
Thread-scalable programming with Tpetra and Kokkos
Introduction

Michael A. Heroux, Roger Pawlowski
Sandia National Laboratories

Collaborators:

Erik Boman, Carter Edwards, James, Elliot, Mark Hoemmen, Siva Rajamanickam,
Keita Teranishi, Christian Trott, Alan Williams (SNL)

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. !

Factoring 1K to1B-Way Parallelism

• Why 1K to 1B?
– Clock rate: O(1GHz) → O(109) ops/sec sequential

– Terascale: 1012 ops/sec → O(103) simultaneous ops

•  1K parallel intra-node.
– Petascale: 1015 ops/sec → O(106) simultaneous ops

•  1K-10K parallel intra-node.
•  100-1K parallel inter-node.

– Exascale: 1018 ops/sec → O(109) simultaneous ops
•  1K-10K parallel intra-node.
•  100K-1M parallel inter-node.

Three Parallel Computing Design Points

• Terascale Laptop: Uninode-Manycore

• Petascale Deskside: Multinode-Manycore

• Exascale Center: Manynode-Manycore

Common Element

Goal: Make
Petascale = Terascale + more
Exascale = Petascale + more

Most applications will not adopt an exascale programming
strategy that is incompatible with tera and peta scale.

3

SPMD+X Parallel Programming Model:
Multi-level/Multi-device

Stateless, vectorizable, efficient
computational kernels!

run on each core!

Intra-node (manycore)
parallelism and resource

management!

Node-local control flow (serial)!

Inter-node/inter-device (distributed)
parallelism and resource management!

Threaded Processes!

Communicating
Sequential Processes!

Stateless kernels!

computational
node with

manycore CPUs!
and / or!
GPGPU!

network of
computational

nodes!

4

HPC Value-Added

Broad Community
Efforts

New X Options	

Example:

Parallex/HPX	

New X Options	

Example:

Parallex/HPX	

Reasons for SPMD/MPI Success?

• Portability? Standardization? Momentum? Yes.
• Separation of Parallel & Algorithms

concerns? Big Yes.
• Preserving & Extending Sequential

Code Investment? Big, Big Yes.

• MPI was disruptive, but not revolutionary.
– A meta layer encapsulating sequential code.

• Enabled mining of vast quantities of existing code and logic.
– Sophisticated physics added as sequential code.

• Ratio of science experts vs. parallel experts: 10:1.

• Key goal for new parallel apps: Preserve these dynamics.

5

Overarching (unachievable) Goal:
Domain Scientists Write No Parallel Code

6

Reasoning About Parallelism

7

• First step of parallel application design:
–  Identify parallel patterns.

• Example: 2D Poisson (& Helmholtz!)
– SPMD:

• Halo Exchange.
• AllReduce (Dot product, norms).

– SPMD+X:
• Much richer palette of patterns.
• Choose your taxonomy.
• Some: Parallel-For, Parallel-Reduce,

Task-Graph, Pipeline.

Thinking in Patterns

Thinking in Parallel Patterns

• Every parallel programming environment supports basic
patterns: parallel-for, parallel-reduce.
– OpenMP:

#pragma omp parallel for
for (i=0; i<n; ++i) {y[i] += alpha*x[i];}

–  Intel TBB:
parallel_for(blocked_range<int>(0, n, 100), loopRangeFn(…));

– CUDA:
loopBodyFn<<< nBlocks, blockSize >>> (…);

• Thrust, …
• Cray Autotasking (April 1989)

c.....do parallel SAXPY	

CMIC$ DO ALL SHARED(N, ALPHA, X, Y)	

CMIC$1 PRIVATE(i)	

 do 10 i = 1, n	

 y(i) = y(i) + alpha*x(i)	

 10 continue	

Why Patterns

• Essential expressions of concurrency.
• Describe constraints.
• Map to many execution models.
• Example: Parallell-for (also called Map pattern).

– Can be mapped to SIMD, SIMT, Threads, SPMD.
– Future: Processor-in-Memory (PIM).

• Lots of ways to classify them.

Domain Scientist’s Parallel Palette
• MPI-only (SPMD) apps:

–  Single parallel construct.
–  Simultaneous execution.
–  Parallelism of even the messiest serial code.

• Next-generation PDE and related applications:

–  Internode:
•  MPI, yes, or something like it.
•  Composed with intranode.

–  Intranode:
•  Much richer palette.
•  More care required from programmer.

• What are the constructs in our new palette?

Obvious Constructs/Concerns

• Parallel for:
 forall (i, j) in domain {…}
– No loop-carried dependence.
– Rich loops.
– Use of shared memory for temporal reuse, efficient

device data transfers.
• Parallel reduce:

forall (i, j) in domain {
 xnew(i, j) = …;

 delx+= abs(xnew(i, j) - xold(i, j));
}
– Couple with other computations.
– Concern for reproducibility.

Programming Environment Deficiencies

13

Needs: Data management

• Break storage association:
–  Physics i,j,k should not be storage i,j,k.

•  Layout as a first-class concept:
– Construct layout, then data objects.
– Chapel has this right.

• Better NUMA awareness/resilience:
–  Ability to “see” work/data placement.
–  Ability to migrate data: MONT

• Example:
–  4-socket AMD with dual six-core per socket (48 cores).
–  BW of owner-compute: 120 GB/s.
–  BW of neighbor-compute: 30 GB/s.
– Note: Dynamic work-stealing is not as easy as it seems.

• Maybe better thread local allocation will mitigate impact.

Multi-dimensional Dense Arrays

• Many computations work on data stored in multi-dimensional
arrays:
– Finite differences, volumes, elements.
– Sparse iterative solvers.

• Dimension are (k,l,m,…) where one dimension is long:
– A(3,1000000)
– 3 degrees of freedom (DOFs) on 1 million mesh nodes.

• A classic data structure issue is:
– Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) … or
– By node: A(1,1), A(1,2), …

• Adherence to raw language arrays forces a choice.

With C++ as your hammer,
everything looks like your thumb.

16

Multi-dimensional Dense Arrays

• Many computations work on data stored in multi-dimensional
arrays:
– Finite differences, volumes, elements.
– Sparse iterative solvers.

• Dimension are (k,l,m,…) where one dimension is long:
– A(3,1000000)
– 3 degrees of freedom (DOFs) on 1 million mesh nodes.

• A classic data structure issue is:
– Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) … or
– By node: A(1,1), A(1,2), …

• Adherence to raw language arrays force a choice.

Struct-of-Arrays vs. Array-of-Structs

A False Dilemma

Compile-time Polymorphism

Kokkos functor
(e.g., AxpyOp)

Serial
Kernel

+Serial OpenMP
Kernel
 +OMP

Cuda
Kernel +Cuda

Future
Kernel

+Future

. . .	

A Bit about Functors
Classic function “ComputeWAXPBY_ref.cpp”

/*!
 Routine to compute the update of a vector with the sum of two
 scaled vectors where: w = alpha*x + beta*y

 @param[in] n the number of vector elements (on this processor)
 @param[in] alpha, beta the scalars applied to x and y respectively.
 @param[in] x, y the input vectors
 @param[out] w the output vector.
 @return returns 0 upon success and non-zero otherwise
*/
int ComputeWAXPBY_ref(const local_int_t n, const double alpha, const double *
const x, const double beta, const double * const y, double * const w) {

for (local_int_t i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i];

 return(0);
}

A Bit about Functors
Functor-calling function “ComputeWAXPBY.cpp”

/*!
 Routine to compute the update of a vector with the sum of two
 scaled vectors where: w = alpha*x + beta*y

 @param[in] n the number of vector elements (on this processor)
 @param[in] alpha, beta the scalars applied to x and y respectively.
 @param[in] x, y the input vectors
 @param[out] w the output vector.
 @return returns 0 upon success and non-zero otherwise
*/
int ComputeWAXPBY(const local_int_t n, const double alpha, const double * const x, const
double beta, const double * const y, double * const w) {

// for (local_int_t i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i];
 tbb::parallel_for(tbb::blocked_range<size_t>(0,n), waxpby_body(n, alpha, x, beta, y, w));

 return(0);
}

A Bit about Functors
Functor “waxpby_body”

#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h”
 class waxpby_body{
 size_t n_;
 double alpha_;
 double beta_;
 const double * const x_;
 const double * const y_;
 double * const w_; public:
 waxpby_body(size_t n, const double alpha, const double * const x, const double beta,
const double * const y, double * const w)
 : n_(n), alpha_(alpha), x_(x), beta_(beta), y_(y), w_(w) { }
 void operator() (const tbb::blocked_range<size_t> &r) const {
 const double * const x = x_;
 const double * const y = y_;
 double * const w = w_;
 double alpha = alpha_;
 double beta = beta_;
 for(size_t i=r.begin(); i!=r.end(); i++) w[i] = alpha * x[i] + beta * y[i];
 }
};

A Bit about Functors Lambdas
Lambda version “ComputeWAXPBY.cpp”

/*!
 Routine to compute the update of a vector with the sum of two
 scaled vectors where: w = alpha*x + beta*y

 @param[in] n the number of vector elements (on this processor)
 @param[in] alpha, beta the scalars applied to x and y respectively.
 @param[in] x, y the input vectors
 @param[out] w the output vector.
 @return returns 0 upon success and non-zero otherwise
*/
int ComputeWAXPBY(const local_int_t n, const double alpha, const double * const x, const
double beta, const double * const y, double * const w) {

// for (local_int_t i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i];
tbb::parallel_for (size_t(0), n, [=](size_t i) {w[i] = alpha * x[i] + beta * y[i];});
return(0);
}

Transition to Kokkos

Kokkos is the Trilinos foundation for thread-scalable
programming

