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Goals: Portable, Performant, and Usable 
 Portable to Advanced Manycore Architectures 

 Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD Fusion) 
 Maximize amount of user (application/library) code that can be compiled 

without modification and run on these architectures 
 Minimize amount of architecture-specific knowledge that a user is 

required to have 
 Allow architecture-specific tuning to easily co-exist 
 Only require C++1998 standard compliant 

 Performant 
 Portable user code performs as well as architecture-specific code 
 Thread scalable – not just thread safety (no locking!) 

 Usable 
 Small, straight-forward application programmer interface (API) 
 Constraint: don’t compromise portability and performance 
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Collection of Subpackages / Libraries 
 Core – lowest level portability layer 

 Parallel dispatch and multidimensional arrays for manycore devices 
 Soon to enter Trilinos “Primary Stable” status 

 Containers – more sophisticated than core arrays 
 UnorderedMap – fast find and thread scalable insert 

 Very recent R&D success, thread scalable insert is a unique capability 
 Vector – subset of std::vector functionality to ease porting 
 Trilinos “Experimental” status 

 LinAlg – primary interface for Tpetra 
 Sparse matrices and linear algebra operations 
 Wrappers to vendors’ libraries  
 Trilinos “Experimental” status 

 Examples – for this tutorial and beyond 
 Mini-applications / mini-drivers 
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Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 
 Example: Unordered map global-to-local ids 
 Example: Finite element integration and nodal summation 
 Example: Particle interactions in non-uniform neighborhoods 
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Core: Fundamental Concepts 
Diversity of devices and associated performance requirements 
 Performance heavily depends upon device specific 

requirements for memory access patterns 
 Blocking, striding, alignment, tiling, ... 
 NUMA core-memory affinity requires first touch and consistent access 
 CPU vector units require stride-one access and cache-line alignment 
 GPU vector units require coalesced access and cache-line alignment 

 “Array of Structures” vs. “Structure of Arrays” dilemma  
 This has been the wrong question 

 What abstraction required for performance portability? 
 This is the right question 
 Answer: multidimensional arrays with polymorphic layout 
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Core: Fundamental Concepts 
Two abstractions: (1) Host/Devices 

 Host process dispatches work to manycore device(s) 
 Host process is the ‘main’ function 
 Host processes dispatches thread-parallel work to device 

work is computation and data 
 “Device” may be physical (e.g., GPU) or logical: 

partition 16core CPU into 1core “host process” and 15core “device” 

 Host process interacts with MPI, Kokkos does not 
 “MPI+X” : Kokkos is a potential “X”  
 Kokkos is orthogonal to MPI – devoid MPI datatypes and calls to MPI 

 Multiple memory spaces 
 Disparate: host main memory vs. GPU on-card memory 
 Integrated: main memory, L3/L2/L1 cache, registers 
 Anticipate increasing complexity of memory architectures 
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Core: Fundamental Concepts 
Two abstractions: (2) Multidimensional Arrays 

 Multidimensional Arrays, with a twist 
 Map multi-index (i,j,k,...) ↔ memory location on the device 

 Efficient : index computation and memory use 
 Map is derived from an array Layout 
 Choose Layout for device-specific (optimal) memory access pattern 
 Make layout changes transparent to the user code; 
 IF the user code honors the simple API: a(i,j,k,...) 

Separate user’s index space from memory layout 
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Core: Fundamental Concepts 
Implementation and similar work 

 Implemented C++ template meta-programming 
 Compile-time polymorphism for device back-ends and array layouts  
 C++1998 standard; would be nice to require C++2011 for lambdas, ... 

 Similarly motivated libraries: 
 Intel’s TBB: more sophisticated parallel dispatch capabilities, 

CPU only, no data structure abstractions 
 NVIDIA’s Thrust: similar simple parallel dispatch capabilities, only vector 

data structures, no array layout 
 MS C++AMP: close, but uses a proprietary language extension 

 Language extensions: OpenMP, OpenACC, OpenCL, CUDA, Cilk, 
 Lacking data structure abstractions to manage access patterns 
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Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 
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Core : Views to Arrays 
View to multidimensional array of “value” type in device memory 

 View< double * * [3][8] , Device > a ; 
 template class View:  A view to an Array on a Device 
 Runtime and compile-time dimensions: example [N][M][3][8] 

 “value” type of an array : ~ plain-old-data (pod) type 
 E.g., ‘double’ (in this example), ‘float’, ‘int’, ‘long int’, ... 
 A pure ‘memcpy’ will have the correct result 
 Does not contain pointers to allocated memory 

 ArraySpec template argument = ‘double**[3][8]’ in this example 
 Each ‘*’ denotes a runtime specified dimension 
 Each ‘[#]’ denotes a compile-time specified dimension 
 0-8 runtime dimensions denoted by ‘*’ 
 0-8 compile-time dimensions denoted by [#] 
 Up to 8 runtime + compile-time dimensions (maximum rank) 
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Core : Views to Arrays 
View to multidimensional array of “value” type in device memory 

 View< ArraySpec , Device > a ; 
 Query dimensions: a.dimension_#()  OR  a.dimension(#) where # ∈ [0..7] 

 Why runtime + compile-time dimensions?  PERFORMANCE! 
 Array layout computation is faster with compile-time dimensions 
 If a dimension is known at compile time then specify it 

 
 Advanced feature: support for aggregate “value” types 

 Intrinsic “value” type required for optimal array layout 
 but we need ‘complex’ and other aggregate “value” types  
 ... more on this later ... 
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Core : Views to Arrays 
Accessing array data members:  a(i0,i1,i2,i3,...) 
 Access array data via ‘View::operator()’ 

template< typename intType0 , typename intType1 , ... > 
ValueType & View::operator()( const intType0 & , const intType1 & , ... ); 
 Multi-index is mapped according to the array layout 
 Layout chosen to give the best memory access pattern for the device 

Assuming first index is the parallel work index  ... more on this later ... 

 DO NOT assume a particular array layout (mapping)  
 Might be FORTRAN, might be C, might be something else entirely 
 Chosen at compile-time (C++ template meta-programming) 
 Advanced feature: query the array’s layout 
 Advanced feature: override the layout 
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Core : Views to Arrays 
Accessing array data members:  a(i0,i1,i2,i3,...) 

 Multi-index mapping performance 
 Heavily used and critical to performance 
 Considerable development effort invested in performance 

Especially so compilers’ vectorization can “see through” this operator 
 Completely hidden, non-trivial C++ meta-programming implementation 
 Compile-time dimensions improve multi-index mapping performance 

 Correctness checking: accessible and within bounds 
 Host not able to access Device memory (and vice-versa) 
 Multi-index bounds checking – in debug mode, and on the GPU 
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Core : Views to Arrays 
Allocation and reference-counting semantics 

 View objects are light-weight references to allocated arrays 
 Allocate: View< double * * [3][8] , Device > a(“A”,N,M);  

 Dimension [N][M][3][8] ; two runtime, two compile-time 
 “A” is a user supplied label used for error messages; need not be unique 
 Allocated array data resides in the Device’s memory space 
 Object ‘a’ is a reference to allocated array data 

 Assign: View<double**[3][8],Device> b = a ; 
 Object ‘b’ is a reference to the same allocated data; a shallow copy 
 By default views to arrays are reference counted 

 Destroy: view object goes out-of-scope or is reassigned  
 Last view (via reference counting) deallocates array data 
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Core : Views to Arrays 
Resizing and reallocation 

 Given: View< ArraySpec , Device > a(“label”,m0,m1,...); 

 Resize:  resize( a , n0 , n1 , ... ); 
 Allocate a new array with “label” and size n0*n1*...  
 Copy corresponding array data from original array to new array 
 Reassign the input View to the new array 
 All other views to the original array are unchanged 

 Reallocate:  realloc( a , n0 , n1 , ... ); 
 De-assign the input View; if last reference then array is deallocated 
 Assign input view to an allocated array with “label” and size n0*n1*... 
 All other views to the original array are unchanged 
 If no other view to original array this deallocates before allocating, 

avoids “spike” in allocated memory 
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Core : Views to Arrays 
‘const’ Views versus ‘const’ Arrays 

 Constant View: const View< ArraySpec , Device > a(...);  
 Object ‘a’ cannot be reassigned 
 Array data can be assigned via parentheses operator 
 Analogous to const pointer to non-const memory 

 Constant Array: View< const ArraySpec , Device> b = a ; 
 Object ‘b’ is a reference to the same allocated data; a shallow copy 
 Array data cannot be assigned – parentheses operator returns ‘const’ 
 Analogous to non-const pointer to const memory 

  Assignment (shallow copy) compatibility 
 OK : View< const ArraySpec, Device > = View< ArraySpec , Device > 
 ERROR : View< ArraySpec , Device > = View< const ArraySpec , Device > 

this will not compile with “no assignment operator” message 
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Core : Views to Arrays 
Pass view objects by value – they are small and portable 

 Pass view objects by value 
typedef View< ArraySpec , Device > my_array_type ; 
void my_function( my_array_type A );   // no & or * 
struct my_struct { my_array_type A ; }; // no & or * 

 Small – designed as references to allocated array data 
 Pointer to data + array shape (dimensions) 
 Assignment is a fast shallow copy + reference counting (by default) 

 Portable – intended to be passed by value to the device 
 View object API is portable between Host and Device code 

 Do not pass by reference (or pointer) from Host to Device 
 The reference / pointer is in the Host memory space 
 Using such a Host pointer on the Device is a memory error 
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Core : Views to Arrays 
Deep copy: Kokkos NEVER has a hidden, expensive deep-copy 

 Deep copy array data only when explicitly instructed by user 
 deep_copy( to_array , from_array ); 

 Problem: deep copy between different array layouts  
 Same memory space – requires permutation 
 Different memory spaces – also requires allocation of a temporary  

very expensive: allocation + deep copy + permutation + deallocation 

 Solution: Mirror the layout in the Host memory space 
 Avoid allocation, permutation, and deallocation 

View<ArraySpec,Device> a(...); 
View<ArraySpec,Device>::HostMirror b = create_mirror( a ); 

 ‘ ‘b’ has the Device’s array layout but is allocated in the Host space 
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Core : Views to Arrays 
Deep copy: Kokkos NEVER has a hidden, expensive deep-copy 

 Device ↔ Host deep copy pattern: 
typedef class View<ArraySpec,Device> MyViewType ; 

MyViewType a(“A”, ... );  

MyViewType::HostMirror  a_host = create_mirror( a ); 

deep_copy( a , a_host );   deep_copy( a_host , a );  

 Issue: if ‘a’ is already in the Host space then allocation of ‘a_host’ and 
subsequent deep_copy operations are problably unecessary  

 Avoiding an unnecessary allocation and deep-copy 
MyViewType::HostMirror  a_host = create_mirror_view( a ); 
 If Device uses Host memory then ‘a_host’ is simply another view of ‘a’ 
 Call to deep_copy becomes a no-op 
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Core : Views to Arrays 
Recommendation: Dictionary for your View types 
template< class Device > 
struct MyDictionary { 
  typedef View< ArraySpec_A , Device > array_A_type ; 
  typedef View< ArraySpec_B , Device > array_B_type ; 
  typedef View< ArraySpec_C , Device > array_C_type ; 
  typedef typename array_A_type::HostMirror array_A_host_type ; 
}; 

 Consolidate array type definitions  
 Documentation 
 Consistency 
 Allows single point of change for array spec and array layout  
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Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 
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Core : Views to Array – Advanced Features 
Optionally specifying a particular array layout 

 View< ArraySpec , Layout , Device >   (optional parameter)  
 Override default layout; e.g., force row-major or column-major 
 Access via parentheses operator is unchanged in user code 

 Standard array layouts for arrays with rank > 1 
 LayoutRight : right-most index is stride-one (~ C ordering) 
 LayoutLeft : left-most index is stride-one (~ FORTRAN ordering) 
 Array dimensions may be padded for cache-line alignment 

 Analogous to ‘LDA’ matrix parameter in the BLAS 

 Layout is an extension point for tiling, blocking, etc. 
 A research-enabling capability 
 Prototype exists for tiled matrices (e.g., MAGMA / PLASMA) 
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Core : Views to Array – Advanced Features 
Specifying behavioral attributes 

 Disable reference counting 
 View< ArraySpec , Device , Unmanaged > 
 Cannot allocate through an unmanaged view 
 Can assign an unmanaged view from a managed view 
 Can assign an unmanaged view from user-provided pointer 
 Dangerous advanced feature unlikely to significantly impact performance 

 Use GPU texture cache to speed up random access 
 View< const ArraySpec , Device, RandomRead > 
 If Device == ‘Cuda’ then parentheses operator uses GPU texture cache 
 Otherwise no special handling 

 An extension point 
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Core : Views to Array – Advanced Features 
Assignment of compatible views with behavioral attributes 

 Compatible assignment is a shallow copy 
View< ArraySpec , Device , Attribute > = View< ArraySpec , Device > 
 Compatible: same ‘ArraySpec’, ‘Device’, and ‘Layout’ 
 Also OK: ‘const ArraySpec’ = ArraySpec 
 Also OK: Different devices using the same memory space 

 Recommendation 
 Initially declare ‘view’ without behavior attributes 
 Add behavioral attributes via shallow copy to compatible view 
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Core : Views to Array – Advanced Features 
Aggregate value types 

 Examples of aggregate value types (pod ‘struct’) 
 std::complex 
 Automatic differentiation types 
 Stochastic bases coefficients types 

 Memory access pattern for aggregate members 
 Is forced to be an ‘array of structures’ 
 Loses coalesced memory access on GPU – degrades performance 

 Active research within UQ-on-GPU LDRD 
 View integrates aggregate value types into the array layout 
 Compile-time conversion ‘array of structures’ to ‘structure of arrays’ 
 Recover required memory access pattern on GPU 
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Core : Views to Array – Advanced Features 
Aggregate value types 

 Capabilities and Constraints 
 “scalar” type must be mappable to an array of an intrinsic type 

E.g., std::complex<T>  ↔  T[2] 
 For a given View the mapping may have a consistent runtime dimension  

E.g., View< myType<T> > : myType<T>  ↔  T[#] 

 Extension point requires detailed implementation knowledge  
 Optimal performance of View::operator() 
 Optimal memory access pattern  

Requires merging the aggregate type’s array mapping into the 
containing View’s array layout 

 Path forward to performantly support complex<T>  
 ... to be done ... 
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Core : Views to Array – Advanced Features 
Querying properties 
View::device_type  // Device in View< ArraySpec , Device > 
View::data_type      // ArraySpec in View< ArraySpec , ... > 
View::value_type    // ValueType in View< ValueType***[#][#][#], ... > 
View::scalar_type   // For intrinsic ValueType is ValueType 
                                    // For aggregate ValueType is the mapped intrinsic type 
View::const_{}_type          // const added to previous {}_type 
View::non_const_{}_type // const removed from previous {}_type 
 
View::array_layout    // Layout type; e.g., LayoutLeft, LayoutRight 
View::rank                   // total number of dimensions (one added for aggregate) 
View::rank_dynamic // number of dynamic dimensions 
View::is_managed     // enumerated value if view is reference counted 
 
View::scalar_type * View::ptr_on_device(); // Raw pointer to array data 
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Core : Views to Array – Advanced Features 
View ↔ pointer to raw memory 

 Wrapping your memory in a View 
 You must specify everything 

View< ArraySpec, Layout, Device, Unmanaged > a( pointer, N0, N1, ... ); 
 Unmanaged: Kokkos cannot manage your memory 
 Device: Your memory must be on this device 
 { ArraySpec , Layout , N0 , N1 , ... }: your memory must have this shape 

 Interoperability with legacy codes’ arrays 
 Option 1: Wrap your memory in a View 
 Option 2: 

 Declare Views with your specified array layout 
 Use ‘View::ptr_on_device()’ to query pointer and pass to legacy code 
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Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 
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Core : Parallel Dispatch of Functors 
Dispatch to manycore “Device” 

 ‘Threads’ Device : pthreads 
 Pool of threads created once and pinned to cores 
 Hardware detection and core pinning via hardware locality library (hwloc) 
 CPU and Intel Phi 

  ‘OpenMP’ Device : wrapper on OpenMP 
 Attempt to pin to cores via hwloc 
 CPU and Intel Phi 
 Cannot use both ‘Threads’ and ‘OpenMP’ – they will compete for cores 

 ‘Cuda’ Device : wrapper on NVidia’s CUDA 5.0 (or better) 
 Currently require Fermi (GPU capability 2.0 or better) 
 Eventually require Kepler (GPU capability 3.5 or better) 

 
 Intel Phi used in native mode (no offload) 
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Core : Parallel Dispatch of Functors 
Functor: function + calling arguments packaged in a C++ class 

 Common to C++ standard algorithms, Intel TBB, NVidia Thrust 
 Functor interface requirements for Kokkos 

template< class Device > // template on the device  
struct MyFunctor { 
  typedef Device device_type ; // Required: identify the device  
  KOKKOS_INLINE_FUNCTION  // Required: macro mapped to device  
    void operator()( ... ) const { /* ... */ } // Required: function to call in parallel 
  /* ... calling arguments are members of the class ... */ 
}; 

 Why Functor pattern? 
 Requires only C++1998 standard compliance 
 C++2011 Lambda syntax would be much prettier ... 
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Core : Parallel Dispatch of Functors 
Functor: function + calling arguments packaged in a C++ class 

 Functor object is copied to the device 
 This includes class member ‘calling arguments’ 
 View members must be objects 

Not references or pointers to Views (or anything else) 
 View objects are designed to be copied by value from Host to Device 

 Device’s threads concurrently call Functor::operator() 
 Functor::operator() and all functions that it calls  

 Must be compiled for that device 
 Must be marked with KOKKOS_INLINE_FUNCTION 

– Compiling Cuda: “__device__ __host__ inline” 
 A single Functor object is shared among all threads 

 functor::operator() must be ‘const’ 
 All called member functions must be ‘const’ 
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Core : Parallel Dispatch of Functors 
parallel_for dispatch with ‘nwork’ units of work 

 Simple example: AXPY ( y = a * x + y ) 
template< class Device > 
struct AXPY { 
  typedef Device device_type ; // run on this device 
  KOKKOS_INLINE_FUNCTION   
    void operator()( int iw ) const { Y(iw) += A * X(iw); }  
  const double A ; 
  const View<const double*,device_type> X ; // View object (not a reference) 
  const View<           double*,device_type> Y ; 
}; 
parallel_for( nwork , AXPY<device>( a , x , y ) ); 
 Thread parallel call to ‘operator()(iw)’ : iw ∈ [0,nwork) 
 Access array data with ‘iw’ to avoid thread race conditions 
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Core : Parallel Dispatch of Functors 
Asynchronous dispatch 

 Parallel dispatch initiates asynchronous parallel execution 
 ‘parallel_for’ returns before the functor completes 
 Device (e.g., Cuda) can have a work queue 

functor may be placed in queue and not even started 
 Dispatch creates a temporary internal copy of the functor 

released when the functor completes 

 Dispatched functors are sequenced 
 Previous functor guaranteed to complete before next functor starts 
 deep_copy(...) waits for previous functor to complete 

 Device::fence(); // wait for all functors to complete 
 Required when timing the execution of a functor 
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Core : Parallel Dispatch of Functors 
parallel_reduce dispatch with ‘nwork’ units of work 

 Simple example: DOT 
template< class Device > 
struct DOT { 
  typedef  DeviceType   device_type ; 
  typedef double value_type ;  // Require: reduction value type 
  KOKKOS_INLINE_FUNCTION 
    void operator()( int iw , value_type & contrib ) const 
      { contrib += y(iw) * x(iw); } // this thread’s contribution 
  const View<const double*,device_type> x , y ; 
  // ... to be continued ... 
}; 
parallel_reduce( nwork , DOT<device>(x,y) , result ); } 
 value_type can be a scalar, ‘struct’, or dynamic array 
 Result is output to the Host 
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Core : Parallel Dispatch of Functors 
parallel_reduce dispatch with ‘nwork’ units of work 

 Initialize and join threads’ individual contributions 
struct DOT {  // ... continued ... 
  KOKKOS_INLINE_FUNCTION 
    void init( value_type & contrib ) const { contrib = 0 ; } 
  KOKKOS_INLINE_FUNCTION 
    void join( volatile           value_type & contrib ,  
                      volatile const value_type & input ) const 
      { contrib = contrib + input ; } 
}; 
 Join threads’ contrib via Functor::join 
 ‘volatile’ to prevent compiler from optimizing away the join 

 Deterministic result ← highly desirable 
 Given the same device and # threads 
 Aligned memory prevents variations from vectorization 
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Core : Parallel Dispatch of Functors 
parallel_reduce dispatch with on-device serial finalization 

 Example: NORM2, just add a final ‘sqrt’ to the DOT 
struct NORM2 {  // ... similar to ‘DOT’ plus serial finalization 
  KOKKOS_INLINE_FUNCTION 
    void final( value_type & contrib ) const  
      { *result = sqrt( contrib ) ; }             // final serial ‘sqrt’ on device 
   View<double,device_type> result ; // scalar value allocated on device 
}; 
 If result is needed only on the device, avoid device-host-device copy 
 If final serial computation is needed 
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Core : Parallel Dispatch of Functors 
parallel_scan dispatch with ‘nwork’ units of work 

template< class Device > 
struct ExclusivePrefixSum { 
  typedef  DeviceType   device_type ; 
  typedef long int value_type ;  // Require: reduction value type 
  KOKKOS_INLINE_FUNCTION 
    void operator()( int iw , value_type & contrib , bool final ) const 
      { 
        contrib += x(iw); 
        if ( final ) { y(iw) = contrib ; } // Is scan value IF final pass 
      } 
  const View<long int *,device_type> x , y ; 
  // ... to be continued ... 
}; 
parallel_scan( nwork , ExclusivePrefixSum<device>(x,y) ); } 
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Core : Parallel Dispatch of Functors 
parallel_scan dispatch with ‘nwork’ units of work 

 Initialize and join threads’ individual contributions 
 Same ‘init’ and ‘join’ as the ‘parallel_reduce’ 

struct ExclusivePrefixSum {  // ... continued ... 
  KOKKOS_INLINE_FUNCTION 
    void init( value_type & contrib ) const { contrib = 0 ; } 
  KOKKOS_INLINE_FUNCTION 
    void join( volatile           value_type & contrib ,  
                      volatile const value_type & input ) const 
      { contrib = contrib + input ; } 
}; 

 Deterministic result ← highly desirable 
 Given the same device and # threads 
 Aligned memory prevents variations from vectorization 
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Core : Parallel Dispatch of Functors 
Thread teams – very new capability and being refined 
 Device has teams of threads 

 OpenMP 4.0 vocabulary: team of threads, league of teams 
 # Threads = # threads/team * # teams 
 A team works cooperatively and shares resources; e.g., cache memory  

template< class Device > 
struct MyFunctor { 
  KOKKOS_INLINE_FUNCTION void operator()( Device dev , ... ) const ; 
  size_t  shmem_size() const ; // Optional request for team-shared memory 
}; 
parallel_{for,reduce,scan}( ParallelWorkRequest , MyFunctor<device>( ... ) );  

 More complex and more control over performance 
 WorkRequest requests league and team sizes 

 Actual sizes may be constrained by device’s capabilities 
 E.g., maximum team size limited by NUMA, #cores, #hyperthreads 
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Core : Parallel Dispatch of Functors 
Why thread teams?  Opportunity for Performance Improvements 

 Threads within a team are tightly coupled 
 E.g., NVidia thread block = team 
 E.g., Intel hyperthreads reside within the same team 
 Teams have synchronization primitives (e.g., barrier) 
 Teams have fast transient team-shared memory 

 Uncooperative teams impede performance 
 Threads within a team will thrash their shared cache 

Cause eviction of each other’s cached memory 
 Intel Phi performs better without hyperthreads IF they do not cooperate 
 Intel Phi performs best with cooperating hyperthreads 
 NVidia has dramatic performance loss with uncooperative teams 
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Core : Parallel Dispatch of Functors 
Thread teams API: parallel_for, parallel_reduce, parallel_scan 

template< class Device > 
struct MyFunctor { 
  KOKKOS_INLINE_FUNCTION void operator()( Device dev , ... ) const 
  { 
      dev.league_rank();         // Which team within the league 
      dev.league_size();           // How many teams in the league 
      dev.team_rank();            // Which thread within the team 
      dev.team_size();             // How many threads within the team 
      dev.team_barrier();       // Synchronize threads within this team 
      i = dev.team_scan( n );  // Exclusive scan within this team 
      view_type a( dev , N0 , N1 , ... ); // Temp array in team-shared memory 
  } 
}; 

 Team-shared memory used == MyFunctor::shmem_size() 
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Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 
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Core : Parallel Correctness and Performance 
Avoid thread race conditions 

 Parallel dispatch of functor ‘f’ for ‘nwork’ units of work 
 Call f::operator()(iw) where iw ∈ [0,nwork) 
 Calls can be concurrent and in any order 

 Don’t have competing updates 
operator()( int iw ) const { y( iw / 2 ) = ( x(iw) + x(iw+1) ) * 0.5 ; } 

 Bad: last thread wins → random result 
 Ugly: concurrent update → corrupted result 

 Don’t read what is updated elsewhere  
operator()( int iw ) const { y(iw+1) = y(iw) + x(iw) ); } 

 Bad: last thread wins → cumulative random results 
 Ugly: concurrent update → compounding corrupted results 

 
 



Core : Parallel Correctness and Performance 
Parallel reductions to mitigate thread race conditions 

 parallel_reduce( nwork , f , & result );  
operator()( int iw , value_type & val ) const { val += x(iw) + x(iw) ; } 

 Kokkos orchestrates temporaries, functor calls, and ‘join’ calls 
 Reduction is thread-safe, deterministic, and O(log(#threads)) 

 Mapped reduction (scatter-reduce) problem: 
operator()( int iw ) const { y( imap(iw) ) += x(iw); } 

 Caveat: nondeterministic order → round-off for non-associativity  
 Ugly: concurrent update Y( imap(iw) ) → corrupted result 

 Mapped reduction solutions: 
 Atomic operations prevent corrupted result 

Still have round-off.  Possibly introduce performance bottleneck. 
 Rewrite algorithm as gather-reduce 

Mitigate round-off.  Create large temporary array. 
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Core : Parallel Correctness and Performance 
Atomic operations with best performance 

 Not the C++11 ‘atomic<T>’ functionality and interface 
 Three fundamental operations on intrinsic data types 

 32 and 64 bit integer and floating point types,  
1. old_val = atomic_exchange( address, new_val ); 
2. atomic_compare_exchange_strong( address, old_val , new_val ); 

 If *address == old_val then exchange 
3. old_val = atomic_fetch_add( address , value ); 

 old_val = *address ; *address += value ; 

 Likely to have non-deterministic results ← warning! 
 Non-deterministic ordering of atomic operations 
 Floating point addition is NOT associative 

 Expect atomics to be at least 2-3x slower that non-atomic 



Core : Parallel Correctness and Performance 
Atomic operations can introduce performance bottleneck 

 parallel_for( nwork , Dot<...>(x,y) );  
operator()( int iw ) const { atomic_fetch_add( &val , x(iw) * y(iw) ); } 

 Every thread attempts to update the same value 
 Reduction becomes fully serialized: O(#nwork) vs. O(log(#threads)) 

 Mapped reduction (scatter-reduce): 
operator()( int iw ) const { atomic_fetch_add( &y(imap(iw)), x(iw)); } 

 Update is partially serialized depending upon 
 “Density” of imap(*) 
 Capabilities of atomic units 

 Can be a performant solution given sparse and infrequent updates 
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Core : Parallel Correctness and Performance 
Avoid long divergent branches within a thread team 

  Branches impede vector-parallelism and thus performance 
void operator()( int iw ) const 
{ 
  if ( condition_A(iw) ) { ... } 
  else if ( condition_B(iw) ) { ... } 
  else if ( condition_C(iw) ) { ... } 
  else { ... } 
} 

 The entire vector unit (GPU warp) takes every branch 
 Branches to complex: compiler may not be able to vectorize 

 Performant if a team of threads follows the same branch 
 Different teams can follow different branches 
 Work space iw ∈ [0,nwork) is partitioned among teams; 

iw and iw+1 are typically in the same team 
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Core : Parallel Correctness and Performance 
Avoid redundant access to global memory, use local temporaries  

 Example: Gather finite element’s nodal coordinates 
void operator()( int ielem ) const 
{ 
  double node_coord[N][3] ; 
  for ( int j = 0 ; j < N ; ++j ) { 
    const int inode = view_elem_node(ielem,j); 
    for ( int k = 0 ; k < 3 ; ++k ) node_coord[j][k] = view_node_coord(j,k); 
  } 
  /* ... computation uses node_coord ... */ 

 A performance balancing act 
 Redundant access to global memory is expensive 
 Local temporaries consumes registers & L1 cache 

threads can compete for registers & thrash each others cache 
 Vendors’ diagnostic tools for performance tuning 
 Thread-team algorithms to potentially improve performance 
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Core : Parallel Correctness and Performance 
Strided and random access to global memory 

 Parallel read/write of global View data:  a(iw,i1,i2,...) 
 Leading index is the parallel work index 
 Array layout + work↔thread mapping chosen together for optimal 

memory access pattern 
 CPU (and Intel Phi) caching and vectorization 
 GPU (e.g., NVidia) warp coalescing  

 Random read of global View data 
 E.g., gathers and tables shared among threads 
 View< const ArraySpec , Device , RandomRead > 

 Cuda uses texture-fetch capability optimized for random access 
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 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
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Core : Device Initialization and Finalization 
Hardware locality (hwloc) for manycore CPU and Xeon Phi 

 Kokkos::hwloc  Wraps OpenMPI project’s HWLOC library 
 Portable query of core topology 
 Portable pinning of threads to cores 

 Capacity = #NUMA * #core/NUMA * #hyperthreads/core 
 hwloc::get_available_numa_count() 
 hwloc::get_available_cores_per_numa() 
 hwloc::get_available_threads_per_core() 
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Core : Device Initialization and Finalization 
Threads and OpenMP devices for manycore CPU and Xeon Phi 

Device::initialize( team_count , threads_per_team , 
                                 use_numa_count = 0, use_cores_per_numa = 0); 
 Default: use all available NUMA regions and cores 
 Each team is assigned a set of cores within a NUMA region 

 Spawn and pin team’s threads to these cores 

 A team’s threads are spread across its cores 
 Team has 4 cores and 4 threads then 1 thread/core 
 Team has 2 cores and 8 threads then 4 threads/core 
 Don’t define threads/core > hwloc::core_capacity() 

 Device::finalize() 
 Destroy spawned threads 
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Core : Device Initialization and Finalization 
Cuda Device 

 Cuda::initialize()  OR  Cuda::initialize( Cuda::SelectDevice(#) ) 
 Default is device #0 

 Only one Cuda device per MPI process 
 Given two devices on a node use two MPI processes 
 Each MPI process on the node should select a different device 
 NVidia Kepler devices can be shared (have not tried this) 

 Query available devices 
 std:vector<unsigned> Cuda::detect_device_arch() 
 Values match __CUDA_ARCH__ specification 
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Performance Evaluation 

 Using Sandia Computing Research Center Testbed Clusters 
• Compton: 32nodes 

• 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled 
• 2x Intel Xeon Phi 57core (pre-production) 
• ICC 13.1.2, Intel MPI 4.1.1.036 

• Shannon: 32nodes 
• 2x Intel Xeon E5-2670, hyperthreading disabled 
• 2x NVidia K20x 
• GCC 4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct 

 Absolute performance “unit” tests 
• Evaluate parallel dispatch/synchronization efficiency 
• Evaluate impact of array access patterns and capabilities 

 Mini-application : Kokkos vs. ‘native’ implementations 
• Evaluate cost of portability 

 

 
 
 



Performance Test: Modified Gram-Schmidt 
Simple stress test for bandwidth and reduction efficiency 
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• Simple sequence of vector-reductions and vector-updates 
• To orthonormalize 16 vectors 

• Performance for vectors > L3 cache size 
• NVDIA K20x     : 174 GB/sec = ~78% of theoretical peak 
• Intel Xeon         :   78 GB/sec = ~71% of theoretical peak 
• Intel Xeon Phi  :   92 GB/sec = ~46% of achievable peak 
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Performance Test: Molecular Dynamics 
Lennard Jones force model using atom neighbor list 

58 

 Solve Newton’s equations for N particles 

 Simple Lennard Jones force model: 

 Use atom neighbor list to avoid N2 computations 

 

 

 

 

 Moderately compute bound computational kernel 

 On average 77 neighbors with 55 inside of the cutoff radius 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if ( |r_ij| < r_cut ) 
    f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 ) 
} 
f(i) = f_i; 



Performance Test: Molecular Dynamics 
Lennard Jones (LJ) force model using atom neighbor list 
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 Test Problem (#Atoms = 864k, ~77 neighbors/atom) 
 Neighbor list array with correct vs. wrong layout 

 Different layout between CPU and GPU 
 Random read of neighbor coordinate via GPU texture fetch  

 
 
 
 
 

 
 Large loss in performance with wrong layout 

 Even when using GPU texture fetch 
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MPI+X Performance: MiniMD 
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 Comparing X = OpenMPI vs. Kokkos , one MPI process / device 
• Using GPU-direct via MVAPICH2; no native Cuda version to compare 

 Strong scaling test: 2,048k atoms, ~77 neighbors/atom 
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MPI+X Performance Test: MiniFE 
 Conjugate Gradient Solve of a Finite Element Matrix 

 Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via MVAPICH2) 

 Weak scaling with one MPI process per device 
• Except on Xeon: OpenMP requires one process/socket due to NUMA 
• 8M elements/device 

 Kokkos performance 
• 90% or better of “native” 
• Improvements ongoing  
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Core : Plans 
Research & development 

 Mantevo mini-applications (mini-drivers) 
 Functor::operator()( Device )  interface 

 Portable access to Cuda block & shared memory capabilities 
 Team collectives under development 
 Prototyped with ‘Cuda’ and ‘Threads’ devices  

 Aggregate scalar types 
 complex, stochastic, automatic differentiation 

 Generalize tiled (blocked) layouts 
 Task-data-vector unified parallelism: Kokkos/Qthreads LDRD 

 Enhance Kokkos API to parallel dispatch task-graph of functors 
 Enhance Qthreads to schedule functors on teams of threads 
 Views for threaded graph data structures and algorithms 
 Make it all portable and performant (Xeon Phi and GPU) 
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Core : Plans 
Incremental migration strategy for C++ applications and libraries 

 Replace array allocations with Views (in Host space) 
• Specify layout(s) to match existing array layout(s) 
• Extract pointers to allocated array data and use them in legacy code 

 Replace array access with Views 
• Replace legacy array data structure(s) with View 
• Access data members via View API 

 Replace functions with Functors, run in parallel on Host 
• Hard part: finding and extracting your functions’ hidden states 

 improve code quality 
• Hard part: finding and fixing remaining thread-unsafe (race) conditions 

most easily using atomic operations 

 Set device to ‘Cuda’ and run on GPU 
• Hard part: thread scalability, some functors may require redesign 
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 Example: Unordered map global-to-local ids 
 Example: Finite element integration and nodal summation 
 Example: Particle interactions in non-uniform neighborhoods 
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Example Source Code 
In the Trilinos git repository: 

 Example: Unordered map global-to-local ids 
 ./packages/kokkos/example/global_2_local_ids/ 

 Example: Finite element integration and nodal summation 
 ./packages/kokkos/example/feint/ 

 Example: Particle interactions in non-uniform neighborhoods 
 ./packages/kokkos/example/md_skeleton/ 

 Configuring ‘cmake’ on testbeds to build examples: 
 ./packages/kokkos/config/configure_compton_cpu.sh 
 ./packages/kokkos/config/configure_compton_mic.sh 
 ./packages/kokkos/config/configure_shannon.sh 
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