both Next Generation Ecosystem
Experiment (NGEE) programs in DOE Biologic and

Envi tal R h (BER).
Address confluence of trends in hardware nvironmental Research ()

and increasing demands for predictive

multiscale, multiphysics simulations.
Respond to trend of continuous refactoring

with efficient agile software engineering

methodologies and improved software
desian

Use Cases:
Terrestrial
Modeling

ASCR/BER partnership ensures delivery of both crosscutting
methodologies and metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL,
SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman Mclnnes (ANL)
BER Lead: David Moulton (LANL)
Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)
Integration and synergistic advances in three communities deliver
°"frea “\\,«\“ scientific productivity; outreach establishes a new holistic perspective for
“Uand[Eos: the broader scientific community.

Software
Productivity

Scientific
Software

Software
Productivi

Use Cases: Multiscale, Multiphysics) e
Representation of Watershed Dynamics

= Use Case 1: Hydrological and
biogeochemical cycling in the
Colorado River System.

™
08112500 N
A3, Gt Su vt

[z 4 13 BMILES

Essa ham US. Baciagcal 5 ogitdl deta, 2011 1:100,000
R .
Contid matchan 35" 00W, Latihoe of sfgn 231°00N v

Btz coandrats imbenatim bs referanced 1 ha
Wiorid Geodtic Systam af 1334 WES 8

0 2 4 © BKILOMEERS

&
F
0‘""’

= Use Case 2: Thermal hydrology
and carbon cycling in tundra at
the Barrow Environmental

Observatory.

IDEAS Themes) e,

= Use cases: Drive efforts. Traceability from all efforts.
= But generalized for future efforts.

= Methodologies for software productivity:

= Metrics: Define for all levels of project. Track progress.
= Workflows, lifecycles: Document and formalize. Identify best practices.

= xSDK: frameworks + components + libraries.
= Build apps by aggregation and composition.

= Qutreach: Foster communication, adoption, interaction.

= First of a kind: Focus on software productivity.

Extreme-scale Science Applications

Domain component interfaces
* Data mediator interactions. .
* Hierarchical organization. .
* Multiscale/multiphysics coupling. | *

Native code & data objects
Single use code.

Coordinated component use.
Application specific.

* Meshes.
* Matrices, vectors. .

Documentation content
* Source markup.
Embedded examples.

Library interfaces
* Parameter lists. .
* Interface adapters. | ®
* Function calls.

Testing content
Unit tests.
Test fixtures.

Build content

* Rules.

-
1
1
1
1
1
1
1
1
1
1
1
1
1
:
! Shared data objects
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

* Parameters.

Domain components
* Reacting flow, etc.
* Reusable.

Sandia
National
Laboratories

Extreme-Scale
Scientific
Software
Ecosystem

[v v v
Libraries Frameworks & tools
* Solvers, etc. * Doc generators.

* Interoperable. |+ Test, build framework.

SW engineering

Models, processes.

A

|
i
|
:
Productivity tools. |1
I
i
|
i

Extreme-Scale Scientific Software Development Kit (xSDK) I 1

Sandia
National _
Laboratories

h
IDEAS Project Structure and Interactions

IDEAS: Interoperable Design of Extreme-

scale Application Software
ASCR: Thomas Ndousse-Fetter [=
BER: David Lesmes ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman

DOE Program Managers
Executive

Advisory Board

Mclnnes (ANL) BER Lead: J. David Moulton (LANL)

Use Cases for
Terrestrial Modeling

Lead: J. David Moulton
(LANL)

Tim Scheibe (PNNL)

Methodologies for
Software Productivity

Lead: Hans Johansen
(LBNL)

Roscoe Bartlett (ORNL)
Todd Gamblin* (LLNL)

Extreme-Scale Scientific
Software Development Kit
Lead: Mike Heroux (SNL)
Jed Brown (ANL)

Irina Demeshko (SNL)

Outreach and Community

Lead: David Bernholdt
(ORNL)

Katie Antypas* (NERSC)
Lisa Childers* (ALCF)
Judy Hill* (OLCF)

Kerstin Kleese-Van Dam
(PNNL)

Sherry Li (LBNL)

Vijay Mahadevan (ANL)
Daniel Osei-Kuffuor (LLNL)
Barry Smith (ANL)

Ulrike Yang (LLNL)

Carl Steefel (LBNL)
Glenn Hammond (SNL)
Reed Maxwell (CSM)
Scott Painter (ORNL)
Ethan Coon (LANL)
Xiaofan Yang (PNNL)

Christos Kartsaklis (ORNL)
Pat McCormick (LANL)
Krishna Narayanan (ANL)
Andrew Salinger* (SNL)
Jason Sarich (ANL)

Dali Wang (ORNL)

Bill Spotz (SNL)

Jim Willenbring (SNL)

IDEAS

productivity

Crosscutting Lead: Lois Curfman Mclnnes (ANL)

)
-~ -~--°-°°°°-°°-°TTTTT_"_ - - T |
i SFAs NGEE Exascale Co-Design ASCR Math & CS ALCF i
| CLM || ACME || Exascale Roadmap || SciDAC || NErRsc || oOLCF |

BER Terrestrial Programs DOE Extreme-scale Programs DOE Computing Facilities

IDEAS Project Management: Three-tiered rh) i
Structure

Level 1 Tasks:

. : . Meet Bi-Weekly
Full project scope concerns, inter-focus area dependencies

i Methodologies Outreach Crosscutfing feveli2l skt

for SW Productivity Meet Weekly

Develop first
Develop xSDK IDEAS BER

: Deliver draft-1 o
delivery plan for training event
e [cross-xSDK best
Alquimia bio-

: : content
practices, functional

eochem component : -
- . Chombo and non-functional Trilinos

PFLOTRAN requirements list Level 3 Tasks:
SuperLU Named task lead,
Frequent (daily)
interaction, agile

Amanzi
Chombo
Crunch

ParFlow

PETSc vSUNDIALS

Risk Management: Classic vs Agile) B
IDEAS will use agile risk management workflows.

Classic Approach Agile Approach

Elicit/Analyze | Design | Implement | Integrate
Requirements &Test

A 1 2 3 vee k €— [terations

Risk Risk

Impact Impact
Potential Potential
> >
. Source: Agile & Iterative Development: A o
Tlme Manager’s Guide, Craig Larman Tlme
= Agileis better: Risk mgmt, mitigation easier:
= Risk managed incrementally. Adapt: Less to refactor.
" |Impact high early, lower later. Drop: Less invested (lower loss).
l Update Update
board board
Update|
board
Sprint v_ v A/
Rl e S el S e SR e IR | Source: A Modkl For Risk Manogement n Agil
! y Software Development, Ville Ylimannela
Update|
board
\ 4
Light-weight -
methods like
brainstorming

IDEAS Codes and Libraries) e,

CIM
= \ P ~

Alquimia jQ—
Amanzi/ATS \ ParFlow

PFLOTRAN CrunchFlow

Chombo
SUNDIALS

Legend w
m Applications m

Sandia
rl1 National
Laboratories

SW LIFECYCLE MODELS & PRODUCTIVITY

Common Developer Workflows — @JEs.

Define and elaborate key workflows:

Software performance workflows:
Performance analysis, refactoring.
Development workflows:

Clean-slate, augmentation, refactoring
[of legacy code].

Sprints in an R&D culture.

Repository collaboration workflow
models:

Centralized vs feature branch vs. forking, etc.
Documentation workflows:
Domain, user, reference.

Test development & integration workflows:
Test-driven development, test harnesses, auto-regression tests.

|dentify, promote effective tools & best practices:

Tool use, enhancement driven by methodology needs.

National

Methodologies: Lifecycles) .

= Establish & demonstrate use of effective lifecycles.
= Phased expectations: Experimental to maintenance.
= Expectations within each phase:

Experimental: Project plan — Funding proposal, artifacts: publications.
Maintenance: Domain document, automated regression testing, etc.

= Promotion criteria, embedded phase regressions, etc.
= Starting point: TriBITS, collaborations
with Human Brain Project, EPFL.

. . . R .b Q /Oke /))/b
= Training & adoption: £ B ey
<& 60\ =~ S icd
. o o . -»li: S
= Materials, interaction with LCFs. 8 broade <
I N\
= &y adoptio Ve’ N
5 SLelAl F 0 Ao
E' & Y 4 QS)/écz‘orn /re GV iy
GonceP

HPC Software Maturity

. P Goal pEEEEEEEEEEEE R EEE R » Goal Attainment
Methodologies: p | (-
SW Productivity Metrics g piniion Voo Y Meesuemert |

Collected Data
Planning Data collection

Source: The GQM Method: A Practical Gui
for Quality Improvement of SW Developme

= Define processes to define metrics. Solingen and Berghou.
= Starting point: Goals, questions, metrics (GQM).

Define goals, ID questions to answer, define progress metrics.

= GQM Example:

= Goal: xSDK Interoperability.
= Question: Can IDEAS xSDK components & libs link?
= Metric: Number of namespace collisions.

Cultivate effective use of metrics:

= Use metrics to drive and track use case progress.

" Promote use of metrics via Outreach.

23

Common SW Development Scenario: Today

N

Sandia
'I1 National
Laboratories

Provide specific capabilities
for user.

Immediate feedback on
usefulness.

Do so with reuse in mind.
Others can use your software
for compatible needs.

Provides requirements.
Provide validation testing
environment.

Immediate feedback on
correctness.

Sandia
'I1 National
Laboratories

Common SW Development Scenario: Next Year

 Still works for original
‘ user.
.............................. ° Add new features for
other users.
e * Untested

» Provide validation testing
environment, but only

partial coverage.
« Other features untested.

National

Sandia
Common SW Development Scenario: 5 Years ®/&z.

Major refactoring.
Lost touch with original users.
New users features untested.

 Use old version of code.
« Many features untested.

Result: Not enough test coverage for confident refactoring.

Validation-Centric Approach (VCA):) e,
Common Lifecycle Model for CSE Software

Laboratories
Central elements of validation-centric approach (VCA) lifecycle model

= Develop the software by testing against real early-adopter customer applications.
= Manually verify the behavior against applications or other test cases.

Advantages of the VCA lifecycle model:

= Assuming customer validation of code is easy (i.e. linear or nonlinear algebraic equation
solvers => compute the residual) ...

= Can be very fast to initially create new code.
= Works for the customer’s code right away.
Problems with the VCA lifecycle model:

= Does now work well when validation is hard (i.e. ODE/DAE solvers where no easy to
compute global measure of error exists).

= Re-validating against existing customer codes is expensive or is often lost (i.e. the
customer code becomes unavailable).

= Difficult and expensive to refactor. Re-running customer validation tests is too
expensive or such tests are too fragile or inflexible (e.g. binary compatibility tests).

VCA lifecycle model often leads to expensive or unmaintainable codes.

27

rl.l lﬁa?é]ﬁ%éries
SE for CSE: Early years

= Application validation-centric approach
= Write software within the context of use
= Little stand-alone testing, efficient in short term
= Qver time: Components fragile, refactoring risky
= SE imposed on CSE: Failure

= Theory: Commercial SW success => CSE SW success
= Practice: Ignored first process phase: Gather requirements

= Heavyweight, disconnected: artifacts costly, quickly irrelevant
= Result: Bad impression lasting decades

SE for CSE: Recent years, present)

Laboratories

MATRIX

= Agile/Lean principles can work
= With discipline, accommodations
= Sprints great for feature development
= Must be balanced w/ R&D (longer time cycle)

= Distributed teams: Extend team-room
concept

= Rigorous V&V required, esp. stand-alone tests

* Long-lived products COD E 2

= Confidence to refactor §COMPLETE

. . -
= Community Education S
= Widely-read material: Common Sensibility ?j;;,-_ﬁ-'-’i'._l-' :

= Materials exist, not widely know, more needed = WORKING

880 EFFECTIVELY
e WITH
BN LEGACY CODE

TriBITS Lifecycle Model 1.0 Document) 2.

SANDIA REPORT

SAND2012-0581
Unlimited Release
Printed February 2012

TriBITS Lifecycle Model

Version 1.0

A Lean/Agile Software Lifecycle Model for Research-based Computational
Science and Engineering and Applied Mathematical Software

Roscoe A. Bartlett
Michael A. Heroux
James M. Willenbring

Prapaned by
Sandu Natiood Laboaems
Albuguergie New Meoos 87185 and Live mae, Callemia 94550

Sandia Naticoad L o 4 mudipeg y

ged and o by Sanda G “ v o
subidary o Lechwed Mantn Copaaton krheUS
Departmunt of Enagys Natoml Nuckar Securty Admindritien
under Contrad DE-ACOI-SULEMO

Approved o putic ndei, fuhe dsenmiton unimid

() sancia Natonal Laboratores

o

TriBITS: One Deliberate Approach to SEACSE 7w

Laboratories

Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, ...
Goal: “Self-sustaining” software

TriBITS Lifecycle Maturity Levels
0: Exploratory

1: Research Stable

2: Production Growth

3: Production Maintenance

e Enable Reproducible Research: Minimal software -1: Unspecified Maturity

quality aspects needed for producing credible
research, researchers will produce better research that will stand a better chance of being

published in quality journals that require reproducible research

e Allow Exploratory Research to Remain Productive:
Minimal practices for basic research in early phases

e Improve Overall Development Productivity: Focus on the right SE practices at the right times,
and the right priorities for a given phase/maturity level, developers work more productively with
acceptable overhead

e Improve Production Software Quality: Focus on foundational issues first in early-phase
development, higher-quality software will be produced as other elements of software quality are
added

e Better Communicate Maturity Levels with Customers: Clearly define maturity levels so
customers and stakeholders will have the right expectations

Ultimate Goal: Produce “self-sustaining” software products.

31

Defined: Self-Sustaining Software) o

Laboratories

= Open-source: The software has a sufficiently loose open-source license allowing the source code to
be arbitrarily modified and used and reused in a variety of contexts (including unrestricted usage in
commercial codes).

= Core domain distillation document: The software is accompanied with a short focused high-level
document describing the purpose of the software and its core domain model.

= Exceptionally well testing: The current functionality of the software and its behavior is rigorously
defined and protected with strong automated unit and verification tests.

= (Clean structure and code: The internal code structure and interfaces are clean and consistent.

= Minimal controlled internal and external dependencies: The software has well structured internal
dependencies and minimal external upstream software dependencies and those dependencies are
carefully managed.

= Properties apply recursively to upstream software: All of the dependent external upstream software
are also themselves self-sustaining software.

= All properties are preserved under maintenance: All maintenance of the software preserves all of
these properties of self-sustaining software (by applying Agile/Emergent Design and Continuous
Refactoring and other good Lean/Agile software development practices).

—— - xample: Reference LAPACK Implementation /e

Sandia

TriBITS (-) vs. Validation-Centric Approach (- -

m\nd Verificatio% Acceptance Testing

——
— - — =
o

. > T — ,
Research rProduction1 Production Research rProduction1 Production Research Production Pr_oductlon
Stabl Growth Maintenance : Stable Growth Maintenance
table row ainten Stable Growth Maintenance
A Code and Design Clarity Documentation and Tutorials _ Space/Time Performance

—/ ==

T T . ’ :
Research Production * Production Research 'Production ' Production Research 'Production ' Production
Stable Growth Maintenance Stable ~ Growth Maintenance Stable = Growth Maintenance

> > | B
Research rProduction1 Production Research rProduction1 Production Research Production Production
Stable Growth Maintenance Stable Growth Maintenance Stable Growth Maintenance

Time
B

TriBITS(-) vs. Pure Lean/Agile Approach (--) &

ﬁnitand Verificatiom‘ Acceptance Testing Portability

| | > S

1 —1 : I I > I L .
Research Production Pr_oductlon Research production Production Research Production Pr_oductlon
Stable Growth Maintenance Stable Growth Maintenance Stable Growth Maintenance

Documentation and Tutorials

] —1 : |]] 1
Research Production Production Research Production Production Research Production Production
Stable Growth Maintenance Stable Growth Maintenance Stable Growth Maintenance

ser Input Checking and Feedback Backward compatibility

| | | | 1l 1

| | > | |
Research Production Production Research Production Production Research“ProductionII Production
Stable Growth Maintenance Stable Growth Maintenance Stable Growth Maintenance

Time
3

National

Test Driven Development)

= Write tests first:
= Guarantees that tests will be written.

= Debugs the API: First attempt to use SW as intended.

= Use tests during development:
= All tests fail at first.
= Pass incrementally as SW written.
= Measure of progress.

= Use tests forever more:
= Regression.
= Backward compatibility.
= Aggressive refactoring.

= Single most important activity:
= Assures long, happy life for your product.

- ___
35

36

Addressing existing Legacy Software ™ &=.

One definition of “Legacy Software”: Software that is too far from away from
being Self-Sustaining Software, i.e:

Open-source

Core domain distillation document

Exceptionally well testing

Clean structure and code

Minimal controlled internal and external dependencies
Properties apply recursively to upstream software

Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to such
software?

Answer: Grandfather them into the TriBITS Lifecycle Model by applying the
Legacy Software Change Algorithm.

Grandfathering of Existing Packages i) e

Agile Legacy Software Change Algorithm:

1. Identify Change Points

2. Break Dependencies

3. Cover with Unit Tests

4. Add New Functionality with Test Driven Development (TDD)

5. Refactor to removed duplication, clean up, etc. EFFECTIVELY
. WITH
Grandfathered Lifecycle Phases: LEGACY COD

1. Grandfathered Research Stable (GRS) Code Machael C. Feothars
2. Grandfathered Production Growth (GPG) Code

A
3. Grandfathered Production Maintenance (GPM) Cost per new feature
Code

NOTE: After enough iterations of the

Legacy Software Change Algorithm the
software may approach Self-Sustaining | | -
software and be able to remove the | Grandfathered | -

Legacy Production

“Grandfathered” prefiX. Code Production Maintenance

Maintenance

37

End Of Llfe? rll' ﬁggﬁﬁéri%

Long-term maintenance and end of life issues for Self-Sustaining Software:
= User community can help to maintain it (e.g., LAPACK).

= |f the original development team is disbanded, users can take parts they are
using and maintain it long term.

= Can stop being built and tested if not being currently used.

= However, if needed again, software can be resurrected, and continue to be
maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing risk
and sustaining long lifetime.

39

Summary

HPC has Major Disruptions:

= Disruptive architecture changes force disruptive software refactoring.

= Capabilities drive ability to Couple physics and scales, need for modularity.

A Productivity Focus is promising:

= Walking back to first principles, iterating forward.

= Provides guidance in time of disruptive changes.
Libraries provide part of the answer to disruptions:

= Provide leverage by promoting reusable software.

= Provide portability by encapsulating HW architecture differences (GPUs vs. CPUs).
Community changes are necessary:

= Change of culture: Applications are composed within an ecosystem.

= Professional SW processes and practices are fostered and adopted.

Sandia
National _
Laboratories

