
Photos placed in 
horizontal position  
with even amount 

of white space 
 between photos 

and header 

Photos placed in horizontal 
position  

with even amount of white 
space 

 between photos and header 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP 

Kokkos Tutorial 
 

A Trilinos package for manycore 
performance portability 

H. Carter Edwards, 
Christian Trott, and  
Daniel Sunderland 
 
Trilinos User Group (TUG) 
November 4, 2013 
SAND2013-9404P 



1 

Acknowledgements and a little History 

 Kokkos (classic) – internal manycore portability layer for Tpetra 
 Chris Baker – primary developer 

 Kokkos (array) – package for manycore performance portability 
 Developers: Carter Edwards (PI), Daniel Sunderland, Christian Trott 
 Alpha users: Eric Phipps, Mark Hoemmen, Matt Bettencourt, Eric Cyr 
 Consultants: Mike Heroux, Si Hammond 

 Current Funding 
 ASC Computational Systems and Software Environment (CSSE) 

Next-Generation Computing Technologies / Heterogeneous Computing  
 UQ-on-GPU LDRD – support for embedded UQ data types 
 Kokkos/Qthreads LDRD – task/data/vector parallelism (started Oct’13) 

 Prior Funding 
 Mantevo LDRD – early concepts and prototypes 

 



2 

Goals: Portable, Performant, and Usable 
 Portable to Advanced Manycore Architectures 

 Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD Fusion) 
 Maximize amount of user (application/library) code that can be compiled 

without modification and run on these architectures 
 Minimize amount of architecture-specific knowledge that a user is 

required to have 
 Allow architecture-specific tuning to easily co-exist 
 Only require C++1998 standard compliant 

 Performant 
 Portable user code performs as well as architecture-specific code 
 Thread scalable – not just thread safety (no locking!) 

 Usable 
 Small, straight-forward application programmer interface (API) 
 Constraint: don’t compromise portability and performance 

 



3 

Collection of Subpackages / Libraries 
 Core – lowest level portability layer 

 Parallel dispatch and multidimensional arrays for manycore devices 
 Soon to enter Trilinos “Primary Stable” status 

 Containers – more sophisticated than core arrays 
 UnorderedMap – fast find and thread scalable insert 

 Very recent R&D success, thread scalable insert is a unique capability 
 Vector – subset of std::vector functionality to ease porting 
 Trilinos “Experimental” status 

 LinAlg – primary interface for Tpetra 
 Sparse matrices and linear algebra operations 
 Wrappers to vendors’ libraries  
 Trilinos “Experimental” status 

 Examples – for this tutorial and beyond 
 Mini-applications / mini-drivers 

 



4 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 
 Example: Unordered map global-to-local ids 
 Example: Finite element integration and nodal summation 
 Example: Particle interactions in non-uniform neighborhoods 



5 

Core: Fundamental Concepts 
Diversity of devices and associated performance requirements 
 Performance heavily depends upon device specific 

requirements for memory access patterns 
 Blocking, striding, alignment, tiling, ... 
 NUMA core-memory affinity requires first touch and consistent access 
 CPU vector units require stride-one access and cache-line alignment 
 GPU vector units require coalesced access and cache-line alignment 

 “Array of Structures” vs. “Structure of Arrays” dilemma  
 This has been the wrong question 

 What abstraction required for performance portability? 
 This is the right question 
 Answer: multidimensional arrays with polymorphic layout 



6 

Core: Fundamental Concepts 
Two abstractions: (1) Host/Devices 

 Host process dispatches work to manycore device(s) 
 Host process is the ‘main’ function 
 Host processes dispatches thread-parallel work to device 

work is computation and data 
 “Device” may be physical (e.g., GPU) or logical: 

partition 16core CPU into 1core “host process” and 15core “device” 

 Host process interacts with MPI, Kokkos does not 
 “MPI+X” : Kokkos is a potential “X”  
 Kokkos is orthogonal to MPI – devoid MPI datatypes and calls to MPI 

 Multiple memory spaces 
 Disparate: host main memory vs. GPU on-card memory 
 Integrated: main memory, L3/L2/L1 cache, registers 
 Anticipate increasing complexity of memory architectures 



7 

Core: Fundamental Concepts 
Two abstractions: (2) Multidimensional Arrays 

 Multidimensional Arrays, with a twist 
 Map multi-index (i,j,k,...) ↔ memory location on the device 

 Efficient : index computation and memory use 
 Map is derived from an array Layout 
 Choose Layout for device-specific (optimal) memory access pattern 
 Make layout changes transparent to the user code; 
 IF the user code honors the simple API: a(i,j,k,...) 

Separate user’s index space from memory layout 



8 

Core: Fundamental Concepts 
Implementation and similar work 

 Implemented C++ template meta-programming 
 Compile-time polymorphism for device back-ends and array layouts  
 C++1998 standard; would be nice to require C++2011 for lambdas, ... 

 Similarly motivated libraries: 
 Intel’s TBB: more sophisticated parallel dispatch capabilities, 

CPU only, no data structure abstractions 
 NVIDIA’s Thrust: similar simple parallel dispatch capabilities, only vector 

data structures, no array layout 
 MS C++AMP: close, but uses a proprietary language extension 

 Language extensions: OpenMP, OpenACC, OpenCL, CUDA, Cilk, 
 Lacking data structure abstractions to manage access patterns 

 



9 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 

 
 



10 

Core : Views to Arrays 
View to multidimensional array of “value” type in device memory 

 View< double * * [3][8] , Device > a ; 
 template class View:  A view to an Array on a Device 
 Runtime and compile-time dimensions: example [N][M][3][8] 

 “value” type of an array : ~ plain-old-data (pod) type 
 E.g., ‘double’ (in this example), ‘float’, ‘int’, ‘long int’, ... 
 A pure ‘memcpy’ will have the correct result 
 Does not contain pointers to allocated memory 

 ArraySpec template argument = ‘double**[3][8]’ in this example 
 Each ‘*’ denotes a runtime specified dimension 
 Each ‘[#]’ denotes a compile-time specified dimension 
 0-8 runtime dimensions denoted by ‘*’ 
 0-8 compile-time dimensions denoted by [#] 
 Up to 8 runtime + compile-time dimensions (maximum rank) 

 



11 

Core : Views to Arrays 
View to multidimensional array of “value” type in device memory 

 View< ArraySpec , Device > a ; 
 Query dimensions: a.dimension_#()  OR  a.dimension(#) where # ∈ [0..7] 

 Why runtime + compile-time dimensions?  PERFORMANCE! 
 Array layout computation is faster with compile-time dimensions 
 If a dimension is known at compile time then specify it 

 
 Advanced feature: support for aggregate “value” types 

 Intrinsic “value” type required for optimal array layout 
 but we need ‘complex’ and other aggregate “value” types  
 ... more on this later ... 



12 

Core : Views to Arrays 
Accessing array data members:  a(i0,i1,i2,i3,...) 
 Access array data via ‘View::operator()’ 

template< typename intType0 , typename intType1 , ... > 
ValueType & View::operator()( const intType0 & , const intType1 & , ... ); 
 Multi-index is mapped according to the array layout 
 Layout chosen to give the best memory access pattern for the device 

Assuming first index is the parallel work index  ... more on this later ... 

 DO NOT assume a particular array layout (mapping)  
 Might be FORTRAN, might be C, might be something else entirely 
 Chosen at compile-time (C++ template meta-programming) 
 Advanced feature: query the array’s layout 
 Advanced feature: override the layout 



13 

Core : Views to Arrays 
Accessing array data members:  a(i0,i1,i2,i3,...) 

 Multi-index mapping performance 
 Heavily used and critical to performance 
 Considerable development effort invested in performance 

Especially so compilers’ vectorization can “see through” this operator 
 Completely hidden, non-trivial C++ meta-programming implementation 
 Compile-time dimensions improve multi-index mapping performance 

 Correctness checking: accessible and within bounds 
 Host not able to access Device memory (and vice-versa) 
 Multi-index bounds checking – in debug mode, and on the GPU 

 



14 

Core : Views to Arrays 
Allocation and reference-counting semantics 

 View objects are light-weight references to allocated arrays 
 Allocate: View< double * * [3][8] , Device > a(“A”,N,M);  

 Dimension [N][M][3][8] ; two runtime, two compile-time 
 “A” is a user supplied label used for error messages; need not be unique 
 Allocated array data resides in the Device’s memory space 
 Object ‘a’ is a reference to allocated array data 

 Assign: View<double**[3][8],Device> b = a ; 
 Object ‘b’ is a reference to the same allocated data; a shallow copy 
 By default views to arrays are reference counted 

 Destroy: view object goes out-of-scope or is reassigned  
 Last view (via reference counting) deallocates array data 

 
 
 



15 

Core : Views to Arrays 
Resizing and reallocation 

 Given: View< ArraySpec , Device > a(“label”,m0,m1,...); 

 Resize:  resize( a , n0 , n1 , ... ); 
 Allocate a new array with “label” and size n0*n1*...  
 Copy corresponding array data from original array to new array 
 Reassign the input View to the new array 
 All other views to the original array are unchanged 

 Reallocate:  realloc( a , n0 , n1 , ... ); 
 De-assign the input View; if last reference then array is deallocated 
 Assign input view to an allocated array with “label” and size n0*n1*... 
 All other views to the original array are unchanged 
 If no other view to original array this deallocates before allocating, 

avoids “spike” in allocated memory 

 
 
 



16 

Core : Views to Arrays 
‘const’ Views versus ‘const’ Arrays 

 Constant View: const View< ArraySpec , Device > a(...);  
 Object ‘a’ cannot be reassigned 
 Array data can be assigned via parentheses operator 
 Analogous to const pointer to non-const memory 

 Constant Array: View< const ArraySpec , Device> b = a ; 
 Object ‘b’ is a reference to the same allocated data; a shallow copy 
 Array data cannot be assigned – parentheses operator returns ‘const’ 
 Analogous to non-const pointer to const memory 

  Assignment (shallow copy) compatibility 
 OK : View< const ArraySpec, Device > = View< ArraySpec , Device > 
 ERROR : View< ArraySpec , Device > = View< const ArraySpec , Device > 

this will not compile with “no assignment operator” message 

 
 
 



17 

Core : Views to Arrays 
Pass view objects by value – they are small and portable 

 Pass view objects by value 
typedef View< ArraySpec , Device > my_array_type ; 
void my_function( my_array_type A );   // no & or * 
struct my_struct { my_array_type A ; }; // no & or * 

 Small – designed as references to allocated array data 
 Pointer to data + array shape (dimensions) 
 Assignment is a fast shallow copy + reference counting (by default) 

 Portable – intended to be passed by value to the device 
 View object API is portable between Host and Device code 

 Do not pass by reference (or pointer) from Host to Device 
 The reference / pointer is in the Host memory space 
 Using such a Host pointer on the Device is a memory error 

 
 



18 

Core : Views to Arrays 
Deep copy: Kokkos NEVER has a hidden, expensive deep-copy 

 Deep copy array data only when explicitly instructed by user 
 deep_copy( to_array , from_array ); 

 Problem: deep copy between different array layouts  
 Same memory space – requires permutation 
 Different memory spaces – also requires allocation of a temporary  

very expensive: allocation + deep copy + permutation + deallocation 

 Solution: Mirror the layout in the Host memory space 
 Avoid allocation, permutation, and deallocation 

View<ArraySpec,Device> a(...); 
View<ArraySpec,Device>::HostMirror b = create_mirror( a ); 

 ‘ ‘b’ has the Device’s array layout but is allocated in the Host space 
 



19 

Core : Views to Arrays 
Deep copy: Kokkos NEVER has a hidden, expensive deep-copy 

 Device ↔ Host deep copy pattern: 
typedef class View<ArraySpec,Device> MyViewType ; 

MyViewType a(“A”, ... );  

MyViewType::HostMirror  a_host = create_mirror( a ); 

deep_copy( a , a_host );   deep_copy( a_host , a );  

 Issue: if ‘a’ is already in the Host space then allocation of ‘a_host’ and 
subsequent deep_copy operations are problably unecessary  

 Avoiding an unnecessary allocation and deep-copy 
MyViewType::HostMirror  a_host = create_mirror_view( a ); 
 If Device uses Host memory then ‘a_host’ is simply another view of ‘a’ 
 Call to deep_copy becomes a no-op 



20 

Core : Views to Arrays 
Recommendation: Dictionary for your View types 
template< class Device > 
struct MyDictionary { 
  typedef View< ArraySpec_A , Device > array_A_type ; 
  typedef View< ArraySpec_B , Device > array_B_type ; 
  typedef View< ArraySpec_C , Device > array_C_type ; 
  typedef typename array_A_type::HostMirror array_A_host_type ; 
}; 

 Consolidate array type definitions  
 Documentation 
 Consistency 
 Allows single point of change for array spec and array layout  

 
 



21 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 

 
 



22 

Core : Views to Array – Advanced Features 
Optionally specifying a particular array layout 

 View< ArraySpec , Layout , Device >   (optional parameter)  
 Override default layout; e.g., force row-major or column-major 
 Access via parentheses operator is unchanged in user code 

 Standard array layouts for arrays with rank > 1 
 LayoutRight : right-most index is stride-one (~ C ordering) 
 LayoutLeft : left-most index is stride-one (~ FORTRAN ordering) 
 Array dimensions may be padded for cache-line alignment 

 Analogous to ‘LDA’ matrix parameter in the BLAS 

 Layout is an extension point for tiling, blocking, etc. 
 A research-enabling capability 
 Prototype exists for tiled matrices (e.g., MAGMA / PLASMA) 

 

 
 

 
 



23 

Core : Views to Array – Advanced Features 
Specifying behavioral attributes 

 Disable reference counting 
 View< ArraySpec , Device , Unmanaged > 
 Cannot allocate through an unmanaged view 
 Can assign an unmanaged view from a managed view 
 Can assign an unmanaged view from user-provided pointer 
 Dangerous advanced feature unlikely to significantly impact performance 

 Use GPU texture cache to speed up random access 
 View< const ArraySpec , Device, RandomRead > 
 If Device == ‘Cuda’ then parentheses operator uses GPU texture cache 
 Otherwise no special handling 

 An extension point 



24 

Core : Views to Array – Advanced Features 
Assignment of compatible views with behavioral attributes 

 Compatible assignment is a shallow copy 
View< ArraySpec , Device , Attribute > = View< ArraySpec , Device > 
 Compatible: same ‘ArraySpec’, ‘Device’, and ‘Layout’ 
 Also OK: ‘const ArraySpec’ = ArraySpec 
 Also OK: Different devices using the same memory space 

 Recommendation 
 Initially declare ‘view’ without behavior attributes 
 Add behavioral attributes via shallow copy to compatible view 

 



25 

Core : Views to Array – Advanced Features 
Aggregate value types 

 Examples of aggregate value types (pod ‘struct’) 
 std::complex 
 Automatic differentiation types 
 Stochastic bases coefficients types 

 Memory access pattern for aggregate members 
 Is forced to be an ‘array of structures’ 
 Loses coalesced memory access on GPU – degrades performance 

 Active research within UQ-on-GPU LDRD 
 View integrates aggregate value types into the array layout 
 Compile-time conversion ‘array of structures’ to ‘structure of arrays’ 
 Recover required memory access pattern on GPU 

 

 
 

 
 



26 

Core : Views to Array – Advanced Features 
Aggregate value types 

 Capabilities and Constraints 
 “scalar” type must be mappable to an array of an intrinsic type 

E.g., std::complex<T>  ↔  T[2] 
 For a given View the mapping may have a consistent runtime dimension  

E.g., View< myType<T> > : myType<T>  ↔  T[#] 

 Extension point requires detailed implementation knowledge  
 Optimal performance of View::operator() 
 Optimal memory access pattern  

Requires merging the aggregate type’s array mapping into the 
containing View’s array layout 

 Path forward to performantly support complex<T>  
 ... to be done ... 

 

 
 

 
 



27 

Core : Views to Array – Advanced Features 
Querying properties 
View::device_type  // Device in View< ArraySpec , Device > 
View::data_type      // ArraySpec in View< ArraySpec , ... > 
View::value_type    // ValueType in View< ValueType***[#][#][#], ... > 
View::scalar_type   // For intrinsic ValueType is ValueType 
                                    // For aggregate ValueType is the mapped intrinsic type 
View::const_{}_type          // const added to previous {}_type 
View::non_const_{}_type // const removed from previous {}_type 
 
View::array_layout    // Layout type; e.g., LayoutLeft, LayoutRight 
View::rank                   // total number of dimensions (one added for aggregate) 
View::rank_dynamic // number of dynamic dimensions 
View::is_managed     // enumerated value if view is reference counted 
 
View::scalar_type * View::ptr_on_device(); // Raw pointer to array data 



28 

Core : Views to Array – Advanced Features 
View ↔ pointer to raw memory 

 Wrapping your memory in a View 
 You must specify everything 

View< ArraySpec, Layout, Device, Unmanaged > a( pointer, N0, N1, ... ); 
 Unmanaged: Kokkos cannot manage your memory 
 Device: Your memory must be on this device 
 { ArraySpec , Layout , N0 , N1 , ... }: your memory must have this shape 

 Interoperability with legacy codes’ arrays 
 Option 1: Wrap your memory in a View 
 Option 2: 

 Declare Views with your specified array layout 
 Use ‘View::ptr_on_device()’ to query pointer and pass to legacy code 

 
 

 
 
 



29 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 

 
 



30 

Core : Parallel Dispatch of Functors 
Dispatch to manycore “Device” 

 ‘Threads’ Device : pthreads 
 Pool of threads created once and pinned to cores 
 Hardware detection and core pinning via hardware locality library (hwloc) 
 CPU and Intel Phi 

  ‘OpenMP’ Device : wrapper on OpenMP 
 Attempt to pin to cores via hwloc 
 CPU and Intel Phi 
 Cannot use both ‘Threads’ and ‘OpenMP’ – they will compete for cores 

 ‘Cuda’ Device : wrapper on NVidia’s CUDA 5.0 (or better) 
 Currently require Fermi (GPU capability 2.0 or better) 
 Eventually require Kepler (GPU capability 3.5 or better) 

 
 Intel Phi used in native mode (no offload) 

 

 
 
 



31 

Core : Parallel Dispatch of Functors 
Functor: function + calling arguments packaged in a C++ class 

 Common to C++ standard algorithms, Intel TBB, NVidia Thrust 
 Functor interface requirements for Kokkos 

template< class Device > // template on the device  
struct MyFunctor { 
  typedef Device device_type ; // Required: identify the device  
  KOKKOS_INLINE_FUNCTION  // Required: macro mapped to device  
    void operator()( ... ) const { /* ... */ } // Required: function to call in parallel 
  /* ... calling arguments are members of the class ... */ 
}; 

 Why Functor pattern? 
 Requires only C++1998 standard compliance 
 C++2011 Lambda syntax would be much prettier ... 

 



32 

Core : Parallel Dispatch of Functors 
Functor: function + calling arguments packaged in a C++ class 

 Functor object is copied to the device 
 This includes class member ‘calling arguments’ 
 View members must be objects 

Not references or pointers to Views (or anything else) 
 View objects are designed to be copied by value from Host to Device 

 Device’s threads concurrently call Functor::operator() 
 Functor::operator() and all functions that it calls  

 Must be compiled for that device 
 Must be marked with KOKKOS_INLINE_FUNCTION 

– Compiling Cuda: “__device__ __host__ inline” 
 A single Functor object is shared among all threads 

 functor::operator() must be ‘const’ 
 All called member functions must be ‘const’ 

 



33 

Core : Parallel Dispatch of Functors 
parallel_for dispatch with ‘nwork’ units of work 

 Simple example: AXPY ( y = a * x + y ) 
template< class Device > 
struct AXPY { 
  typedef Device device_type ; // run on this device 
  KOKKOS_INLINE_FUNCTION   
    void operator()( int iw ) const { Y(iw) += A * X(iw); }  
  const double A ; 
  const View<const double*,device_type> X ; // View object (not a reference) 
  const View<           double*,device_type> Y ; 
}; 
parallel_for( nwork , AXPY<device>( a , x , y ) ); 
 Thread parallel call to ‘operator()(iw)’ : iw ∈ [0,nwork) 
 Access array data with ‘iw’ to avoid thread race conditions 

 



34 

Core : Parallel Dispatch of Functors 
Asynchronous dispatch 

 Parallel dispatch initiates asynchronous parallel execution 
 ‘parallel_for’ returns before the functor completes 
 Device (e.g., Cuda) can have a work queue 

functor may be placed in queue and not even started 
 Dispatch creates a temporary internal copy of the functor 

released when the functor completes 

 Dispatched functors are sequenced 
 Previous functor guaranteed to complete before next functor starts 
 deep_copy(...) waits for previous functor to complete 

 Device::fence(); // wait for all functors to complete 
 Required when timing the execution of a functor 



35 

Core : Parallel Dispatch of Functors 
parallel_reduce dispatch with ‘nwork’ units of work 

 Simple example: DOT 
template< class Device > 
struct DOT { 
  typedef  DeviceType   device_type ; 
  typedef double value_type ;  // Require: reduction value type 
  KOKKOS_INLINE_FUNCTION 
    void operator()( int iw , value_type & contrib ) const 
      { contrib += y(iw) * x(iw); } // this thread’s contribution 
  const View<const double*,device_type> x , y ; 
  // ... to be continued ... 
}; 
parallel_reduce( nwork , DOT<device>(x,y) , result ); } 
 value_type can be a scalar, ‘struct’, or dynamic array 
 Result is output to the Host 

 



36 

Core : Parallel Dispatch of Functors 
parallel_reduce dispatch with ‘nwork’ units of work 

 Initialize and join threads’ individual contributions 
struct DOT {  // ... continued ... 
  KOKKOS_INLINE_FUNCTION 
    void init( value_type & contrib ) const { contrib = 0 ; } 
  KOKKOS_INLINE_FUNCTION 
    void join( volatile           value_type & contrib ,  
                      volatile const value_type & input ) const 
      { contrib = contrib + input ; } 
}; 
 Join threads’ contrib via Functor::join 
 ‘volatile’ to prevent compiler from optimizing away the join 

 Deterministic result ← highly desirable 
 Given the same device and # threads 
 Aligned memory prevents variations from vectorization 



37 

Core : Parallel Dispatch of Functors 
parallel_reduce dispatch with on-device serial finalization 

 Example: NORM2, just add a final ‘sqrt’ to the DOT 
struct NORM2 {  // ... similar to ‘DOT’ plus serial finalization 
  KOKKOS_INLINE_FUNCTION 
    void final( value_type & contrib ) const  
      { *result = sqrt( contrib ) ; }             // final serial ‘sqrt’ on device 
   View<double,device_type> result ; // scalar value allocated on device 
}; 
 If result is needed only on the device, avoid device-host-device copy 
 If final serial computation is needed 



38 

Core : Parallel Dispatch of Functors 
parallel_scan dispatch with ‘nwork’ units of work 

template< class Device > 
struct ExclusivePrefixSum { 
  typedef  DeviceType   device_type ; 
  typedef long int value_type ;  // Require: reduction value type 
  KOKKOS_INLINE_FUNCTION 
    void operator()( int iw , value_type & contrib , bool final ) const 
      { 
        contrib += x(iw); 
        if ( final ) { y(iw) = contrib ; } // Is scan value IF final pass 
      } 
  const View<long int *,device_type> x , y ; 
  // ... to be continued ... 
}; 
parallel_scan( nwork , ExclusivePrefixSum<device>(x,y) ); } 

 



39 

Core : Parallel Dispatch of Functors 
parallel_scan dispatch with ‘nwork’ units of work 

 Initialize and join threads’ individual contributions 
 Same ‘init’ and ‘join’ as the ‘parallel_reduce’ 

struct ExclusivePrefixSum {  // ... continued ... 
  KOKKOS_INLINE_FUNCTION 
    void init( value_type & contrib ) const { contrib = 0 ; } 
  KOKKOS_INLINE_FUNCTION 
    void join( volatile           value_type & contrib ,  
                      volatile const value_type & input ) const 
      { contrib = contrib + input ; } 
}; 

 Deterministic result ← highly desirable 
 Given the same device and # threads 
 Aligned memory prevents variations from vectorization 



40 

Core : Parallel Dispatch of Functors 
Thread teams – very new capability and being refined 
 Device has teams of threads 

 OpenMP 4.0 vocabulary: team of threads, league of teams 
 # Threads = # threads/team * # teams 
 A team works cooperatively and shares resources; e.g., cache memory  

template< class Device > 
struct MyFunctor { 
  KOKKOS_INLINE_FUNCTION void operator()( Device dev , ... ) const ; 
  size_t  shmem_size() const ; // Optional request for team-shared memory 
}; 
parallel_{for,reduce,scan}( ParallelWorkRequest , MyFunctor<device>( ... ) );  

 More complex and more control over performance 
 WorkRequest requests league and team sizes 

 Actual sizes may be constrained by device’s capabilities 
 E.g., maximum team size limited by NUMA, #cores, #hyperthreads 

 
 

 



41 

Core : Parallel Dispatch of Functors 
Why thread teams?  Opportunity for Performance Improvements 

 Threads within a team are tightly coupled 
 E.g., NVidia thread block = team 
 E.g., Intel hyperthreads reside within the same team 
 Teams have synchronization primitives (e.g., barrier) 
 Teams have fast transient team-shared memory 

 Uncooperative teams impede performance 
 Threads within a team will thrash their shared cache 

Cause eviction of each other’s cached memory 
 Intel Phi performs better without hyperthreads IF they do not cooperate 
 Intel Phi performs best with cooperating hyperthreads 
 NVidia has dramatic performance loss with uncooperative teams 
 

 



42 

Core : Parallel Dispatch of Functors 
Thread teams API: parallel_for, parallel_reduce, parallel_scan 

template< class Device > 
struct MyFunctor { 
  KOKKOS_INLINE_FUNCTION void operator()( Device dev , ... ) const 
  { 
      dev.league_rank();         // Which team within the league 
      dev.league_size();           // How many teams in the league 
      dev.team_rank();            // Which thread within the team 
      dev.team_size();             // How many threads within the team 
      dev.team_barrier();       // Synchronize threads within this team 
      i = dev.team_scan( n );  // Exclusive scan within this team 
      view_type a( dev , N0 , N1 , ... ); // Temp array in team-shared memory 
  } 
}; 

 Team-shared memory used == MyFunctor::shmem_size() 
 

 
 



43 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 

 
 



44 

Core : Parallel Correctness and Performance 
Avoid thread race conditions 

 Parallel dispatch of functor ‘f’ for ‘nwork’ units of work 
 Call f::operator()(iw) where iw ∈ [0,nwork) 
 Calls can be concurrent and in any order 

 Don’t have competing updates 
operator()( int iw ) const { y( iw / 2 ) = ( x(iw) + x(iw+1) ) * 0.5 ; } 

 Bad: last thread wins → random result 
 Ugly: concurrent update → corrupted result 

 Don’t read what is updated elsewhere  
operator()( int iw ) const { y(iw+1) = y(iw) + x(iw) ); } 

 Bad: last thread wins → cumulative random results 
 Ugly: concurrent update → compounding corrupted results 

 
 



Core : Parallel Correctness and Performance 
Parallel reductions to mitigate thread race conditions 

 parallel_reduce( nwork , f , & result );  
operator()( int iw , value_type & val ) const { val += x(iw) + x(iw) ; } 

 Kokkos orchestrates temporaries, functor calls, and ‘join’ calls 
 Reduction is thread-safe, deterministic, and O(log(#threads)) 

 Mapped reduction (scatter-reduce) problem: 
operator()( int iw ) const { y( imap(iw) ) += x(iw); } 

 Caveat: nondeterministic order → round-off for non-associativity  
 Ugly: concurrent update Y( imap(iw) ) → corrupted result 

 Mapped reduction solutions: 
 Atomic operations prevent corrupted result 

Still have round-off.  Possibly introduce performance bottleneck. 
 Rewrite algorithm as gather-reduce 

Mitigate round-off.  Create large temporary array. 
 

 
 
 



46 

Core : Parallel Correctness and Performance 
Atomic operations with best performance 

 Not the C++11 ‘atomic<T>’ functionality and interface 
 Three fundamental operations on intrinsic data types 

 32 and 64 bit integer and floating point types,  
1. old_val = atomic_exchange( address, new_val ); 
2. atomic_compare_exchange_strong( address, old_val , new_val ); 

 If *address == old_val then exchange 
3. old_val = atomic_fetch_add( address , value ); 

 old_val = *address ; *address += value ; 

 Likely to have non-deterministic results ← warning! 
 Non-deterministic ordering of atomic operations 
 Floating point addition is NOT associative 

 Expect atomics to be at least 2-3x slower that non-atomic 



Core : Parallel Correctness and Performance 
Atomic operations can introduce performance bottleneck 

 parallel_for( nwork , Dot<...>(x,y) );  
operator()( int iw ) const { atomic_fetch_add( &val , x(iw) * y(iw) ); } 

 Every thread attempts to update the same value 
 Reduction becomes fully serialized: O(#nwork) vs. O(log(#threads)) 

 Mapped reduction (scatter-reduce): 
operator()( int iw ) const { atomic_fetch_add( &y(imap(iw)), x(iw)); } 

 Update is partially serialized depending upon 
 “Density” of imap(*) 
 Capabilities of atomic units 

 Can be a performant solution given sparse and infrequent updates 
 
 
 

47 



Core : Parallel Correctness and Performance 
Avoid long divergent branches within a thread team 

  Branches impede vector-parallelism and thus performance 
void operator()( int iw ) const 
{ 
  if ( condition_A(iw) ) { ... } 
  else if ( condition_B(iw) ) { ... } 
  else if ( condition_C(iw) ) { ... } 
  else { ... } 
} 

 The entire vector unit (GPU warp) takes every branch 
 Branches to complex: compiler may not be able to vectorize 

 Performant if a team of threads follows the same branch 
 Different teams can follow different branches 
 Work space iw ∈ [0,nwork) is partitioned among teams; 

iw and iw+1 are typically in the same team 
 
 
 

48 



Core : Parallel Correctness and Performance 
Avoid redundant access to global memory, use local temporaries  

 Example: Gather finite element’s nodal coordinates 
void operator()( int ielem ) const 
{ 
  double node_coord[N][3] ; 
  for ( int j = 0 ; j < N ; ++j ) { 
    const int inode = view_elem_node(ielem,j); 
    for ( int k = 0 ; k < 3 ; ++k ) node_coord[j][k] = view_node_coord(j,k); 
  } 
  /* ... computation uses node_coord ... */ 

 A performance balancing act 
 Redundant access to global memory is expensive 
 Local temporaries consumes registers & L1 cache 

threads can compete for registers & thrash each others cache 
 Vendors’ diagnostic tools for performance tuning 
 Thread-team algorithms to potentially improve performance 

49 



Core : Parallel Correctness and Performance 
Strided and random access to global memory 

 Parallel read/write of global View data:  a(iw,i1,i2,...) 
 Leading index is the parallel work index 
 Array layout + work↔thread mapping chosen together for optimal 

memory access pattern 
 CPU (and Intel Phi) caching and vectorization 
 GPU (e.g., NVidia) warp coalescing  

 Random read of global View data 
 E.g., gathers and tables shared among threads 
 View< const ArraySpec , Device , RandomRead > 

 Cuda uses texture-fetch capability optimized for random access 
 
 
 
 
 

50 



51 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 

 
 



Core : Device Initialization and Finalization 
Hardware locality (hwloc) for manycore CPU and Xeon Phi 

 Kokkos::hwloc  Wraps OpenMPI project’s HWLOC library 
 Portable query of core topology 
 Portable pinning of threads to cores 

 Capacity = #NUMA * #core/NUMA * #hyperthreads/core 
 hwloc::get_available_numa_count() 
 hwloc::get_available_cores_per_numa() 
 hwloc::get_available_threads_per_core() 

 
 

52 



Core : Device Initialization and Finalization 
Threads and OpenMP devices for manycore CPU and Xeon Phi 

Device::initialize( team_count , threads_per_team , 
                                 use_numa_count = 0, use_cores_per_numa = 0); 
 Default: use all available NUMA regions and cores 
 Each team is assigned a set of cores within a NUMA region 

 Spawn and pin team’s threads to these cores 

 A team’s threads are spread across its cores 
 Team has 4 cores and 4 threads then 1 thread/core 
 Team has 2 cores and 8 threads then 4 threads/core 
 Don’t define threads/core > hwloc::core_capacity() 

 Device::finalize() 
 Destroy spawned threads 

 

53 



Core : Device Initialization and Finalization 
Cuda Device 

 Cuda::initialize()  OR  Cuda::initialize( Cuda::SelectDevice(#) ) 
 Default is device #0 

 Only one Cuda device per MPI process 
 Given two devices on a node use two MPI processes 
 Each MPI process on the node should select a different device 
 NVidia Kepler devices can be shared (have not tried this) 

 Query available devices 
 std:vector<unsigned> Cuda::detect_device_arch() 
 Values match __CUDA_ARCH__ specification 

 

54 



55 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 

 
 



56 

Performance Evaluation 

 Using Sandia Computing Research Center Testbed Clusters 
• Compton: 32nodes 

• 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled 
• 2x Intel Xeon Phi 57core (pre-production) 
• ICC 13.1.2, Intel MPI 4.1.1.036 

• Shannon: 32nodes 
• 2x Intel Xeon E5-2670, hyperthreading disabled 
• 2x NVidia K20x 
• GCC 4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct 

 Absolute performance “unit” tests 
• Evaluate parallel dispatch/synchronization efficiency 
• Evaluate impact of array access patterns and capabilities 

 Mini-application : Kokkos vs. ‘native’ implementations 
• Evaluate cost of portability 

 

 
 
 



Performance Test: Modified Gram-Schmidt 
Simple stress test for bandwidth and reduction efficiency 

57 

• Simple sequence of vector-reductions and vector-updates 
• To orthonormalize 16 vectors 

• Performance for vectors > L3 cache size 
• NVDIA K20x     : 174 GB/sec = ~78% of theoretical peak 
• Intel Xeon         :   78 GB/sec = ~71% of theoretical peak 
• Intel Xeon Phi  :   92 GB/sec = ~46% of achievable peak 

 

0
20
40
60
80

100
120
140
160
180
200

1E+05 1E+06 1E+07

R+
W

 B
an

dw
id

th
 G

B/
se

c 

Double Precision Vector Length (16 vectors) 

K20x (with ECC)

Xeon 1thread/core

Xeon Phi 56core x
4thread/core

Xeon Phi 56core x
1thread/core

Intel Xeon: E5-2670 w/HT 
Intel Xeon Phi: 57c @ 1.1GHx 
NVidia K20x 
 
Results presented here are for 
pre-production Intel Xeon Phi 
co-processors (codenamed 
Knights Corner) and pre-
production versions of Intel’s 
Xeon Phi software stack. 
Performance and configuration 
of the co-processors may be 
different in final production 
releases. 



Performance Test: Molecular Dynamics 
Lennard Jones force model using atom neighbor list 

58 

 Solve Newton’s equations for N particles 

 Simple Lennard Jones force model: 

 Use atom neighbor list to avoid N2 computations 

 

 

 

 

 Moderately compute bound computational kernel 

 On average 77 neighbors with 55 inside of the cutoff radius 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if ( |r_ij| < r_cut ) 
    f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 ) 
} 
f(i) = f_i; 



Performance Test: Molecular Dynamics 
Lennard Jones (LJ) force model using atom neighbor list 

59 

 Test Problem (#Atoms = 864k, ~77 neighbors/atom) 
 Neighbor list array with correct vs. wrong layout 

 Different layout between CPU and GPU 
 Random read of neighbor coordinate via GPU texture fetch  

 
 
 
 
 

 
 Large loss in performance with wrong layout 

 Even when using GPU texture fetch 

0
20
40
60
80

100
120
140
160
180

Xeon Xeon Phi K20x

G
Fl

op
/s

 

correct layout
(with texture)

correct layout
without texture

wrong layout
(with texture)

Intel Xeon: E5-2670 w/HT 
Intel Xeon Phi: 57c @ 1.1GHx 
NVidia K20x 
 
 
Results presented here are for 
pre-production Intel Xeon Phi 
co-processors (codenamed 
Knights Corner) and pre-
production versions of Intel’s 
Xeon Phi software stack. 
Performance and configuration 
of the co-processors may be 
different in final production 
releases. 



MPI+X Performance: MiniMD 

60 

 Comparing X = OpenMPI vs. Kokkos , one MPI process / device 
• Using GPU-direct via MVAPICH2; no native Cuda version to compare 

 Strong scaling test: 2,048k atoms, ~77 neighbors/atom 
 
 
 
 

 



61 

MPI+X Performance Test: MiniFE 
 Conjugate Gradient Solve of a Finite Element Matrix 

 Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via MVAPICH2) 

 Weak scaling with one MPI process per device 
• Except on Xeon: OpenMP requires one process/socket due to NUMA 
• 8M elements/device 

 Kokkos performance 
• 90% or better of “native” 
• Improvements ongoing  

 



62 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 

 
 



63 

Core : Plans 
Research & development 

 Mantevo mini-applications (mini-drivers) 
 Functor::operator()( Device )  interface 

 Portable access to Cuda block & shared memory capabilities 
 Team collectives under development 
 Prototyped with ‘Cuda’ and ‘Threads’ devices  

 Aggregate scalar types 
 complex, stochastic, automatic differentiation 

 Generalize tiled (blocked) layouts 
 Task-data-vector unified parallelism: Kokkos/Qthreads LDRD 

 Enhance Kokkos API to parallel dispatch task-graph of functors 
 Enhance Qthreads to schedule functors on teams of threads 
 Views for threaded graph data structures and algorithms 
 Make it all portable and performant (Xeon Phi and GPU) 

 



64 

Core : Plans 
Incremental migration strategy for C++ applications and libraries 

 Replace array allocations with Views (in Host space) 
• Specify layout(s) to match existing array layout(s) 
• Extract pointers to allocated array data and use them in legacy code 

 Replace array access with Views 
• Replace legacy array data structure(s) with View 
• Access data members via View API 

 Replace functions with Functors, run in parallel on Host 
• Hard part: finding and extracting your functions’ hidden states 

 improve code quality 
• Hard part: finding and fixing remaining thread-unsafe (race) conditions 

most easily using atomic operations 

 Set device to ‘Cuda’ and run on GPU 
• Hard part: thread scalability, some functors may require redesign 

 



65 

Outline 
 Core: Fundamental Concepts 
 Core: Views to Arrays 
 Core: Views to Arrays – Advanced Features 
 Core: Parallel Dispatch of Functors 
 Core: Parallel Correctness and Performance 
 Core: Device Initialization and Finalization 
 Core: Performance Evaluation 
 Core: Plans 
 Example: Unordered map global-to-local ids 
 Example: Finite element integration and nodal summation 
 Example: Particle interactions in non-uniform neighborhoods 



66 

Example Source Code 
In the Trilinos git repository: 

 Example: Unordered map global-to-local ids 
 ./packages/kokkos/example/global_2_local_ids/ 

 Example: Finite element integration and nodal summation 
 ./packages/kokkos/example/feint/ 

 Example: Particle interactions in non-uniform neighborhoods 
 ./packages/kokkos/example/md_skeleton/ 

 Configuring ‘cmake’ on testbeds to build examples: 
 ./packages/kokkos/config/configure_compton_cpu.sh 
 ./packages/kokkos/config/configure_compton_mic.sh 
 ./packages/kokkos/config/configure_shannon.sh 


	Kokkos Tutorial��A Trilinos package for manycore performance portability
	Acknowledgements and a little History
	Goals: Portable, Performant, and Usable
	Collection of Subpackages / Libraries
	Outline
	Core: Fundamental Concepts�Diversity of devices and associated performance requirements
	Core: Fundamental Concepts�Two abstractions: (1) Host/Devices
	Core: Fundamental Concepts�Two abstractions: (2) Multidimensional Arrays
	Core: Fundamental Concepts�Implementation and similar work
	Outline
	Core : Views to Arrays�View to multidimensional array of “value” type in device memory
	Core : Views to Arrays�View to multidimensional array of “value” type in device memory
	Core : Views to Arrays�Accessing array data members:  a(i0,i1,i2,i3,...)
	Core : Views to Arrays�Accessing array data members:  a(i0,i1,i2,i3,...)
	Core : Views to Arrays�Allocation and reference-counting semantics
	Core : Views to Arrays�Resizing and reallocation
	Core : Views to Arrays�‘const’ Views versus ‘const’ Arrays
	Core : Views to Arrays�Pass view objects by value – they are small and portable
	Core : Views to Arrays�Deep copy: Kokkos NEVER has a hidden, expensive deep-copy
	Core : Views to Arrays�Deep copy: Kokkos NEVER has a hidden, expensive deep-copy
	Core : Views to Arrays�Recommendation: Dictionary for your View types
	Outline
	Core : Views to Array – Advanced Features�Optionally specifying a particular array layout
	Core : Views to Array – Advanced Features�Specifying behavioral attributes
	Core : Views to Array – Advanced Features�Assignment of compatible views with behavioral attributes
	Core : Views to Array – Advanced Features�Aggregate value types
	Core : Views to Array – Advanced Features�Aggregate value types
	Core : Views to Array – Advanced Features�Querying properties
	Core : Views to Array – Advanced Features�View ↔ pointer to raw memory
	Outline
	Core : Parallel Dispatch of Functors�Dispatch to manycore “Device”
	Core : Parallel Dispatch of Functors�Functor: function + calling arguments packaged in a C++ class
	Core : Parallel Dispatch of Functors�Functor: function + calling arguments packaged in a C++ class
	Core : Parallel Dispatch of Functors�parallel_for dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�Asynchronous dispatch
	Core : Parallel Dispatch of Functors�parallel_reduce dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�parallel_reduce dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�parallel_reduce dispatch with on-device serial finalization
	Core : Parallel Dispatch of Functors�parallel_scan dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�parallel_scan dispatch with ‘nwork’ units of work
	Core : Parallel Dispatch of Functors�Thread teams – very new capability and being refined
	Core : Parallel Dispatch of Functors�Why thread teams?  Opportunity for Performance Improvements
	Core : Parallel Dispatch of Functors�Thread teams API: parallel_for, parallel_reduce, parallel_scan
	Outline
	Core : Parallel Correctness and Performance�Avoid thread race conditions
	Core : Parallel Correctness and Performance�Parallel reductions to mitigate thread race conditions
	Core : Parallel Correctness and Performance�Atomic operations with best performance
	Core : Parallel Correctness and Performance�Atomic operations can introduce performance bottleneck
	Core : Parallel Correctness and Performance�Avoid long divergent branches within a thread team
	Core : Parallel Correctness and Performance�Avoid redundant access to global memory, use local temporaries 
	Core : Parallel Correctness and Performance�Strided and random access to global memory
	Outline
	Core : Device Initialization and Finalization�Hardware locality (hwloc) for manycore CPU and Xeon Phi
	Core : Device Initialization and Finalization�Threads and OpenMP devices for manycore CPU and Xeon Phi
	Core : Device Initialization and Finalization�Cuda Device
	Outline
	Performance Evaluation
	Performance Test: Modified Gram-Schmidt�Simple stress test for bandwidth and reduction efficiency
	Performance Test: Molecular Dynamics�Lennard Jones force model using atom neighbor list
	Performance Test: Molecular Dynamics�Lennard Jones (LJ) force model using atom neighbor list
	MPI+X Performance: MiniMD
	MPI+X Performance Test: MiniFE�	Conjugate Gradient Solve of a Finite Element Matrix
	Outline
	Core : Plans�Research & development
	Core : Plans�Incremental migration strategy for C++ applications and libraries
	Outline
	Example Source Code�In the Trilinos git repository:

