
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos update:
Memory Spaces, Execution Spaces,

Execution Policies, Defaults,
and C++11

Carter Edwards and Christian Trott
Trilinos User Group
October 30, 2014
SAND2014-19215 PE

Application and Domain Specific Library Layer(s)

1

Kokkos: A Layered Collection of Libraries

 C++1998 standard (everyone supports except IBM’s xlC)
 C++2011 offers concise & convenient lambda syntax

 Vendors catching up to C++11 language compliance

 Concern: Can applications move to C++2011 ?
 Can just those applications moving to MPI + X also move to C++2011?

 C++2017 working on Kokkos Core -like thread parallel capability

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

2

Kokkos: Spaces and Execution Policies
 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, hyperthreads, vector units, ...

 Memory Space : where data resides
AND what execution space can access that data
 Also differentiated by access performance; e.g., latency & bandwidth

 Execution Policy : how (and where) a function is executed
 Identifies an execution space
 E.g., data parallel range : concurrently call function(i) for i = 0 .. N-1
 E.g., task parallel : concurrently call { tasks }

 Compose parallel pattern, execution policy, and functions
 Patterns: parallel_for, parallel_reduce, parallel_scan, task_parallel, ...
 User’s function is a C++ functor or C++11 lambda

parallel_for(Policy<Space>(...), Functor(...));

3

Examples of Execution and Memory Spaces

Compute Node

Multicore
Socket DDR

Attached Accelerator

GPU
GDDR

GPU::capacity
(via pinned)

primary

primary

GPU::perform
(via UVM)

Compute Node

Multicore
Socket DDR

primary
shared

deep_copy

Attached Accelerator

GPU
GDDR primary

perform shared

4

Kokkos: Execution Spaces
 Execution Space Instance
 Encapsulate (preferably allocable) hardware execution resources
 Functions may execute concurrently on those resources
 Degree of potential concurrency (cores, hyperthreads) determined at runtime
 Number of execution space instances determined at runtime

 Execution Space Type (e.g., CPU, Xeon Phi, GPU)
 Functions compiled to execute on a type of execution space
 These types determined at configure/compile time

 Host’s Serial Space
 The main process and its functions execute in the host’s Serial Space
 One type, one instance, and is serial (potential concurrency == 1)

 Execution Space Default : one instance of one type
 Configure/build with one type – it is the default
 Initialize with one instance – it is the default
 E.g., Kokkos::Threads, Kokkos::OpenMP, Kokkos::Cuda

5

Kokkos: Memory Spaces
 Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)
 The type of memory is defined with respect to an execution space type
 Primary: (default) space with allocable memory (e.g., can malloc/free)
 Performant : best performing space (e.g., GPU’s GDDR)
 Capacity : largest capacity space (e.g., DDR)
 Contemporary system: Primary == Performant == Capacity

 Scratch : non-allocable and maximum performance
 Persistent : usage can persist between process executions (e.g., NVRAM)

 Memory Space Instance
 Accessibility and performance relationship with execution space
 Directly addressable by functions in that execution space
 Contiguous range of addresses

 Memory Space Default
 Default execution spaces’ primary memory space

6

Execution / Memory Space Relationship
 (Execution Space , Memory Space , Memory Access Traits)
 Accessibility : functions can/cannot access memory space
 Readable / Writeable / Allocable
 E.g., GPU performant memory using texture cache is read-only

 Expectations for performance
 Expectations for capacity

 Memory Access Traits (extension point)
 examples: read-only, volatile/atomic, random, streaming, ...
 Automatically convert between Kokkos::Views with same space but

different memory access traits
 Default is simple readable/writeable – no special traits

7

Kokkos::View, Spaces, and Defaults
 typedef View< ArrayType , Layout , Space , Traits > view_type ;
 Space is either memory space or execution space
 Execution space has a default memory space
 Memory space has a default execution space

 Omit Traits : no special compile-time defined access traits
 Omit Space : use default execution space
 Omit Layout : use space’s default layout
 default everything: View< ArrayType >

 View< double**[3][8] > : ArrayType == double**[3][8]
 Four dimensional array of value type ‘double’
 Dimensions are [N][M][3][8]
 N and M are runtime defined dimensions

8

Kokkos::View Construction and Data Access
 View<double**[3][8], Space> a(spec,N,M);
 “Spec” for allocating memory or wrapping user-managed memory
 Allocating memory, spec is
 ViewAllocate(label = “”), std::string(“label”), or “label”
 ViewAllocateWithoutInitializing(label = “”)
 Dimensions may have hidden padded for memory alignment
 Label is only used for error and warning messages, need not be unique
 Allocation, by default, initializes data via ‘parallel_for’

 Wrapping user-managed, spec is a pointer (no label)
 Dimensions are taken as-is, are never padded for memory alignment
 Trusting that the user’s memory spans the dimensions

 Data access: a(i,j,k,l)
 Array layout deduced from ’Space’ or ‘Layout’ template argument
 Optional array bounds checking for debugging

9

Kokkos::View Internal Reference Counting
 View semantics with internal reference counting
 View<double**[3][8],Space> b = a ; // SHALLOW copy
 Both ‘b’ and ‘a’ reference the same allocated memory
 Memory deallocated when last referencing view is destroyed

 Wrapped user-managed memory is never reference counted
 View< ... , Traits = MemoryUnmanaged >
 Do not reference count Views with this trait
 Cannot allocate non-reference counted views
 Use cases: temp subview of an allocated view, wrapping user’s memory
 Trusting that temporary subview does not outlive the allocated view

 ‘Const-ness’ of views and viewed data
 View<const double **[3][8],Space> c = a ; // OK, view to const array
 const View<double**[3][8],Space> d = c ; // ERROR, non-const view of const

10

Deep Copy and “Mirror” Semantics
 deep_copy(destination_view , source_view);
 Copy array data of ‘source_view’ to array data of ‘destination_view’
 Kokkos policy: never hide an expensive deep copy operation
 Only deep copy when explicitly instructed by the user

 Avoid expensive permutation of data due to different layouts
 Mirror the dimensions and layout in Host’s memory space

typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a , a_h); deep_copy(a_h , a);

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);

 If Space (might be an execution space) uses Host memory space
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

11

Subview : View of a sub-array
SrcViewType src_view(...);
DstViewType dst_view = subview<DstViewType>(src_view, ...args)
 ...args : list of indices or ranges of indices

 Challenging capability due to polymorphic array Layout
 View’s are strongly typed: View<ArrayType,Layout,Traits>
 Compatibility constraints among DstViewType, SrcViewType, ...args
 ‘const-ness’ and other memory access traits
 number of dimensions (rank of array)
 runtime and compile-time dimensions
 destination layout can accommodate when stride != dimension

 Performance of deep_copy between subviews

 Using C++11 ‘auto’ type would help address this challenge
 auto dst_view = subview(src_view , ...args);
 Let implementation choose a compatible view type
 Caution: user will not have a priori knowledge of this type

12

Execution Policy : how functions are executed
pattern(Policy , Function);

 Execution policies (an extension point)
 RangePolicy<Space,ArgTag,IntegerType>(begin , end)
 TeamPolicy<Space,ArgTag>(#teams , #thread/team)
 TaskPolicy<...> : experimental for Kokkos/Qthreads LDRD
 TeamVectorPolicy<...> : experimental for hybrid thread-vector parallel

 Policies have defaults for all template arguments
 Function interface depends upon policy and pattern
 void operator()(ArgTag , Policy::member_type , ...args) const ;
 void operator()(Policy::member_type , ...args) const ; // ArgTag == void
 RangePolicy::member_type == IntegerType iteration space
 TeamPolicy::member_type has league-of-teams iteration space
 ...args depends upon pattern

13

Execution Policy : how functions are executed
pattern(Policy , Function);

 Example with defaults and C++11 lambda (near-future capability)
parallel_for(N , KOKKOS_LAMBDA(int i) { /* function body */ });

 Integral N “policy” → RangePolicy<DefaultExecutionSpace,void,int>(0,N)
 Call function in parallel with i = 0 .. N-1

 Example: parallel_for(TeamPolicy< Space > , Functor);
 void operator()(TeamPolicy<Space>::member_type member) const ;
 league-of-teams-of-threads
 member.league_size() == number of teams
 member.league_rank() == which team is this within the league
 member.team_size() == number of threads within a team
 member.team_rank() == which thread is this within this team

 Threads within a team are guaranteed concurrent, may not be synchronous
 Intra-team collective operations: member.team_barrier(),

member.team_reduce(...), member.team_scan(...)
 Intra-team shared scratch memory

14

Parallel Patterns Function Interface
 parallel_for(Policy , F)
 void F::operator()(Policy::member_type) const ; // no ...args

 parallel_reduce(Policy , F)
 void F::operator()(Policy::member_type , value_type & update) const ;
 function contributes to reduction through ‘update’ argument

 parallel_scan(Policy , F)
void F::operator()(Policy::member_type, value_type & update, bool final) const ;
 Parallel scan is a multi-pass operation
 Each pass must contribute the exactly the same to ‘update’
 if (final) then ‘update’ is the parallel prefix sum value

 Inter-thread reduction functions (have defaults)
 functor::init(value_type & update) const ; // new(& update) value_type();
 functor::join(volatile value_type & update ,
 volatile const value_type & in) const ; // update += in ;

15

Why ArgTag in Policy< Space , ArgTag >
 Allow one functor to have multiple parallel work functions
 parallel_for(RangePolicy<Space,TagA>(0,N) , my_functor);
 calls: my_functor::operator()(const TagA & , int i);

 parallel_for(RangePolicy<Space,TagB>(0,N) , my_functor);
 calls: my_functor::operator()(const TagB & , int i);

 “ArgTag” because named member function cannot be used

 Motivations
 Algorithm (class) with multiple parallel passes using the same data
 Work functions can share member data and member functions
 Common need in LAMMPS
 allow LAMMPS to remove clunky “wrapper functor” pattern

16

TeamVectorPolicy ← highly experimental !
 Three level hierarchy of parallelism: league, team, vector
 Thread of vector lanes (experimental)
 Instructions applied lock-step in each lane
 Vector collective operations: reduce, single

 Team of threads (current capability)
 Each thread independently executes instructions in a shared function
 Team collective operations: barrier, reduce, scan
 Threads within a team share low-level resources
 hyperthreads, L1 cache, transient scratch memory, ...

 League of teams of threads (current capability)
 NO synchronization across teams

 Mapping onto GPU
 Vector lane = GPU thread
 Thread = GPU warp
 Team = GPU block

17

TeamVectorPolicy ← highly experimental !
 Example using C++11 lambdas

typedef TeamVectorPolicy<Space>::member_type member_type ;
void operator()(const member_type & member) const
{
 // team collaboratively performs a parallel_for
 member.team_par_for(N , [&](const int j) { // j = 0..N-1
 double sum ;
 // each “thread” performs a reduction in a vector loop
 member.vector_par_reduce(M , [&](const int k , double & val){
 val += /* contribute from each lane */ ;
 }, sum);
 // One vector lane of the thread performs an operation
 member.vector_single([&]() { atomic_fetch_add(&global(),sum); }
 });
}

18

Kokkos/Qthread LDRD: Task Parallelism
 TaskPolicy< Space > and Future< type , Space >
 Task policy object for a group of potentially concurrent tasks

TaskPolicy<> manager(...); // default Space
Future<type> fa = manager.spawn(functor_a); // single-thread task
Future<type> fb = manager.spawn(functor_b); // may be concurrent

 Tasks may be data parallel via data parallel pattern and policy
Future<> fc = manager.foreach(RangePolicy(0,N)).spawn(functor_c);
Future<type> fd = manager.reduce(TeamPolicy(N,M)).spawn(functor_d);
wait(tm); // Host can wait for all tasks to complete

 Destruction of task manager object waits for concurrent tasks to complete

 Task Manager : TaskPolicy< Space = Qthread >
 Defines a scope for a collection of potentially concurrent tasks
 Have configuration options for task management and scheduling
 Manage resources for scheduling queue

19

Kokkos/Qthread LDRD: Task Parallelism
 Tasks may have execution dependences
 Start a task only after other tasks have completed

Future<> array_of_dep[M] = { /* futures for other tasks */ };
 Single threaded task:

Future<> fx = manager.spawn(functor_x , array_of_dep , M);
 Tasks and their dependences define a directed acyclic graph (dag)

 Challenge: A GPU task cannot ‘wait’ on dependences
 An executing GPU task cannot be suspended – waiting blocks a processor
 Other future light-weight core architecture may not be able to block as well
 A task may spawn nested tasks and need to wait for their completion
 Solution: ‘respawn’ the task with new dependences

manager.respawn(this , array_of_dep , M);
return ; // ‘this’ returns to be called after new dependences complete

20

Conclusion : Kokkos Strategy
 Evolves from “pure research” to “production growth”
 Core abstractions and API stabilizes, as per today’s presentation
 Move core of Kokkos from Trilinos to github.com

 Tutorial Examples and Mini-Applications using Kokkos
 How to use Kokkos via examples
 How to design and implement thread-scalable algorithms via mini-apps

 SON Website: software.sandia.gov/drupal/kokkos
 Tpetra and LAMMPS are migrating
 Long Term Strategy: C++17 or C++21 instead of Kokkos
 ISO C++ Committee working to incorporate thread parallelism into standard
 I am a voting member on this committee (several week-long mtgs/year)
 Steer Kokkos and influence C++ standard → convergence

	Kokkos update: �Memory Spaces, Execution Spaces, Execution Policies, Defaults,�and C++11
	Kokkos: A Layered Collection of Libraries
	Kokkos: Spaces and Execution Policies
	Examples of Execution and Memory Spaces
	Kokkos: Execution Spaces
	Kokkos: Memory Spaces
	Execution / Memory Space Relationship
	Kokkos::View, Spaces, and Defaults
	Kokkos::View Construction and Data Access
	Kokkos::View Internal Reference Counting
	Deep Copy and “Mirror” Semantics
	Subview : View of a sub-array
	Execution Policy : how functions are executed
	Execution Policy : how functions are executed
	Parallel Patterns Function Interface
	Why ArgTag in Policy< Space , ArgTag >
	TeamVectorPolicy ← highly experimental !
	TeamVectorPolicy ← highly experimental !
	Kokkos/Qthread LDRD: Task Parallelism
	Kokkos/Qthread LDRD: Task Parallelism
	Conclusion : Kokkos Strategy

