Sandia
National
Laboratories

Exceptional
service

in the

national

interest

Kokkos update:

Memory Spaces, Execution Spaces,

Execution Policies, Defaults,
and C++11

Carter Edwards and Christian Trott
Trilinos User Group

October 30, 2014

SAND2014-19215 PE

A,
Fusy U.5. DEPARTMENT OF i '_" ‘\Qa‘
= IF] ."
{0 ENE ov IIOA
SandiaN nal Laboratories is a multi-progral Ib ory managed and operated by Sandia Cor pora wholly owned subsidiary of Lockheed Marti
Corpor f the US D epartment of Energy’s National Nuclear Security Administration under col DE ACO04- 94AL85000 SAND NO. 2011- XXXXP

=) Sandia
| National

Kokkos: A Layered Collection of Libraries Ll

Application and Domain Specific Library Layer(s)

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

= C++1998 standard (everyone supports except IBM’s xIC)

C++2011 offers concise & convenient lambda syntax
= Vendors catching up to C++11 language compliance

= Concern: Can applications move to C++2011 ?
= Can just those applications moving to MPI + X also move to C++2011?

= C++2017 working on Kokkos Core -like thread parallel capability

Kokkos: Spaces and Execution Policies)

Laboratories

= Execution Space : where functions execute
= Encapsulates hardware resources; e.g., cores, hyperthreads, vector units, ...

= Memory Space : where data resides
» AND what execution space can access that data
= Also differentiated by access performance; e.g., latency & bandwidth

= Execution Policy : how (and where) a function is executed
= |dentifies an execution space
= E.g., data parallel range : concurrently call function(i) fori=0.. N-1
= E.g., task parallel : concurrently call { tasks }

= Compose parallel pattern, execution policy, and functions
= Patterns: parallel_for, parallel_reduce, parallel_scan, task_parallel, ...
= User’s function is a C++ functor or C++11 lambda
parallel_for(Policy<Space>(...), Functor(--..));

Examples of Execution and Memory Spaces) e,

Compute Node

Multicore | primary

Socket .

Laboratories

Attached Accelerator
GPU _
DDR Erlmarz l
shared GDDR
deep_copy

Compute Node /

Multicore | primary

Socket g

DDR

GPU::capacit

<

A

(via pinned)

Attached Acch

GPU

shared

Erlmarx » GDDR

perform

—

GPU::perform
(via UVM)

Kokkos: Execution Spaces) i,

Laboratories

= Execution Space Instance
= Encapsulate (preferably allocable) hardware execution resources
= Functions may execute concurrently on those resources
= Degree of potential concurrency (cores, hyperthreads) determined at runtime
= Number of execution space instances determined at runtime
= Execution Space Type (e.g., CPU, Xeon Phi, GPU)
= Functions compiled to execute on a type of execution space
= These types determined at configure/compile time
= Host’s Serial Space
= The main process and its functions execute in the host’s Serial Space
= One type, one instance, and is serial (potential concurrency == 1)
= Execution Space Default : one instance of one type
= Configure/build with one type — it is the default
= |nitialize with one instance — it is the default
= E.g., Kokkos::Threads, Kokkos::OpenMP, Kokkos::Cuda

Kokkos: Memory Spaces i) deos
= Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)

= The type of memory is defined with respect to an execution space type

= Primary: (default) space with allocable memory (e.g., can malloc/free)
= Performant : best performing space (e.g., GPU’s GDDR)

= Capacity : largest capacity space (e.g., DDR)
= Contemporary system: Primary == Performant == Capacity
= Scratch : non-allocable and maximum performance

= Persistent : usage can persist between process executions (e.g., NVRAM)

= Memory Space Instance
= Accessibility and performance relationship with execution space
= Directly addressable by functions in that execution space
= Contiguous range of addresses
= Memory Space Default
= Default execution spaces’ primary memory space

Execution / Memory Space Relationship i) i

Laboratories

= (Execution Space , Memory Space , Memory Access Traits)

= Accessibility : functions can/cannot access memory space
Readable / Writeable / Allocable

= E.g., GPU performant memory using texture cache is read-only
= Expectations for performance

= Expectations for capacity

= Memory Access Traits (extension point)
= examples: read-only, volatile/atomic, random, streaming, ...

= Automatically convert between Kokkos::Views with same space but
different memory access traits

» Default is simple readable/writeable — no special traits

Kokkos::View, Spaces, and Defaults

h

Sandia
National
Laboratories

= typedef View< ArrayType, Layout , Space, Traits > view_type;

= Space is either memory space or execution space

= Execution space has a default memory space
= Memory space has a default execution space

Omit Space : use default execution space

Omit Layout : use space’s default layout

default everything: View< ArrayType >

= View< double**[3][8] > : ArrayType == double**[3][8]

= Four dimensional array of value type ‘double’
= Dimensions are [N][M][3][8]
= N and M are runtime defined dimensions

Omit Traits : no special compile-time defined access traits

Kokkos::View Construction and Data Access) o _
= View<double**[3][8], Space> a(spec,N,M);

= “Spec” for allocating memory or wrapping user-managed memory
= Allocating memory, spec is

= ViewAllocate(label = “”), std::string(“label”), or “label”

* ViewAllocateWithoutlnitializing(label = “”)

= Dimensions may have hidden padded for memory alignment

= Label is only used for error and warning messages, need not be unique
= Allocation, by default, initializes data via ‘parallel_for’

= Wrapping user-managed, spec is a pointer (no label)
= Dimensions are taken as-is, are never padded for memory alighment
= Trusting that the user’s memory spans the dimensions
= Data access: a(i,j,k,l)
= Array layout deduced from ’Space’ or ‘Layout’ template argument
= Optional array bounds checking for debugging

Kokkos::View Internal Reference Counting rih)

Laboratories

= View semantics with internal reference counting
= View<double**[3][8],Space>b =a; // SHALLOW copy
= Both ‘b’ and ‘a’ reference the same allocated memory
= Memory deallocated when last referencing view is destroyed

= Wrapped user-managed memory is never reference counted

= View< ..., Traits = MemoryUnmanaged >
Do not reference count Views with this trait

Cannot allocate non-reference counted views

Use cases: temp subview of an allocated view, wrapping user’s memory

Trusting that temporary subview does not outlive the allocated view

[|
[

Const-ness’ of views and viewed data
= View<const double **[3][8],Space>c =a; // OK, view to const array
= const View<double**[3][8],Space>d = c; // ERROR, non-const view of const

Deep Copy and “Mirror” Semantics i) i,

Laboratories

= deep_copy(destination_view, source_view);
= Copy array data of ‘source_view’ to array data of ‘destination_view’
= Kokkos policy: never hide an expensive deep copy operation
= Only deep copy when explicitly instructed by the user

= Avoid expensive permutation of data due to different layouts

= Mirror the dimensions and layout in Host’s memory space
typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a,a_h); deep _copy(a_h,a);

= Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);
= |f Space (might be an execution space) uses Host memory space
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

Subview : View of a sub-array) e,

Laboratories

SrcViewType src_view(...);

DstViewType dst_view = subview<DstViewType>(src_view, ...args)
= ...args: list of indices or ranges of indices

= Challenging capability due to polymorphic array Layout
= View’s are strongly typed: View<ArrayType,Layout,Traits>

= Compatibility constraints among DstViewType, SrcViewType, ...args
= ‘const-ness’ and other memory access traits
= number of dimensions (rank of array)
= runtime and compile-time dimensions
= destination layout can accommodate when stride != dimension

= Performance of deep_copy between subviews
= Using C++11 ‘auto’ type would help address this challenge
= auto dst_view = subview(src_view, ...args);
= Let implementation choose a compatible view type
= Caution: user will not have a priori knowledge of this type

Sandia

Execution Policy : how functions are executed (i)

Laboratories

pattern(Policy , Function);

= Execution policies (an extension point)
RangePolicy<Space,ArgTag,IntegerType>(begin, end)

TeamPolicy<Space,ArgTag>(#teams , #thread/team)
TaskPolicy<...> : experimental for Kokkos/Qthreads LDRD
TeamVectorPolicy<...> : experimental for hybrid thread-vector parallel

= Policies have defaults for all template arguments

® Function interface depends upon policy and pattern
= void operator()(ArgTag, Policy::member_type, ...args) const;

void operator()(Policy::member_type, ...args) const ; // ArgTag == void

RangePolicy::member_type == IntegerType iteration space

TeamPolicy::member_type has league-of-teams iteration space
= ...args depends upon pattern

Execution Policy : how functions are executed (i)

Laboratories

pattern(Policy , Function);

= Example with defaults and C++11 lambda (near-future capability)
parallel_for(N, KOKKOS LAMBDA(inti) {/* function body */ });
= |Integral N “policy” - RangePolicy<DefaultExecutionSpace,void,int>(0,N)
= Call function in parallel withi=0.. N-1

= Example: parallel_for(TeamPolicy< Space >, Functor);

= void operator()(TeamPolicy<Space>::member_type member) const ;

= |eague-of-teams-of-threads
= member.league_size() == number of teams
= member.league_rank() == which team is this within the league
= member.team_size() == number of threads within a team
= member.team_rank() == which thread is this within this team

= Threads within a team are guaranteed concurrent, may not be synchronous

" |ntra-team collective operations: member.team_barrier(),
member.team_reduce(...), member.team_scan(...)

= Intra-team shared scratch memory

Parallel Patterns Function Interface)

Laboratories

= parallel_for(Policy, F)
= void F::operator()(Policy::member_type) const; // no ...args

= parallel_reduce(Policy, F)
= void F::operator()(Policy::member_type, value_type & update) const ;
= function contributes to reduction through ‘update’ argument

= parallel_scan(Policy, F)

void F::operator()(Policy::member_type, value_type & update, bool final) const ;
= Parallel scan is a multi-pass operation
= Each pass must contribute the exactly the same to ‘update’
= if (final) then ‘update’ is the parallel prefix sum value

= Inter-thread reduction functions (have defaults)

= functor::init(value_type & update) const; // new(& update) value_type();

= functor::join(volatile value_type & update,
volatile const value_type & in) const ; // update +=in;

Why ArgTag in Policy< Space, ArgTag > k=N

= Allow one functor to have multiple parallel work functions
= parallel_for(RangePolicy<Space, TagA>(0,N) , my_functor);
= calls: my_functor::operator()(const TagA &, inti);
= parallel_for(RangePolicy<Space,TagB>(0,N), my_functor);
= calls: my_functor::operator()(const TagB &, inti);
= “ArgTag” because named member function cannot be used

= Motivations
= Algorithm (class) with multiple parallel passes using the same data

= Work functions can share member data and member functions
= Common need in LAMMPS
= allow LAMMPS to remove clunky “wrapper functor” pattern

TeamVectorPolicy € highly experimental !

= Three level hierarchy of parallelism: league, team, vector

= Thread of vector lanes (experimental)
= Instructions applied lock-step in each lane

= Vector collective operations: reduce, single

= Team of threads (current capability)
= Each thread independently executes instructions in a shared function

= Team collective operations: barrier, reduce, scan
= Threads within a team share low-level resources
= hyperthreads, L1 cache, transient scratch memory, ...

= League of teams of threads (current capability)
= NO synchronization across teams

= Mapping onto GPU
= Vector lane = GPU thread
= Thread = GPU warp
= Team = GPU block

Sandia
National
Laboratories

TeamVectorPolicy € highly experimental ! =

= Example using C++11 lambdas

typedef TeamVectorPolicy<Space>::member_ type member_ type ;
void operator()(const member_ type & member) const
{
// team collaboratively performs a parallel for
member.team par_for(N , [&](C const int jJ) { // jJ = 0..N-1
double sum ;
// each “thread” performs a reduction 1In a vector loop

member .vector _par_reduce(M , [&](C const int k , double & val){
val += /* contribute from each lane */ ;

¥, sum);

// One vector lane of the thread performs an operation

member.vector_single([&] (O { atomic fetch_add(&global(),sum); }

1DF

Kokkos/Qthread LDRD: Task Parallelism i) i

Laboratories

= TaskPolicy< Space > and Future< type, Space >

= Task policy object for a group of potentially concurrent tasks
TaskPolicy<> manager(...); // default Space
Future<type> fa = manager.spawn(functor_a); // single-thread task
Future<type> fb = manager.spawn(functor_b); // may be concurrent

= Tasks may be data parallel via data parallel pattern and policy
Future<> fc = manager.foreach(RangePolicy(0,N)).spawn(functor_c);
Future<type> fd = manager.reduce(TeamPolicy(N,M)).spawn(functor_d);
wait(tm); // Host can wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Manager : TaskPolicy< Space = Qthread >
= Defines a scope for a collection of potentially concurrent tasks

= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

Kokkos/Qthread LDRD: Task Parallelism i) i

Laboratories

= Tasks may have execution dependences
= Start a task only after other tasks have completed
Future<> array_of_dep[M] = { /* futures for other tasks */ };
= Single threaded task:
Future<> fx = manager.spawn(functor_x, array_of dep, M);
= Tasks and their dependences define a directed acyclic graph (dag)

= Challenge: A GPU task cannot ‘wait’ on dependences
= An executing GPU task cannot be suspended — waiting blocks a processor
= Other future light-weight core architecture may not be able to block as well
= A task may spawn nested tasks and need to wait for their completion
= Solution: ‘respawn’ the task with new dependences
manager.respawn(this , array_of dep, M);
return ; // ‘this’ returns to be called after new dependences complete

Conclusion : Kokkos Strategy h

= Evolves from “pure research” to “production growth”

= Core abstractions and API stabilizes, as per today’s presentation
= Move core of Kokkos from Trilinos to github.com

= Tutorial Examples and Mini-Applications using Kokkos
= How to use Kokkos via examples
= How to design and implement thread-scalable algorithms via mini-apps

= SON Website: software.sandia.gov/drupal/kokkos
= Tpetra and LAMMPS are migrating
= Long Term Strategy: C++17 or C++21 instead of Kokkos

Sandia
National
Laboratories

= |SO C++ Committee working to incorporate thread parallelism into standard

= | am a voting member on this committee (several week-long mtgs/year)

= Steer Kokkos and influence C++ standard - convergence

	Kokkos update: �Memory Spaces, Execution Spaces, Execution Policies, Defaults,�and C++11
	Kokkos: A Layered Collection of Libraries
	Kokkos: Spaces and Execution Policies
	Examples of Execution and Memory Spaces
	Kokkos: Execution Spaces
	Kokkos: Memory Spaces
	Execution / Memory Space Relationship
	Kokkos::View, Spaces, and Defaults
	Kokkos::View Construction and Data Access
	Kokkos::View Internal Reference Counting
	Deep Copy and “Mirror” Semantics
	Subview : View of a sub-array
	Execution Policy : how functions are executed
	Execution Policy : how functions are executed
	Parallel Patterns Function Interface
	Why ArgTag in Policy< Space , ArgTag >
	TeamVectorPolicy ← highly experimental !
	TeamVectorPolicy ← highly experimental !
	Kokkos/Qthread LDRD: Task Parallelism
	Kokkos/Qthread LDRD: Task Parallelism
	Conclusion : Kokkos Strategy

