Sandia
National
Laboratories

Exceptional

service

in the

national

interest

Kokkos Tutorial

A Trilinos package for manycore
performance portability

H. Carter Edwards,
Christian Trott, and
Daniel Sunderland

Trilinos User Group (TUG)
November 4, 2013
SAND2013-9404P

TLATLP
L, U.S. DEPARTMENT OF i '_"' bqai
= IF] ."
{(0)JENERGY #IVYS
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia
|I'| National
|aoratories

Acknowledgements and a little History

= Kokkos (classic) — internal manycore portability layer for Tpetra
= Chris Baker — primary developer

= Kokkos (array) — package for manycore performance portability
= Developers: Carter Edwards (Pl), Daniel Sunderland, Christian Trott
= Alpha users: Eric Phipps, Mark Hoemmen, Matt Bettencourt, Eric Cyr
= Consultants: Mike Heroux, Si Hammond

= Current Funding

= ASC Computational Systems and Software Environment (CSSE)
Next-Generation Computing Technologies / Heterogeneous Computing
= UQ-on-GPU LDRD - support for embedded UQ data types

= Kokkos/Qthreads LDRD — task/data/vector parallelism (started Oct’13)

= Prior Funding
= Mantevo LDRD - early concepts and prototypes

1

Goals: Portable, Performant, and Usable) S,

= Portable to Advanced Manycore Architectures
= Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD Fusion)

= Maximize amount of user (application/library) code that can be compiled
without modification and run on these architectures

= Minimize amount of architecture-specific knowledge that a user is
required to have

= Allow architecture-specific tuning to easily co-exist
= Only require C++1998 standard compliant

= Performant
= Portable user code performs as well as architecture-specific code
» Thread scalable — not just thread safety (no locking!)

= Usable
= Small, straight-forward application programmer interface (API)
» Constraint: don’t compromise portability and performance

2

Sandia
|I'| National
|aoratories

Collection of Subpackages / Libraries

= Core - lowest level portability layer
= Parallel dispatch and multidimensional arrays for manycore devices
= Soon to enter Trilinos “Primary Stable” status

= Containers — more sophisticated than core arrays
» UnorderedMap - fast find and thread scalable insert
= Very recent R&D success, thread scalable insert is a unique capability
= Vector — subset of std::vector functionality to ease porting
= Trilinos “Experimental” status

= LinAlg — primary interface for Tpetra
= Sparse matrices and linear algebra operations
= Wrappers to vendors’ libraries
= Trilinos “Experimental” status

= Examples - for this tutorial and beyond

= Mini-applications / mini-drivers
3

Outline

> Core:

Core:
Core:
Core:
Core:
Core:
Core:
Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Example: Unordered map global-to-local ids
Example: Finite element integration and nodal summation

Sandia
National
Laboratories

Example: Particle interactions in non-uniform neighborhoods

Core: Fundamental Concepts)
Diversity of devices and associated performance requirements

= Performance heavily depends upon device specific
requirements for memory access patterns
= Blocking, striding, alignment, tiling, ...
= NUMA core-memory affinity requires first touch and consistent access
= CPU vector units require stride-one access and cache-line alignment
= GPU vector units require coalesced access and cache-line alignment

= “Array of Structures” vs. “Structure of Arrays” dilemma
» This has been the wrong question

= What abstraction required for performance portability?
= This is the right question

= Answer: multidimensional arrays with polymorphic layout

Core: Fundamental Concepts)
Two abstractions: (1) Host/Devices

= Host process dispatches work to manycore device(s)
= Host process is the ‘main’ function
= Host processes dispatches thread-parallel work to device
work is computation and data
= “Device” may be physical (e.g., GPU) or logical:
partition 16core CPU into 1core “host process” and 15core “device”
= Host process interacts with MPI, Kokkos does not
= “MPI+X” : Kokkos is a potential “X”
= Kokkos is orthogonal to MPI — devoid MPI datatypes and calls to MPI

= Multiple memory spaces
*= Disparate: host main memory vs. GPU on-card memory
= Integrated: main memory, L3/L2/L1 cache, registers
= Anticipate increasing complexity of memory architectures

6

Core: Fundamental Concepts th

Two abstractions: (2) Multidimensional Arrays

= Multidimensional Arrays, with a twist
= Map multi-index (i,j,k,...) < memory location on the device
= Efficient : index computation and memory use
= Map is derived from an array Layout
» Choose Layout for device-specific (optimal) memory access pattern
= Make layout changes transparent to the user code;
> IF the user code honors the simple API: a(i,j,k,...)

Separate user’s index space from memory layout

Sandia
National
Laboratories

Core: Fundamental Concepts)
Implementation and similar work

= Implemented C++ template meta-programming
= Compile-time polymorphism for device back-ends and array layouts
= C++1998 standard; would be nice to require C++2011 for lambdas, ...
= Similarly motivated libraries:
= |ntel’s TBB: more sophisticated parallel dispatch capabilities,
CPU only, no data structure abstractions

= NVIDIA’s Thrust: similar simple parallel dispatch capabilities, only vector
data structures, no array layout

= MS C++AMP: close, but uses a proprietary language extension

= Language extensions: OpenMP, OpenACC, OpenCL, CUDA, Cilk,

= Lacking data structure abstractions to manage access patterns

8

Outline

Core:
» Core:
Core:
Core:
Core:
Core:
Core:

Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Sandia
National
Laboratories

Core : Views to Arrays i) e

Laboratories

View to multidimensional array of “value” type in device memory

= View< double * * [3][8], Device > a;

= template class View: A view to an Array on a Device
= Runtime and compile-time dimensions: example [N][M][3][8]

= “value” type of an array : ~ plain-old-data (pod) type
= E.g., ‘double’ (in this example), ‘float’, ‘int’, ‘long int’, ...
= A pure ‘memcpy’ will have the correct result
» Does not contain pointers to allocated memory

= ArraySpec template argument = ‘double**[3][8]’ in this example
= Each ‘*’ denotes a runtime specified dimension
= Each ‘[#]’ denotes a compile-time specified dimension
= 0-8 runtime dimensions denoted by ‘*’
= 0-8 compile-time dimensions denoted by [#]
= Up to 8 runtime + compile-time dimensions (maximum rank)

10
-~ ...

Core : Views to Arrays i) e

Laboratories

View to multidimensional array of “value” type in device memory

= View< ArraySpec, Device > a;
= Query dimensions: a.dimension_#() OR a.dimension(#) where # € [0..7]

= Why runtime + compile-time dimensions? PERFORMANCE!

= Array layout computation is faster with compile-time dimensions
» If a dimension is known at compile time then specify it

= Advanced feature: support for aggregate “value” types
= |ntrinsic “value” type required for optimal array layout
= but we need ‘complex’ and other aggregate “value” types

= .. more on this later...

Core : Views to Arrays) S
Accessing array data members: a(i0,il,i2,i3,...)

= Access array data via ‘View::operator()’
template< typename intTypeO, typename intTypel, ... >
ValueType & View::operator()(const intTypeO & , const intTypel &, ...);
= Multi-index is mapped according to the array layout
= Layout chosen to give the best memory access pattern for the device
Assuming first index is the parallel work index ... more on this later ...

= DO NOT assume a particular array layout (mapping)
= Might be FORTRAN, might be C, might be something else entirely
= Chosen at compile-time (C++ template meta-programming)
= Advanced feature: query the array’s layout
= Advanced feature: override the layout

Core : Views to Arrays) S
Accessing array data members: a(i0,il,i2,i3,...)

= Multi-index mapping performance
= Heavily used and critical to performance
= Considerable development effort invested in performance
Especially so compilers’ vectorization can “see through” this operator
= Completely hidden, non-trivial C++ meta-programming implementation
= Compile-time dimensions improve multi-index mapping performance

= Correctness checking: accessible and within bounds
= Host not able to access Device memory (and vice-versa)
= Multi-index bounds checking — in debug mode, and on the GPU

Sandia

Core : Views to Arrays) i,
Allocation and reference-counting semantics

= View objects are light-weight references to allocated arrays
= Allocate: View< double * * [3][8] , Device > a(“A”,N,M);

= Dimension [N][M][3][8] ; two runtime, two compile-time

= “A” is a user supplied label used for error messages; need not be unique
= Allocated array data resides in the Device’s memory space

= QObject ‘@’ is a reference to allocated array data

= Assign: View<double**[3][8],Device>b = a;
= Object ‘b’ is a reference to the same allocated data; a shallow copy

= By default views to arrays are reference counted

= Destroy: view object goes out-of-scope or is reassigned
= Last view (via reference counting) deallocates array data

14

Core : Views to Arrays) e
Resizing and reallocation

= Given: View< ArraySpec, Device > a(“label”,m0,m1,...);

= Resize: resize(a,n0,nl, ...);
= Allocate a new array with “label” and size n0*n1*...

= Copy corresponding array data from original array to new array
= Reassign the input View to the new array
» All other views to the original array are unchanged

= Reallocate: realloc(a,n0,nl,...);

= De-assign the input View; if last reference then array is deallocated

= Assign input view to an allocated array with “label” and size n0*n1*...

> All other views to the original array are unchanged

= |f no other view to original array this deallocates before allocating,
avoids “spike” in allocated memory

15

Core : Views to Arrays) e
‘const’ Views versus ‘const’ Arrays

= Constant View: const View< ArraySpec, Device > a(...);
= QObject ‘@’ cannot be reassigned
= Array data can be assigned via parentheses operator
= Analogous to const pointer to non-const memory

= Constant Array: View< const ArraySpec , Device>b =a;
= Object ‘b’ is a reference to the same allocated data; a shallow copy
= Array data cannot be assigned — parentheses operator returns ‘const’
= Analogous to non-const pointer to const memory

= Assignment (shallow copy) compatibility
= OK:View< const ArraySpec, Device > = View< ArraySpec , Device >
= ERROR : View< ArraySpec, Device > = View< const ArraySpec , Device >
this will not compile with “no assignment operator” message

16

Sandia

Core : Views to Arrays) i,
Pass view objects by value — they are small and portable

= Pass view objects by value
typedef View< ArraySpec , Device > my_array_type ;
void my_function(my_array type A); //no &or*
struct my_struct { my_array_typeA;}; //no &or*

= Small — designed as references to allocated array data
= Pointer to data + array shape (dimensions)
= Assignment is a fast shallow copy + reference counting (by default)

= Portable — intended to be passed by value to the device
= View object APl is portable between Host and Device code

» Do not pass by reference (or pointer) from Host to Device
= The reference / pointer is in the Host memory space
» Using such a Host pointer on the Device is a memory error

17

Core : Views to Arrays rh) jg
Deep copy: Kokkos NEVER has a hidden, expensive deep-copy

= Deep copy array data only when explicitly instructed by user
= deep_copy(to_array, from_array);

= Problem: deep copy between different array layouts
= Same memory space — requires permutation
= Different memory spaces — also requires allocation of a temporary
very expensive: allocation + deep copy + permutation + deallocation

= Solution: Mirror the layout in the Host memory space
= Avoid allocation, permutation, and deallocation
View<ArraySpec,Device> a(...);
View<ArraySpec,Device>::HostMirror b = create_mirror(a);
= ‘‘b’ has the Device’s array layout but is allocated in the Host space

18

Core : Views to Arrays)
Deep copy: Kokkos NEVER has a hidden, expensive deep-copy

= Device € Host deep copy pattern:
typedef class View<ArraySpec,Device> MyViewType ;
MyViewType a(“A”, ...);

MyViewType::HostMirror a_host = create_mirror(a);

deep_copy(a,a_host); deep_copy(a_host,a);
= |ssue: if ‘@’ is already in the Host space then allocation of ‘a_host’ and
subsequent deep_copy operations are problably unecessary

= Avoiding an unnecessary allocation and deep-copy
MyViewType::HostMirror a_host = create_mirror_view(a);
= |f Device uses Host memory then ‘a_host’ is simply another view of ‘a’
= Call to deep_copy becomes a no-op

19

Core : Views to Arrays
Recommendation: Dictionary for your View types

template< class Device >
struct MyDictionary {

typedef View< ArraySpec_A, Device > array_A_type ;

typedef View< ArraySpec_B, Device > array_B_type;

typedef View< ArraySpec_C, Device > array_C_type;

typedef typename array_A_type::HostMirror array_A_host_type ;
b

= Consolidate array type definitions
= Documentation
= Consistency

= Allows single point of change for array spec and array layout

Sandia
National
Laboratories

Outline

Core:
Core:
» Core:
Core:
Core:
Core:
Core:

Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Sandia
National
Laboratories

Core : Views to Array — Advanced Features ()i
Optionally specifying a particular array layout

= View< ArraySpec, Layout, Device > (optional parameter)
= QOverride default layout; e.g., force row-major or column-major
» Access via parentheses operator is unchanged in user code
= Standard array layouts for arrays with rank > 1
= LayoutRight : right-most index is stride-one (~ C ordering)
= LayoutLeft : left-most index is stride-one (¥ FORTRAN ordering)
= Array dimensions may be padded for cache-line alignment
= Analogous to ‘LDA’ matrix parameter in the BLAS
» Layout is an extension point for tiling, blocking, etc.

= A research-enabling capability
= Prototype exists for tiled matrices (e.g., MAGMA / PLASMA)

22

Core : Views to Array — Advanced Features ()i
Specifying behavioral attributes

= Disable reference counting

View< ArraySpec, Device , Unmanaged >
Cannot allocate through an unmanaged view

Can assign an unmanaged view from a managed view

Can assign an unmanaged view from user-provided pointer
= Dangerous advanced feature unlikely to significantly impact performance

= Use GPU texture cache to speed up random access
View< const ArraySpec, Device, RandomRead >

= |f Device == ‘Cuda’ then parentheses operator uses GPU texture cache
= Otherwise no special handling

» An extension point

23

Core : Views to Array — Advanced Features ()i
Assignment of compatible views with behavioral attributes

= Compatible assignment is a shallow copy
View< ArraySpec, Device, Attribute > = View< ArraySpec, Device >
= Compatible: same ‘ArraySpec’, ‘Device’, and ‘Layout’
= Also OK: ‘const ArraySpec’ = ArraySpec
= Also OK: Different devices using the same memory space

= Recommendation

= |nitially declare ‘view’ without behavior attributes
= Add behavioral attributes via shallow copy to compatible view

Core : Views to Array — Advanced Features ()i
Aggregate value types

= Examples of aggregate value types (pod ‘struct’)
= std::complex
= Automatic differentiation types
= Stochastic bases coefficients types

= Memory access pattern for aggregate members
= |s forced to be an ‘array of structures’
= Loses coalesced memory access on GPU — degrades performance

= Active research within UQ-on-GPU LDRD

= View integrates aggregate value types into the array layout
= Compile-time conversion ‘array of structures’ to ‘structure of arrays’
= Recover required memory access pattern on GPU

25

Core : Views to Array — Advanced Features ()i
Aggregate value types

= Capabilities and Constraints
= “scalar” type must be mappable to an array of an intrinsic type
E.g., std::complex<T> & T[2]
= For a given View the mapping may have a consistent runtime dimension
E.g., View< myType<T> > : myType<T> &> T[#]

= Extension point requires detailed implementation knowledge
= Optimal performance of View::operator()
= Optimal memory access pattern

Requires merging the aggregate type’s array mapping into the
containing View’s array layout

= Path forward to performantly support complex<T>
= ...tobedone...

26

Core : Views to Array — Advanced Features ()i
Querying properties

View::device_type // Device in View< ArraySpec, Device >
View::data_type // ArraySpec in View< ArraySpec, ... >
View::value _type [/ ValueType in View< ValueType***[#][#][#], ... >
View::scalar_type // For intrinsic ValueType is ValueType

// For aggregate ValueType is the mapped intrinsic type
View::const_{} type // const added to previous {} type
View::non_const_{} type // const removed from previous {} type

View::array layout //Layout type; e.g., LayoutlLeft, LayoutRight

View::rank // total number of dimensions (one added for aggregate)
View::rank_dynamic // number of dynamic dimensions

View::is_managed //enumerated value if view is reference counted

View::scalar_type * View::ptr_on_device(); // Raw pointer to array data

27

Core : Views to Array — Advanced Features ()i
View € pointer to raw memory

= Wrapping your memory in a View
= You must specify everything
View< ArraySpec, Layout, Device, Unmanaged > a(pointer, NO, N1, ...);
= Unmanaged: Kokkos cannot manage your memory
= Device: Your memory must be on this device
= { ArraySpec, Layout, NO, N1, ... }: your memory must have this shape

= [nteroperability with legacy codes’ arrays
= Option 1: Wrap your memory in a View
= Option 2:
= Declare Views with your specified array layout

= Use ‘View::ptr_on_device()’ to query pointer and pass to legacy code

Outline

Core:
Core:
Core:
» Core:
Core:
Core:
Core:

Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Sandia
National
Laboratories

Core : Parallel Dispatch of Functors) e
Dispatch to manycore “Device”

= ‘Threads’ Device : pthreads
= Pool of threads created once and pinned to cores

Hardware detection and core pinning via hardware locality library (hwloc)
CPU and Intel Phi

= ‘OpenMP’ Device : wrapper on OpenMP

Attempt to pin to cores via hwloc
CPU and Intel Phi
= Cannot use both ‘Threads’ and ‘OpenMP’ — they will compete for cores

= ‘Cuda’ Device : wrapper on NVidia’s CUDA 5.0 (or better)
= Currently require Fermi (GPU capability 2.0 or better)
= Eventually require Kepler (GPU capability 3.5 or better)

= |ntel Phi used in native mode (no offload)

30

Core : Parallel Dispatch of Functors)
Functor: function + calling arguments packaged in a C++ class

= Common to C++ standard algorithms, Intel TBB, NVidia Thrust

= Functor interface requirements for Kokkos
template< class Device > // template on the device
struct MyFunctor {
typedef Device device type ; // Required: identify the device
KOKKOS_INLINE_FUNCTION // Required: macro mapped to device

void operator()(...) const { /* ... */ } // Required: function to call in parallel
/* ... calling arguments are members of the class ... */

b
= Why Functor pattern?

= Requires only C++1998 standard compliance
= C++2011 Lambda syntax would be much prettier ...

31

Core : Parallel Dispatch of Functors)
Functor: function + calling arguments packaged in a C++ class

= Functor object is copied to the device
= This includes class member ‘calling arguments’
= View members must be objects
Not references or pointers to Views (or anything else)
= View objects are designed to be copied by value from Host to Device

= Device’s threads concurrently call Functor::operator()
= Functor::operator() and all functions that it calls
= Must be compiled for that device
= Must be marked with KOKKOS_INLINE_FUNCTION
— Compiling Cuda: “__device__ __host__ inline”
= Asingle Functor object is shared among all threads
= functor::operator() must be ‘const’
= All called member functions must be ‘const’

32

Core : Parallel Dispatch of Functors)
parallel_for dispatch with ‘nwork’ units of work

= Simple example: AXPY(y=a*x+vy)
template< class Device >
struct AXPY {

typedef Device device_type ; // run on this device
KOKKOS_INLINE_FUNCTION

void operator()(int iw) const { Y(iw) += A * X(iw); }
const double A ;

const View<const double*,device_type> X ; // View object (not a reference)
const View< double*,device_type>Y ;

b
parallel_for(nwork , AXPY<device>(a, x,vy));
= Thread parallel call to ‘operator()(iw)’ : iw € [0,nwork)
= Access array data with ‘iw’ to avoid thread race conditions

33

Core : Parallel Dispatch of Functors)
Asynchronous dispatch

= Parallel dispatch initiates asynchronous parallel execution
= ‘parallel_for’ returns before the functor completes
= Device (e.g., Cuda) can have a work queue
functor may be placed in queue and not even started
= Dispatch creates a temporary internal copy of the functor
released when the functor completes

= Dispatched functors are sequenced

= Previous functor guaranteed to complete before next functor starts
= deep_copy(...) waits for previous functor to complete

= Device::fence(); // wait for all functors to complete
= Required when timing the execution of a functor

34

Sandia

Core : Parallel Dispatch of Functors) e
parallel_reduce dispatch with ‘nwork’ units of work

= Simple example: DOT
template< class Device >
struct DOT {
typedef DeviceType device type;
typedef double value_type ; // Require: reduction value type
KOKKOS _INLINE_FUNCTION
void operator()(int iw , value_type & contrib) const
{ contrib += y(iw) * x(iw); } // this thread’s contribution
const View<const double*,device_type>x,vy;
// ... to be continued ...

7

parallel_reduce(nwork , DOT<device>(x,y), result); }
» value_type can be a scalar, ‘struct’, or dynamic array
= Result is output to the Host

35

Sandia

Core : Parallel Dispatch of Functors) e
parallel_reduce dispatch with ‘nwork’ units of work

= |nitialize and join threads’ individual contributions
struct DOT { // ... continued ...
KOKKOS_INLINE_FUNCTION
void init(value_type & contrib) const { contrib=0; }
KOKKOS_INLINE_FUNCTION
void join(volatile value_type & contrib,
volatile const value_type & input) const
{ contrib = contrib + input ; }
b
= Join threads’ contrib via Functor::join
= ‘volatile’ to prevent compiler from optimizing away the join

= Deterministic result €& highly desirable
= Given the same device and # threads
= Aligned memory prevents variations from vectorization

36

Sandia

Core : Parallel Dispatch of Functors rh) je
parallel_reduce dispatch with on-device serial finalization

= Example: NORM2, just add a final ‘sqrt’ to the DOT
struct NORM2 { // ... similar to ‘DOT’ plus serial finalization
KOKKOS_INLINE_FUNCTION
void final(value_type & contrib) const
{ *result = sqrt(contrib) ; } // final serial ‘sqrt’ on device
View<double,device_type> result ; // scalar value allocated on device
b

= |f result is needed only on the device, avoid device-host-device copy

= |f final serial computation is needed

Sandia

Core : Parallel Dispatch of Functors) e
parallel_scan dispatch with ‘nwork’ units of work

template< class Device >
struct ExclusivePrefixSum {
typedef DeviceType device type;
typedef long int value_type ; // Require: reduction value type
KOKKOS _INLINE_FUNCTION
void operator()(int iw , value_type & contrib, bool final) const
{
contrib += x(iw);
if (final) { y(iw) = contrib ; } // Is scan value IF final pass
}
const View<long int *,device_type>x,y;
// ... to be continued ...

7

parallel_scan(nwork , ExclusivePrefixSum<device>(x,y)); }

38
-~ ...

Sandia

Core : Parallel Dispatch of Functors) e
parallel_scan dispatch with ‘nwork’ units of work

= |nitialize and join threads’ individual contributions

= Same ‘init’ and ‘join’ as the ‘parallel_reduce’
struct ExclusivePrefixSum { // ... continued ...
KOKKOS_INLINE_FUNCTION
void init(value_type & contrib) const { contrib=0; }
KOKKOS_INLINE_FUNCTION
void join(volatile value_type & contrib,
volatile const value_type & input) const
{ contrib = contrib + input ; }
b
= Deterministic result €& highly desirable
= Given the same device and # threads
= Aligned memory prevents variations from vectorization

39

Core : Parallel Dispatch of Functors)
Thread teams — very new capability and being refined

= Device has teams of threads
= OpenMP 4.0 vocabulary: team of threads, league of teams
= # Threads = # threads/team * # teams
= A team works cooperatively and shares resources; e.g., cache memory
template< class Device >
struct MyFunctor {
KOKKOS_INLINE_FUNCTION void operator()(Device dev, ...) const;
size_t shmem_size() const ; // Optional request for team-shared memory
b

parallel_{for,reduce,scan}(ParallelWorkRequest , MyFunctor<device>(...));

= More complex and more control over performance
= WorkRequest requests league and team sizes

= Actual sizes may be constrained by device’s capabilities
= E.g., maximum team size limited by NUMA, #cores, #hyperthreads

40

Core : Parallel Dispatch of Functors)
Why thread teams? Opportunity for Performance Improvements

= Threads within a team are tightly coupled
= E.g., NVidia thread block = team
= E.g., Intel hyperthreads reside within the same team
= Teams have synchronization primitives (e.g., barrier)
= Teams have fast transient team-shared memory

= Uncooperative teams impede performance
= Threads within a team will thrash their shared cache
Cause eviction of each other’s cached memory
= |ntel Phi performs better without hyperthreads IF they do not cooperate

= |ntel Phi performs best with cooperating hyperthreads
= NVidia has dramatic performance loss with uncooperative teams

Core : Parallel Dispatch of Functors)
Thread teams API: parallel_for, parallel_reduce, parallel_scan

template< class Device >
struct MyFunctor {
KOKKOS_INLINE_FUNCTION void operator()(Device dev, ...) const

{
dev.league_rank(); // Which team within the league
dev.league_size(); // How many teams in the league
dev.team_rank(); // Which thread within the team
dev.team_size(); // How many threads within the team

dev.team_barrier(); // Synchronize threads within this team
i = dev.team_scan(n); // Exclusive scan within this team
view_type a(dev, NO, N1, ...); // Temp array in team-shared memory

}
b
= Team-shared memory used == MyFunctor::shmem_size()

42

Outline

Core:
Core:
Core:
Core:
» Core:
Core:
Core:

Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Sandia
National
Laboratories

Core : Parallel Correctness and Performance (g,
Avoid thread race conditions

= Parallel dispatch of functor ‘f’ for ‘nwork’ units of work
= (Call f::operator()(iw) where iw € [0,nwork)
= Calls can be concurrent and in any order
= Don’t have competing updates
operator()(intiw) const{y(iw /2) = (x(iw) + x(iw+1)) *0.5; }
= Bad: last thread wins - random result
= Ugly: concurrent update - corrupted result
= Don’t read what is updated elsewhere
operator()(int iw) const { y(iw+1) = y(iw) + x(iw)); }
= Bad: last thread wins - cumulative random results
= Ugly: concurrent update - compounding corrupted results

44

Sandia

Core : Parallel Correctness and Performance ()&=,
Parallel reductions to mitigate thread race conditions

= parallel_reduce(nwork, f, & result);
operator()(int iw, value_type & val) const { val += x(iw) + x(iw) ; }
= Kokkos orchestrates temporaries, functor calls, and ‘join’ calls
= Reduction is thread-safe, deterministic, and O(log(#threads))

= Mapped reduction (scatter-reduce) problem:
operator()(int iw) const { y(imap(iw)) += x(iw); }
= Caveat: nondeterministic order - round-off for non-associativity
= Ugly: concurrent update Y(imap(iw)) = corrupted result

= Mapped reduction solutions:
= Atomic operations prevent corrupted result
Still have round-off. Possibly introduce performance bottleneck.
= Rewrite algorithm as gather-reduce
Mitigate round-off. Create large temporary array.

Core : Parallel Correctness and Performance (i),
Atomic operations with best performance

= Not the C++11 ‘atomic<T>’ functionality and interface

= Three fundamental operations on intrinsic data types
= 32 and 64 bit integer and floating point types,
1. old_val = atomic_exchange(address, new_val);
2. atomic_compare_exchange_strong(address, old_val, new_val);
= |f *address == old_val then exchange
3. old_val = atomic_fetch_add(address, value);
= old_val = *address ; *address += value ;

= Likely to have non-deterministic results € warning!
= Non-deterministic ordering of atomic operations
= Floating point addition is NOT associative

= Expect atomics to be at least 2-3x slower that non-atomic

46

Core : Parallel Correctness and Performance (g,
Atomic operations can introduce performance bottleneck

= parallel_for(nwork , Dot<...>(x,y));
operator()(int iw) const { atomic_fetch_add(&val , x(iw) * y(iw)); }
= Every thread attempts to update the same value
= Reduction becomes fully serialized: O(#nwork) vs. O(log(#threads))

= Mapped reduction (scatter-reduce):
operator()(int iw) const { atomic_fetch_add(&y(imap(iw)), x(iw)); }
= Update is partially serialized depending upon
= “Density” of imap(*)
= Capabilities of atomic units

= Can be a performant solution given sparse and infrequent updates

Core : Parallel Correctness and Performance (g,
Avoid long divergent branches within a thread team

= Branches impede vector-parallelism and thus performance
void operator()(int iw) const

{
if (condition_A(iw)){ ... }
else if (condition_B(iw)) { ... }
else if (condition_C(iw)) { ... }
else{... }

}

= The entire vector unit (GPU warp) takes every branch
= Branches to complex: compiler may not be able to vectorize

= Performant if a team of threads follows the same branch
= Different teams can follow different branches
= Work space iw € [0,nwork) is partitioned among teams;
iw and iw+1 are typically in the same team

48

Sandia

Core : Parallel Correctness and Performance (1),
Avoid redundant access to global memory, use local temporaries

= Example: Gather finite element’s nodal coordinates
void operator()(int ielem) const

{
double node_coord[N][3];

for (intj=0;j<N;++){
const int inode = view_elem_node(ielem,j);
for(intk=0; k<3 ; ++k) node_coord[j][k] = view_node_coord(j,k);

}

/* ... computation uses node_coord ... */

= A performance balancing act
= Redundant access to global memory is expensive
= Local temporaries consumes registers & L1 cache
threads can compete for registers & thrash each others cache
= Vendors’ diagnostic tools for performance tuning
= Thread-team algorithms to potentially improve performance

49

Core : Parallel Correctness and Performance

Strided and random access to global memory

Parallel read/write of global View data: a(iw,il,i2,...)
= Leading index is the parallel work index

= Array layout + worké>thread mapping chosen together for optimal
memory access pattern

= CPU (and Intel Phi) caching and vectorization
= GPU (e.g., NVidia) warp coalescing
Random read of global View data

= E.g., gathers and tables shared among threads
= View< const ArraySpec, Device , RandomRead >

= Cuda uses texture-fetch capability optimized for random access

Sandia
National
Laboratories

Outline

Core:
Core:
Core:
Core:
Core:
» Core:
Core:

Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Sandia
National
Laboratories

Core : Device Initialization and Finalization (i) &=,
Hardware locality (hwloc) for manycore CPU and Xeon Phi

= Kokkos::hwloc Wraps OpenMPI project’s HWLOC library
= Portable query of core topology
= Portable pinning of threads to cores

= Capacity = #fNUMA * #icore/NUMA * #thyperthreads/core

= hwloc::get_available_numa_count()

= hwloc::get_available_cores_per_numa()
= hwloc::get_available_threads_per_core()

Core : Device Initialization and Finalization (i) &=,
Threads and OpenMP devices for manycore CPU and Xeon Phi

Device::initialize(team_count, threads_per_team,
use_numa_count =0, use_cores_per_numa = 0);

= Default: use all available NUMA regions and cores

= Each team is assigned a set of cores within a NUMA region
= Spawn and pin team’s threads to these cores

= Ateam’s threads are spread across its cores
= Team has 4 cores and 4 threads then 1 thread/core
= Team has 2 cores and 8 threads then 4 threads/core
= Don’t define threads/core > hwloc::core_capacity()

= Device::finalize()
= Destroy spawned threads

53

Core : Device Initialization and Finalization (i) &=,
Cuda Device

= Cuda::initialize() OR Cuda::initialize(Cuda::SelectDevice(#))
= Default is device #0

= Only one Cuda device per MPI process
= Given two devices on a node use two MPI processes

= Each MPI process on the node should select a different device
= NVidia Kepler devices can be shared (have not tried this)

= Query available devices
= std:vector<unsigned> Cuda::detect_device_arch()
= Values match __ CUDA_ARCH__ specification

Outline

Core:
Core:
Core:
Core:
Core:
Core:
» Core:

Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Sandia
National
Laboratories

National

Sandia
Performance Evaluation) feiea_

= Using Sandia Computing Research Center Testbed Clusters
e Compton: 32nodes
e 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled
e 2x Intel Xeon Phi 57core (pre-production)
e |CC13.1.2, Intel MP14.1.1.036
e Shannon: 32nodes
e 2x Intel Xeon E5-2670, hyperthreading disabled
e 2x NVidia K20x
e GCC4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct

= Absolute performance “unit” tests
e Evaluate parallel dispatch/synchronization efficiency
e Evaluate impact of array access patterns and capabilities

= Mini-application : Kokkos vs. ‘native’ implementations
e Evaluate cost of portability

56

Performance Test: Modified Gram-Schmidt () &=,

Simple stress test for bandwidth and reduction efficiency
Intel Xeon: E5-2670 w/HT

Q igg —a—K20x (with ECC) Inte.el _Xeon Phi: 57c @ 1.1GHx

L 160 NVidia K20x

)

O 140

< 120 —+—Xeon 1thread/core Results pregented here are fqr

o pre-production Intel Xeon Phi

% 122 / } ===t co-processors (codenamed

= - —o= X Phi 56 Knights Corner) and pre-

o 60 _.,g:--.--‘---‘--i--A eon Fhi >ocore X production versions of Intel's

= 40 :} 4thread/core Xeon Phi software stack.

& 20) Performance and configuration
0 - . . -4- Xeon Phi 56core x of the co-processors may be
1E+05 1E+06 1E+07 1thread/core different in final production
Double Precision Vector Length (16 vectors) releases.

« Simple sequence of vector-reductions and vector-updates
e To orthonormalize 16 vectors

e Performance for vectors > L3 cache size
* NVDIA K20x : 174 GB/sec = ~78% of theoretical peak
e Intel Xeon . 78 GB/sec = ~71% of theoretical peak
 Intel Xeon Phi . 92 GB/sec = ~46% of achievable peak

57

Performance Test: Molecular Dynamics) i
Lennard Jones force model using atom neighbor list

. Solve Newton’s equations for N particles
« Simple Lennard Jones force model: Fi= 68[() 2(]
Jor<re i ij

. Use atom neighbor list to avoid N2 computations
pos 1 = pos(i);
for(C JJ = 0; JjJ < num_neighbors(i); jj++) {
J = nelghbors(l .J1);
r ij pos 1 — pos(j); //random read 3 floats

it (|r_ij| < r_cut) o 6e%s

f_i += 6%e*((S/r_ij)"7 — 2%(s/r_ij)"13) 8

} _.:0 L
(i) = fi;

. Moderately compute bound computational kernel

« On average 77 neighbors with 55 inside of the cutoff radius

58

Performance Test: Molecular Dynamics) e,

Laboratories
Lennard Jones (LJ) force model using atom neighbor list
« Test Problem (#Atoms = 864k, ~77 neighbors/atom)
o Neighbor list array with correct vs. wrong layout
« Different layout between CPU and GPU
« Random read of neighbor coordinate via GPU texture fetch
180 Intel Xeon: E5-2670 w/HT
160 Intel Xeon Phi: 57¢ @ 1.1GHx
140 H correct layout NVidia K20x
. 120 (with texture)
§ 100 |
o 80 # correct layout Results presented here are for
60 without texture pre-production Intel Xeon Phi
40 co-processors (codenamed
20 /[- wro :g layout Knights Corner) and pre-
0 (with texture) production versions of Intel's
Xeon Xeon Phi K20x Xeon Phi software stack.
Performance and configuration
1 1 fth - b
o Large loss in performance with wrong layout oot i ot
« Even when using GPU texture fetch releases.

59
-~ ...

MPI+X Performance: MiniMD i i,

Laboratories

= Comparing X = OpenMPI vs. Kokkos , one MPI process / device
e Using GPU-direct via MVAPICH2; no native Cuda version to compare

= Strong scaling test: 2,048k atoms, ~77 neighbors/atom

E 1 [[[[4 F [[[[[
100~ force — neigh — 100

80— - —80
O 2 _ 4t . Q
2 o =—t—t=a | {60 2
g 4or 10 140 9
S 20k w100 2
— O] | | | [] K s | — I |] O ‘ E
O - 4 F 1 I I I I - o
E 100 — — —| @—® Xeon - Kokkos integ] 100 _g
. 5 L - — | @ -@ Xeon - OpenMP . P
— 80 — — —(l— Xeon Phi - Kokkos = 80 —
< - <4 | | ® -m Xeon Phi - OpenMP - S
B 60 _— —_ _— A4 Kepler - Kokkos —_ 60 g
= 40 - 1 . 40

20F 1 F 420

o Lee=—n— sl | L1 [T S S 19
1 2 4 8 16 32 1 2 4 8 16 32

of Nodes/Devices

60

MPI+X Performance Test: MiniFE

Conjugate Gradient Solve of a Finite Element Matrix

Sandia
National
Laboratories

i1

= Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via MVAPICH2)

= Weak scaling with one MPI process per device
* Except on Xeon: OpenMP requires one process/socket due to NUMA

e 8M elements/device

= Kokkos performance
90% or better of “native”
Improvements ongoing

61

Time 1n sec

12

p—
-

o0

®—® Xcon - Kokkos
o -@ Xcon - OpenMP

=—8 Xcon Phi - Kokkos ||
= & Xecon Phi - OpenMP A

4—a Kepler - Kokkos
4- -4 Kepler - Cuda

A
#0

g8 16
f Devices

32 o4

Outline

Core:
Core:
Core:
Core:
Core:
Core:

Core:
> Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

Sandia
National
Laboratories

Core : Plans) e
Research & development

= Mantevo mini-applications (mini-drivers)

= Functor::operator()(Device) interface
= Portable access to Cuda block & shared memory capabilities
= Team collectives under development
= Prototyped with ‘Cuda’ and ‘Threads’ devices

= Aggregate scalar types
= complex, stochastic, automatic differentiation

= Generalize tiled (blocked) layouts

Task-data-vector unified parallelism: Kokkos/Qthreads LDRD
= Enhance Kokkos API to parallel dispatch task-graph of functors
= Enhance Qthreads to schedule functors on teams of threads
= Views for threaded graph data structures and algorithms
= Make it all portable and performant (Xeon Phi and GPU)

63

Sandia
Core : Plans) i,
Incremental migration strategy for C++ applications and libraries

= Replace array allocations with Views (in Host space)

e Specify layout(s) to match existing array layout(s)

e Extract pointers to allocated array data and use them in legacy code
= Replace array access with Views

 Replace legacy array data structure(s) with View
e Access data members via View API

= Replace functions with Functors, run in parallel on Host

e Hard part: finding and extracting your functions’ hidden states
» improve code quality

e Hard part: finding and fixing remaining thread-unsafe (race) conditions
» most easily using atomic operations

= Set device to ‘Cuda’ and run on GPU
e Hard part: thread scalability, some functors may require redesign

64

Outline

Core:
Core:
Core:
Core:
Core:
Core:
Core:
Core:

Fundamental Concepts

Views to Arrays

Views to Arrays — Advanced Features
Parallel Dispatch of Functors

Parallel Correctness and Performance
Device Initialization and Finalization
Performance Evaluation

Plans

» Example: Unordered map global-to-local ids
» Example: Finite element integration and nodal summation
» Example: Particle interactions in non-uniform neighborhoods

65

Sandia
National
Laboratories

Example Source Code)
In the Trilinos git repository:

= Example: Unordered map global-to-local ids
= ./packages/kokkos/example/global 2 local_ids/

= Example: Finite element integration and nodal summation
= ./packages/kokkos/example/feint/

= Example: Particle interactions in non-uniform neighborhoods
= . /packages/kokkos/example/md_skeleton/

= Configuring ‘cmake’ on testbeds to build examples:
= ./packages/kokkos/config/configure_compton_cpu.sh
= ./packages/kokkos/config/configure_compton_mic.sh

= . /packages/kokkos/config/configure_shannon.sh

	Kokkos Tutorial��A Trilinos package for manycore performance portability
	Acknowledgements and a little History
	Goals: Portable, Performant, and Usable
	Collection of Subpackages / Libraries
	Outline
	Core: Fundamental Concepts�Diversity of devices and associated performance requirements
	Core: Fundamental Concepts�Two abstractions: (1) Host/Devices
	Core: Fundamental Concepts�Two abstractions: (2) Multidimensional Arrays
	Core: Fundamental Concepts�Implementation and similar work
	Outline
	Core : Views to Arrays�View to multidimensional array of “value” type in device memory
	Core : Views to Arrays�View to multidimensional array of “value” type in device memory
	Core : Views to Arrays�Accessing array data members: a(i0,i1,i2,i3,...)
	Core : Views to Arrays�Accessing array data members: a(i0,i1,i2,i3,...)
	Core : Views to Arrays�Allocation and reference-counting semantics
	Core : Views to Arrays�Resizing and reallocation
	Core : Views to Arrays�‘const’ Views versus ‘const’ Arrays
	Core : Views to Arrays�Pass view objects by value – they are small and portable
	Core : Views to Arrays�Deep copy: Kokkos NEVER has a hidden, expensive deep-copy
	Core : Views to Arrays�Deep copy: Kokkos NEVER has a hidden, expensive deep-copy
	Core : Views to Arrays�Recommendation: Dictionary for your View types
	Outline
	Core : Views to Array – Advanced Features�Optionally specifying a particular array layout
	Core : Views to Array – Advanced Features�Specifying behavioral attributes
	Core : Views to Array – Advanced Features�Assignment of compatible views with behavioral attributes
	Core : Views to Array – Advanced Features�Aggregate value types
	Core : Views to Array – Advanced Features�Aggregate value types
	Core : Views to Array – Advanced Features�Querying properties
	Core : Views to Array – Advanced Features�View ↔ pointer to raw memory
	Outline
	Core : Parallel Dispatch of Functors�Dispatch to manycore “Device”
	Core : Parallel Dispatch of Functors�Functor: function + calling arguments packaged in a C++ class
	Core : Parallel Dispatch of Functors�Functor: function + calling arguments packaged in a C++ class
	Core : Parallel Dispatch of Functors�parallel_for dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�Asynchronous dispatch
	Core : Parallel Dispatch of Functors�parallel_reduce dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�parallel_reduce dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�parallel_reduce dispatch with on-device serial finalization
	Core : Parallel Dispatch of Functors�parallel_scan dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�parallel_scan dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�Thread teams – very new capability and being refined
	Core : Parallel Dispatch of Functors�Why thread teams? Opportunity for Performance Improvements
	Core : Parallel Dispatch of Functors�Thread teams API: parallel_for, parallel_reduce, parallel_scan
	Outline
	Core : Parallel Correctness and Performance�Avoid thread race conditions
	Core : Parallel Correctness and Performance�Parallel reductions to mitigate thread race conditions
	Core : Parallel Correctness and Performance�Atomic operations with best performance
	Core : Parallel Correctness and Performance�Atomic operations can introduce performance bottleneck
	Core : Parallel Correctness and Performance�Avoid long divergent branches within a thread team
	Core : Parallel Correctness and Performance�Avoid redundant access to global memory, use local temporaries
	Core : Parallel Correctness and Performance�Strided and random access to global memory
	Outline
	Core : Device Initialization and Finalization�Hardware locality (hwloc) for manycore CPU and Xeon Phi
	Core : Device Initialization and Finalization�Threads and OpenMP devices for manycore CPU and Xeon Phi
	Core : Device Initialization and Finalization�Cuda Device
	Outline
	Performance Evaluation
	Performance Test: Modified Gram-Schmidt�Simple stress test for bandwidth and reduction efficiency
	Performance Test: Molecular Dynamics�Lennard Jones force model using atom neighbor list
	Performance Test: Molecular Dynamics�Lennard Jones (LJ) force model using atom neighbor list
	MPI+X Performance: MiniMD
	MPI+X Performance Test: MiniFE�	Conjugate Gradient Solve of a Finite Element Matrix
	Outline
	Core : Plans�Research & development
	Core : Plans�Incremental migration strategy for C++ applications and libraries
	Outline
	Example Source Code�In the Trilinos git repository:

