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Kokkos: A Layered Collection of Libraries 

 C++1998 standard (everyone supports except IBM’s xlC) 
 C++2011 offers concise & convenient lambda syntax 

 Vendors catching up to C++11 language compliance 

 Concern: Can applications move to C++2011 ? 
 Can just those applications moving to MPI + X also move to C++2011? 

 C++2017 working on Kokkos Core -like thread parallel capability 
 

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... 

Kokkos Sparse Linear Algebra 
Kokkos Containers 
Kokkos Core 
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Kokkos: Spaces and Execution Policies 
 Execution Space : where functions execute 
 Encapsulates hardware resources; e.g., cores, hyperthreads, vector units, ... 

 Memory Space : where data resides 
AND what execution space can access that data 
 Also differentiated by access performance; e.g., latency & bandwidth 

 Execution Policy : how (and where) a function is executed 
 Identifies an execution space 
 E.g., data parallel range : concurrently call function(i) for i = 0 .. N-1 
 E.g., task parallel : concurrently call { tasks } 

 Compose parallel pattern, execution policy, and functions 
 Patterns: parallel_for, parallel_reduce, parallel_scan, task_parallel, ... 
 User’s function is a C++ functor or C++11 lambda 

parallel_for( Policy<Space>(...), Functor(...) ); 
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Examples of Execution and Memory Spaces 

Compute Node 

Multicore 
Socket DDR 

Attached Accelerator 

GPU 
GDDR 

GPU::capacity 
(via pinned) 

primary 

primary 

GPU::perform 
(via UVM) 

Compute Node 

Multicore 
Socket DDR 

primary 
shared 

deep_copy 

Attached Accelerator 

GPU 
GDDR primary 

perform shared 
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Kokkos: Execution Spaces 
 Execution Space Instance 
 Encapsulate (preferably allocable) hardware execution resources 
 Functions may execute concurrently on those resources 
 Degree of potential concurrency (cores, hyperthreads) determined at runtime 
 Number of execution space instances determined at runtime 

 Execution Space Type (e.g., CPU, Xeon Phi, GPU) 
 Functions compiled to execute on a type of execution space 
 These types determined at configure/compile time 

 Host’s Serial Space 
 The main process and its functions execute in the host’s Serial Space 
 One type, one instance, and is serial (potential concurrency == 1) 

 Execution Space Default : one instance of one type 
 Configure/build with one type – it is the default 
 Initialize with one instance – it is the default 
 E.g., Kokkos::Threads, Kokkos::OpenMP, Kokkos::Cuda 

 
 



5 

Kokkos: Memory Spaces 
 Memory Space Types (GDDR, DDR, NVRAM, Scratchpad) 
 The type of memory is defined with respect to an execution space type 
 Primary: (default) space with allocable memory (e.g., can malloc/free) 
 Performant : best performing space (e.g., GPU’s GDDR) 
 Capacity : largest capacity space (e.g., DDR) 
 Contemporary system: Primary == Performant == Capacity 

 Scratch : non-allocable and maximum performance 
 Persistent : usage can persist between process executions (e.g., NVRAM) 

 Memory Space Instance 
 Accessibility and performance relationship with execution space 
 Directly addressable by functions in that execution space 
 Contiguous range of addresses 

 Memory Space Default 
 Default execution spaces’ primary memory space 
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Execution / Memory Space Relationship 
 ( Execution Space , Memory Space , Memory Access Traits ) 
 Accessibility : functions can/cannot access memory space 
 Readable / Writeable / Allocable 
 E.g., GPU performant memory using texture cache is read-only 

 Expectations for performance 
 Expectations for capacity 

 
 Memory Access Traits (extension point) 
 examples: read-only, volatile/atomic, random, streaming, ... 
 Automatically convert between Kokkos::Views with same space but 

different memory access traits 
 Default is simple readable/writeable – no special traits 
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Kokkos::View, Spaces, and Defaults 
 typedef View< ArrayType , Layout , Space , Traits >  view_type ; 
 Space is either memory space or execution space 
 Execution space has a default memory space 
 Memory space has a default execution space 

 Omit Traits : no special compile-time defined access traits 
 Omit Space : use default execution space 
 Omit Layout : use space’s default layout 
 default everything:  View< ArrayType > 

 
 View< double**[3][8] > : ArrayType == double**[3][8] 
 Four dimensional array of value type ‘double’  
 Dimensions are [N][M][3][8] 
 N and M are runtime defined dimensions 
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Kokkos::View Construction and Data Access 
 View<double**[3][8], Space>  a(spec,N,M); 
 “Spec” for allocating memory or wrapping user-managed memory 
 Allocating memory, spec is  
 ViewAllocate( label = “” ), std::string(“label”), or “label” 
 ViewAllocateWithoutInitializing( label = “” ) 
 Dimensions may have hidden padded for memory alignment 
 Label is only used for error and warning messages, need not be unique 
 Allocation, by default, initializes data via ‘parallel_for’ 

 Wrapping user-managed, spec is a pointer (no label) 
 Dimensions are taken as-is, are never padded for memory alignment 
 Trusting that the user’s memory spans the dimensions 

 Data access: a(i,j,k,l) 
 Array layout deduced from ’Space’ or ‘Layout’ template argument 
 Optional array bounds checking for debugging 
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Kokkos::View Internal Reference Counting 
 View semantics with internal reference counting  
 View<double**[3][8],Space> b = a ; // SHALLOW copy 
 Both ‘b’ and ‘a’ reference the same allocated memory 
 Memory deallocated when last referencing view is destroyed 

 Wrapped user-managed memory is never reference counted 
 View< ... , Traits = MemoryUnmanaged > 
 Do not reference count Views with this trait 
 Cannot allocate non-reference counted views 
 Use cases: temp subview of an allocated view, wrapping user’s memory 
 Trusting that temporary subview does not outlive the allocated view 

 ‘Const-ness’ of views and viewed data 
 View<const double **[3][8],Space> c = a ; // OK, view to const array 
 const View<double**[3][8],Space> d = c ; // ERROR, non-const view of const 
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Deep Copy and “Mirror” Semantics 
 deep_copy( destination_view , source_view ); 
 Copy array data of ‘source_view’ to array data of ‘destination_view’ 
 Kokkos policy: never hide an expensive deep copy operation 
 Only deep copy when explicitly instructed by the user 

 Avoid expensive permutation of data due to different layouts 
 Mirror the dimensions and layout in Host’s memory space 

typedef class View<...,Space> MyViewType ; 
MyViewType a(“a”,...);  
MyViewType::HostMirror a_h = create_mirror( a ); 
deep_copy( a , a_h ); deep_copy( a_h , a );  

 Avoid unnecessary deep-copy 
MyViewType::HostMirror a_h = create_mirror_view( a ); 

 If Space (might be an execution space) uses Host memory space 
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op 
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Subview : View of a sub-array 
SrcViewType src_view( ... ); 
DstViewType dst_view = subview<DstViewType>(src_view, ...args ) 
 ...args : list of indices or ranges of indices 

 Challenging capability due to polymorphic array Layout 
 View’s are strongly typed: View<ArrayType,Layout,Traits> 
 Compatibility constraints among DstViewType, SrcViewType, ...args  
 ‘const-ness’ and other memory access traits 
 number of dimensions (rank of array) 
 runtime and compile-time dimensions 
 destination layout can accommodate when stride != dimension 

 Performance of deep_copy between subviews 

 Using C++11 ‘auto’ type would help address this challenge 
 auto dst_view = subview( src_view , ...args ); 
 Let implementation choose a compatible view type 
 Caution: user will not have a priori knowledge of this type 
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Execution Policy : how functions are executed 
pattern( Policy , Function ); 

 Execution policies (an extension point) 
 RangePolicy<Space,ArgTag,IntegerType>( begin , end ) 
 TeamPolicy<Space,ArgTag>( #teams , #thread/team ) 
 TaskPolicy<...> : experimental for Kokkos/Qthreads LDRD 
 TeamVectorPolicy<...> : experimental for hybrid thread-vector parallel 

 Policies have defaults for all template arguments 
 Function interface depends upon policy and pattern 
 void operator()( ArgTag , Policy::member_type , ...args ) const ; 
 void operator()( Policy::member_type , ...args ) const ; // ArgTag == void 
 RangePolicy::member_type == IntegerType iteration space 
 TeamPolicy::member_type has league-of-teams iteration space 
 ...args depends upon pattern  
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Execution Policy : how functions are executed 
pattern( Policy , Function ); 

 Example with defaults and C++11 lambda (near-future capability) 
parallel_for( N , KOKKOS_LAMBDA( int i ) { /* function body */ } ); 

 Integral N “policy” → RangePolicy<DefaultExecutionSpace,void,int>(0,N) 
 Call function in parallel with i = 0 .. N-1 

 Example: parallel_for( TeamPolicy< Space > , Functor ); 
 void operator()( TeamPolicy<Space>::member_type member ) const ; 
 league-of-teams-of-threads 
 member.league_size() == number of teams 
 member.league_rank() == which team is this within the league 
 member.team_size() == number of threads within a team 
 member.team_rank() == which thread is this within this team 

 Threads within a team are guaranteed concurrent, may not be synchronous 
 Intra-team collective operations: member.team_barrier(), 

member.team_reduce(...), member.team_scan(...) 
 Intra-team shared scratch memory 
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Parallel Patterns Function Interface 
 parallel_for( Policy , F ) 
 void F::operator()( Policy::member_type ) const ; // no ...args 

 parallel_reduce( Policy , F ) 
 void F::operator()( Policy::member_type , value_type & update ) const ; 
 function contributes to reduction through ‘update’ argument 

 parallel_scan( Policy , F ) 
void F::operator()( Policy::member_type, value_type & update, bool final ) const ; 
 Parallel scan is a multi-pass operation 
 Each pass must contribute the exactly the same to ‘update’ 
 if ( final ) then ‘update’ is the parallel prefix sum value 

 Inter-thread reduction functions (have defaults)  
 functor::init( value_type & update ) const ; // new( & update ) value_type(); 
 functor::join( volatile value_type & update ,  
                             volatile const value_type & in ) const ; // update += in ;  
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Why ArgTag in Policy< Space , ArgTag > 
 Allow one functor to have multiple parallel work functions 
 parallel_for( RangePolicy<Space,TagA>(0,N) , my_functor ); 
 calls: my_functor::operator()( const TagA & , int i ); 

 parallel_for( RangePolicy<Space,TagB>(0,N) , my_functor ); 
 calls: my_functor::operator()( const TagB & , int i ); 

 “ArgTag” because named member function cannot be used 

 
 Motivations 
 Algorithm (class) with multiple parallel passes using the same data  
 Work functions can share member data and member functions 
 Common need in LAMMPS 
 allow LAMMPS to remove clunky “wrapper functor” pattern 
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TeamVectorPolicy ← highly experimental ! 
 Three level hierarchy of parallelism: league, team, vector 
 Thread of vector lanes (experimental) 
 Instructions applied lock-step in each lane 
 Vector collective operations: reduce, single 

 Team of threads (current capability) 
 Each thread independently executes instructions in a shared function 
 Team collective operations: barrier, reduce, scan 
 Threads within a team share low-level resources 
 hyperthreads, L1 cache, transient scratch memory, ... 

 League of teams of threads (current capability) 
 NO synchronization across teams 

 Mapping onto GPU 
 Vector lane = GPU thread 
 Thread = GPU warp 
 Team = GPU block 
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TeamVectorPolicy ← highly experimental ! 
 Example using C++11 lambdas 
 
typedef TeamVectorPolicy<Space>::member_type member_type ; 
void operator()( const member_type & member ) const 
{ 
  // team collaboratively performs a parallel_for 
  member.team_par_for( N , [&]( const int j ) { // j = 0..N-1 
    double sum ; 
    // each “thread” performs a reduction in a vector loop 
    member.vector_par_reduce( M , [&]( const int k , double & val ){ 
      val += /* contribute from each lane */ ; 
    }, sum ); 
    // One vector lane of the thread performs an operation 
    member.vector_single([&]() { atomic_fetch_add(&global(),sum); }  
  }); 
} 
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Kokkos/Qthread LDRD: Task Parallelism 
 TaskPolicy< Space > and Future< type , Space > 
 Task policy object for a group of potentially concurrent tasks 

TaskPolicy<> manager( ... ); // default Space 
Future<type> fa = manager.spawn( functor_a ); // single-thread task 
Future<type> fb = manager.spawn( functor_b ); // may be concurrent 

 Tasks may be data parallel via data parallel pattern and policy 
Future<>         fc = manager.foreach(RangePolicy(0,N)).spawn( functor_c );  
Future<type> fd = manager.reduce(TeamPolicy(N,M)).spawn( functor_d ); 
wait( tm ); // Host can wait for all tasks to complete 

 Destruction of task manager object waits for concurrent tasks to complete 

 Task Manager : TaskPolicy< Space = Qthread > 
 Defines a scope for a collection of potentially concurrent tasks 
 Have configuration options for task management and scheduling 
 Manage resources for scheduling queue 
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Kokkos/Qthread LDRD: Task Parallelism 
 Tasks may have execution dependences 
 Start a task only after other tasks have completed 

Future<> array_of_dep[ M ] = { /* futures for other tasks */ }; 
 Single threaded task: 

Future<> fx = manager.spawn( functor_x , array_of_dep , M ); 
 Tasks and their dependences define a directed acyclic graph (dag) 

 Challenge: A GPU task cannot ‘wait’ on dependences 
 An executing GPU task cannot be suspended – waiting blocks a processor 
 Other future light-weight core architecture may not be able to block as well 
 A task may spawn nested tasks and need to wait for their completion 
 Solution: ‘respawn’ the task with new dependences 

manager.respawn( this , array_of_dep , M ); 
return ; // ‘this’ returns to be called after new dependences complete 
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Conclusion : Kokkos Strategy 
 Evolves from “pure research” to “production growth” 
 Core abstractions and API stabilizes, as per today’s presentation 
 Move core of Kokkos from Trilinos to github.com 

 Tutorial Examples and Mini-Applications using Kokkos 
 How to use Kokkos via examples 
 How to design and implement thread-scalable algorithms via mini-apps 

 SON Website: software.sandia.gov/drupal/kokkos 
 Tpetra and LAMMPS are migrating 
 Long Term Strategy: C++17 or C++21 instead of Kokkos 
 ISO C++ Committee working to incorporate thread parallelism into standard 
 I am a voting member on this committee (several week-long mtgs/year) 
 Steer Kokkos and influence C++ standard → convergence 
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