
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos update:
Memory Spaces, Execution Spaces,

Execution Policies, Defaults,
and C++11

Carter Edwards and Christian Trott
Trilinos User Group
October 30, 2014
SAND2014-19215 PE

Application and Domain Specific Library Layer(s)

1

Kokkos: A Layered Collection of Libraries

 C++1998 standard (everyone supports except IBM’s xlC)
 C++2011 offers concise & convenient lambda syntax

 Vendors catching up to C++11 language compliance

 Concern: Can applications move to C++2011 ?
 Can just those applications moving to MPI + X also move to C++2011?

 C++2017 working on Kokkos Core -like thread parallel capability

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

2

Kokkos: Spaces and Execution Policies
 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, hyperthreads, vector units, ...

 Memory Space : where data resides
AND what execution space can access that data
 Also differentiated by access performance; e.g., latency & bandwidth

 Execution Policy : how (and where) a function is executed
 Identifies an execution space
 E.g., data parallel range : concurrently call function(i) for i = 0 .. N-1
 E.g., task parallel : concurrently call { tasks }

 Compose parallel pattern, execution policy, and functions
 Patterns: parallel_for, parallel_reduce, parallel_scan, task_parallel, ...
 User’s function is a C++ functor or C++11 lambda

parallel_for(Policy<Space>(...), Functor(...));

3

Examples of Execution and Memory Spaces

Compute Node

Multicore
Socket DDR

Attached Accelerator

GPU
GDDR

GPU::capacity
(via pinned)

primary

primary

GPU::perform
(via UVM)

Compute Node

Multicore
Socket DDR

primary
shared

deep_copy

Attached Accelerator

GPU
GDDR primary

perform shared

4

Kokkos: Execution Spaces
 Execution Space Instance
 Encapsulate (preferably allocable) hardware execution resources
 Functions may execute concurrently on those resources
 Degree of potential concurrency (cores, hyperthreads) determined at runtime
 Number of execution space instances determined at runtime

 Execution Space Type (e.g., CPU, Xeon Phi, GPU)
 Functions compiled to execute on a type of execution space
 These types determined at configure/compile time

 Host’s Serial Space
 The main process and its functions execute in the host’s Serial Space
 One type, one instance, and is serial (potential concurrency == 1)

 Execution Space Default : one instance of one type
 Configure/build with one type – it is the default
 Initialize with one instance – it is the default
 E.g., Kokkos::Threads, Kokkos::OpenMP, Kokkos::Cuda

5

Kokkos: Memory Spaces
 Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)
 The type of memory is defined with respect to an execution space type
 Primary: (default) space with allocable memory (e.g., can malloc/free)
 Performant : best performing space (e.g., GPU’s GDDR)
 Capacity : largest capacity space (e.g., DDR)
 Contemporary system: Primary == Performant == Capacity

 Scratch : non-allocable and maximum performance
 Persistent : usage can persist between process executions (e.g., NVRAM)

 Memory Space Instance
 Accessibility and performance relationship with execution space
 Directly addressable by functions in that execution space
 Contiguous range of addresses

 Memory Space Default
 Default execution spaces’ primary memory space

6

Execution / Memory Space Relationship
 (Execution Space , Memory Space , Memory Access Traits)
 Accessibility : functions can/cannot access memory space
 Readable / Writeable / Allocable
 E.g., GPU performant memory using texture cache is read-only

 Expectations for performance
 Expectations for capacity

 Memory Access Traits (extension point)
 examples: read-only, volatile/atomic, random, streaming, ...
 Automatically convert between Kokkos::Views with same space but

different memory access traits
 Default is simple readable/writeable – no special traits

7

Kokkos::View, Spaces, and Defaults
 typedef View< ArrayType , Layout , Space , Traits > view_type ;
 Space is either memory space or execution space
 Execution space has a default memory space
 Memory space has a default execution space

 Omit Traits : no special compile-time defined access traits
 Omit Space : use default execution space
 Omit Layout : use space’s default layout
 default everything: View< ArrayType >

 View< double**[3][8] > : ArrayType == double**[3][8]
 Four dimensional array of value type ‘double’
 Dimensions are [N][M][3][8]
 N and M are runtime defined dimensions

8

Kokkos::View Construction and Data Access
 View<double**[3][8], Space> a(spec,N,M);
 “Spec” for allocating memory or wrapping user-managed memory
 Allocating memory, spec is
 ViewAllocate(label = “”), std::string(“label”), or “label”
 ViewAllocateWithoutInitializing(label = “”)
 Dimensions may have hidden padded for memory alignment
 Label is only used for error and warning messages, need not be unique
 Allocation, by default, initializes data via ‘parallel_for’

 Wrapping user-managed, spec is a pointer (no label)
 Dimensions are taken as-is, are never padded for memory alignment
 Trusting that the user’s memory spans the dimensions

 Data access: a(i,j,k,l)
 Array layout deduced from ’Space’ or ‘Layout’ template argument
 Optional array bounds checking for debugging

9

Kokkos::View Internal Reference Counting
 View semantics with internal reference counting
 View<double**[3][8],Space> b = a ; // SHALLOW copy
 Both ‘b’ and ‘a’ reference the same allocated memory
 Memory deallocated when last referencing view is destroyed

 Wrapped user-managed memory is never reference counted
 View< ... , Traits = MemoryUnmanaged >
 Do not reference count Views with this trait
 Cannot allocate non-reference counted views
 Use cases: temp subview of an allocated view, wrapping user’s memory
 Trusting that temporary subview does not outlive the allocated view

 ‘Const-ness’ of views and viewed data
 View<const double **[3][8],Space> c = a ; // OK, view to const array
 const View<double**[3][8],Space> d = c ; // ERROR, non-const view of const

10

Deep Copy and “Mirror” Semantics
 deep_copy(destination_view , source_view);
 Copy array data of ‘source_view’ to array data of ‘destination_view’
 Kokkos policy: never hide an expensive deep copy operation
 Only deep copy when explicitly instructed by the user

 Avoid expensive permutation of data due to different layouts
 Mirror the dimensions and layout in Host’s memory space

typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a , a_h); deep_copy(a_h , a);

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);

 If Space (might be an execution space) uses Host memory space
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

11

Subview : View of a sub-array
SrcViewType src_view(...);
DstViewType dst_view = subview<DstViewType>(src_view, ...args)
 ...args : list of indices or ranges of indices

 Challenging capability due to polymorphic array Layout
 View’s are strongly typed: View<ArrayType,Layout,Traits>
 Compatibility constraints among DstViewType, SrcViewType, ...args
 ‘const-ness’ and other memory access traits
 number of dimensions (rank of array)
 runtime and compile-time dimensions
 destination layout can accommodate when stride != dimension

 Performance of deep_copy between subviews

 Using C++11 ‘auto’ type would help address this challenge
 auto dst_view = subview(src_view , ...args);
 Let implementation choose a compatible view type
 Caution: user will not have a priori knowledge of this type

12

Execution Policy : how functions are executed
pattern(Policy , Function);

 Execution policies (an extension point)
 RangePolicy<Space,ArgTag,IntegerType>(begin , end)
 TeamPolicy<Space,ArgTag>(#teams , #thread/team)
 TaskPolicy<...> : experimental for Kokkos/Qthreads LDRD
 TeamVectorPolicy<...> : experimental for hybrid thread-vector parallel

 Policies have defaults for all template arguments
 Function interface depends upon policy and pattern
 void operator()(ArgTag , Policy::member_type , ...args) const ;
 void operator()(Policy::member_type , ...args) const ; // ArgTag == void
 RangePolicy::member_type == IntegerType iteration space
 TeamPolicy::member_type has league-of-teams iteration space
 ...args depends upon pattern

13

Execution Policy : how functions are executed
pattern(Policy , Function);

 Example with defaults and C++11 lambda (near-future capability)
parallel_for(N , KOKKOS_LAMBDA(int i) { /* function body */ });

 Integral N “policy” → RangePolicy<DefaultExecutionSpace,void,int>(0,N)
 Call function in parallel with i = 0 .. N-1

 Example: parallel_for(TeamPolicy< Space > , Functor);
 void operator()(TeamPolicy<Space>::member_type member) const ;
 league-of-teams-of-threads
 member.league_size() == number of teams
 member.league_rank() == which team is this within the league
 member.team_size() == number of threads within a team
 member.team_rank() == which thread is this within this team

 Threads within a team are guaranteed concurrent, may not be synchronous
 Intra-team collective operations: member.team_barrier(),

member.team_reduce(...), member.team_scan(...)
 Intra-team shared scratch memory

14

Parallel Patterns Function Interface
 parallel_for(Policy , F)
 void F::operator()(Policy::member_type) const ; // no ...args

 parallel_reduce(Policy , F)
 void F::operator()(Policy::member_type , value_type & update) const ;
 function contributes to reduction through ‘update’ argument

 parallel_scan(Policy , F)
void F::operator()(Policy::member_type, value_type & update, bool final) const ;
 Parallel scan is a multi-pass operation
 Each pass must contribute the exactly the same to ‘update’
 if (final) then ‘update’ is the parallel prefix sum value

 Inter-thread reduction functions (have defaults)
 functor::init(value_type & update) const ; // new(& update) value_type();
 functor::join(volatile value_type & update ,
 volatile const value_type & in) const ; // update += in ;

15

Why ArgTag in Policy< Space , ArgTag >
 Allow one functor to have multiple parallel work functions
 parallel_for(RangePolicy<Space,TagA>(0,N) , my_functor);
 calls: my_functor::operator()(const TagA & , int i);

 parallel_for(RangePolicy<Space,TagB>(0,N) , my_functor);
 calls: my_functor::operator()(const TagB & , int i);

 “ArgTag” because named member function cannot be used

 Motivations
 Algorithm (class) with multiple parallel passes using the same data
 Work functions can share member data and member functions
 Common need in LAMMPS
 allow LAMMPS to remove clunky “wrapper functor” pattern

16

TeamVectorPolicy ← highly experimental !
 Three level hierarchy of parallelism: league, team, vector
 Thread of vector lanes (experimental)
 Instructions applied lock-step in each lane
 Vector collective operations: reduce, single

 Team of threads (current capability)
 Each thread independently executes instructions in a shared function
 Team collective operations: barrier, reduce, scan
 Threads within a team share low-level resources
 hyperthreads, L1 cache, transient scratch memory, ...

 League of teams of threads (current capability)
 NO synchronization across teams

 Mapping onto GPU
 Vector lane = GPU thread
 Thread = GPU warp
 Team = GPU block

17

TeamVectorPolicy ← highly experimental !
 Example using C++11 lambdas

typedef TeamVectorPolicy<Space>::member_type member_type ;
void operator()(const member_type & member) const
{
 // team collaboratively performs a parallel_for
 member.team_par_for(N , [&](const int j) { // j = 0..N-1
 double sum ;
 // each “thread” performs a reduction in a vector loop
 member.vector_par_reduce(M , [&](const int k , double & val){
 val += /* contribute from each lane */ ;
 }, sum);
 // One vector lane of the thread performs an operation
 member.vector_single([&]() { atomic_fetch_add(&global(),sum); }
 });
}

18

Kokkos/Qthread LDRD: Task Parallelism
 TaskPolicy< Space > and Future< type , Space >
 Task policy object for a group of potentially concurrent tasks

TaskPolicy<> manager(...); // default Space
Future<type> fa = manager.spawn(functor_a); // single-thread task
Future<type> fb = manager.spawn(functor_b); // may be concurrent

 Tasks may be data parallel via data parallel pattern and policy
Future<> fc = manager.foreach(RangePolicy(0,N)).spawn(functor_c);
Future<type> fd = manager.reduce(TeamPolicy(N,M)).spawn(functor_d);
wait(tm); // Host can wait for all tasks to complete

 Destruction of task manager object waits for concurrent tasks to complete

 Task Manager : TaskPolicy< Space = Qthread >
 Defines a scope for a collection of potentially concurrent tasks
 Have configuration options for task management and scheduling
 Manage resources for scheduling queue

19

Kokkos/Qthread LDRD: Task Parallelism
 Tasks may have execution dependences
 Start a task only after other tasks have completed

Future<> array_of_dep[M] = { /* futures for other tasks */ };
 Single threaded task:

Future<> fx = manager.spawn(functor_x , array_of_dep , M);
 Tasks and their dependences define a directed acyclic graph (dag)

 Challenge: A GPU task cannot ‘wait’ on dependences
 An executing GPU task cannot be suspended – waiting blocks a processor
 Other future light-weight core architecture may not be able to block as well
 A task may spawn nested tasks and need to wait for their completion
 Solution: ‘respawn’ the task with new dependences

manager.respawn(this , array_of_dep , M);
return ; // ‘this’ returns to be called after new dependences complete

20

Conclusion : Kokkos Strategy
 Evolves from “pure research” to “production growth”
 Core abstractions and API stabilizes, as per today’s presentation
 Move core of Kokkos from Trilinos to github.com

 Tutorial Examples and Mini-Applications using Kokkos
 How to use Kokkos via examples
 How to design and implement thread-scalable algorithms via mini-apps

 SON Website: software.sandia.gov/drupal/kokkos
 Tpetra and LAMMPS are migrating
 Long Term Strategy: C++17 or C++21 instead of Kokkos
 ISO C++ Committee working to incorporate thread parallelism into standard
 I am a voting member on this committee (several week-long mtgs/year)
 Steer Kokkos and influence C++ standard → convergence

	Kokkos update: �Memory Spaces, Execution Spaces, Execution Policies, Defaults,�and C++11
	Kokkos: A Layered Collection of Libraries
	Kokkos: Spaces and Execution Policies
	Examples of Execution and Memory Spaces
	Kokkos: Execution Spaces
	Kokkos: Memory Spaces
	Execution / Memory Space Relationship
	Kokkos::View, Spaces, and Defaults
	Kokkos::View Construction and Data Access
	Kokkos::View Internal Reference Counting
	Deep Copy and “Mirror” Semantics
	Subview : View of a sub-array
	Execution Policy : how functions are executed
	Execution Policy : how functions are executed
	Parallel Patterns Function Interface
	Why ArgTag in Policy< Space , ArgTag >
	TeamVectorPolicy ← highly experimental !
	TeamVectorPolicy ← highly experimental !
	Kokkos/Qthread LDRD: Task Parallelism
	Kokkos/Qthread LDRD: Task Parallelism
	Conclusion : Kokkos Strategy

