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Land Ice Simulations of Greenland and A

Greenland and Antarctica ice sheets
= store most of the fresh water on earth and
= mass loss from these ice sheets

significantly contributes to sea-level rise.

The simulation of temperature and velocity
of the ice sheets gives rise to large highly
nonlinear systems of equations with a strong
coupling of the variables.

Taken from |https://unsplash.com]

The simulations are also characterized by:
= The mesh structure:
= Volume mesh is obtained by
extrusion of the surface mesh
= 2D domain decomposition.
= Highly anisotropic.
= Specific combination of Dirichlet,
Neumann, and Robin boundary
conditions.
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Model Problem & Domain Decomposition

Consider a Poisson model problem on [0, 1]?:

—Au=1f inQ,
u=0 on 0.

Discretize (e.g., using finite elements)

Kx = b.

Overlapping domain decomposition
Overlapping Schwarz methods are based
on overlapping decompositions of the
computational domain €.

Overlapping subdomains i, ..., Q}, can be
constructed by recursively adding layers of
elements to nonoverlapping subdomains
Q1, ..., Q.

= Construct a parallel scalable

preconditioner M~ using overlapping
Schwarz domain decomposition methods.
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Two-Level Schwarz Preconditioners

One-Level Schwarz preconditioner

Overlap § = 1h Restriction R; to Q!

=

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M—l

N
— T pe—1
s K = RTK'RiK,

i=1
where R; and R,.T are restriction and prolongation
operators corresponding to Q?, and K; := R,-KR,.T.
— algebraic

Condition number estimate:

1
Pos_ 1)< C(1+ —
K (Pos—1) < (+H6)

with subdomain size H and the width of the overlap §.

n, M. Perego, S. Rajamanickam, I. Yamazaki (TU Delft, SNL)

Adding a Lagrangian coarse space

Coarse triangulation Q1 basis function

The two-level overlapping Schwarz operator reads

M—l

N
—14T T e—1
os oK = OKIOTK +>  RTKIRK,
N—_—— i=1

coarse level — global .
first level — local

where ® contains the coarse basis functions and
Ko := ®T K®; cf., e.g., Toselli, Widlund (2005).

A Lagrangian coarse basis requires a coarse
triangulation (geometric information) — not algebraic

H
= k(Pos—2) < C <1 + X)

TUG 2021




Extension-Based GDSW Coarse Spaces

Restr. of the null space Energy minimizing ext.

Non-overlapping DD Ident. vertices & edges

In GDSW (Generalized—Dryja—Smith—Widlund)
coarse spaces, the coarse basis functions are chosen
as energy minimizing extensions of functions $r
that are defined on the interface I':

. [ — K K or } _ [ @ }
The functions ®r are restrictions of the null space
of global Neumann matrix to the edges, vertices,
and, in 3D, faces (partition of unity) of the
non-overlapping decomposition.

A. Heinlein, M. Perego, S. Rajamanickam, |. Yamazaki (TU Delft, SNL)

The condition number of the GDSW operator
is bounded by

_ H H\\?
K (MghswK) < C (1+ 5) (1—|—|og (;» :
cf. Dohrmann, Klawonn, Widlund (2008),
Dohrmann, Widlund (2009, 2010, 2012).

— We only obtain the exponent 2 for very
irregular subdomains.

— Scalable and algebraic!
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Weak Scalability up to 64k MPI Ranks / 1.7b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension) RGDSW (Reduced dimension GDSW)

Heinlein, Klawonn, Rheinbach, Widlund (2019). Non-overlapping DD Ident. vertices & edges

© GDSW lterations
© RGDSW Option 1 Iterations |
© RGDSW Option 2.2 Iterations.
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— ﬁ
o é Reduced dimension GDSW coarse spaces are

constructed from nodal interface functions (different
#Cores partition of unity); cf. Dohrmann, Widlund (2017).

Rajamanickam, |. Yamazaki (TU Delft, S TUG 2021




Software Framework for nd lce Simulations

Si.INOS

||https://github.com/SNLComputation/AIbany| |

FROSch  (Fast and  Robust

Overlapping Schwarz) precondition-
ers through Stratimikos/Thyra

interface.
TUG 2021
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Software Framework for nd lce Simulations

Si.INOS

‘ |https://github.com/SNLComputation/AIbany| |

Robust | 'Hardware

FROSch  (Fast and
If not mentioned otherwise, the simulations were performed

Overlapping Schwarz) precondition-
ers through Stratimikos/Thyra
on the Cori supercomputer (NERSC).

interface.
TUG 2021
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Velocity Problem

We use a first-order (or Blatter-Pattyn) approximation |
of the Stokes equations
{ —V-(2ué) = —pilgldks,
-V-(2ué) = —pilgloys,

with the p; the ice density, the ice surface elevation
s(x, y), the gravity acceleration g, and strain rates €;
and éy; cf. Blatter (1995) and Pattyn (2003).

Antarctica mesh & domain decomposition.

Nonlinear viscosity model
The ice viscosity . is modeled using Glen’s law

1—n

po= ZAMTET

where A(T) = c1e®?" is a temperature-dependent rate factor,
n = 3 is the power-law exponent, and the effective strain rate €.

Velocity u solution

See Perego, Gunzburger, Burkardt (2012) and Tezaur, Perego, Salinger, Tuminaro, Price (2015) for more details.

n, M. Perego, S. Rajamanickam, I. Yamazaki (TU Delft, SNL) TUG 2021




Velocity Problem

We use a first-order (or Blatter-Pattyn) approximation
of the Stokes equations
{ -V -(2ué&) = —pilgloks,
=V-(2né&) = —pilg|dys,
with the p; the ice density, the ice surface elevation
s(x, y), the gravity acceleration g, and strain rates €;
and éy; cf. Blatter (1995) and Pattyn (2003).

Antarctica mesh & domain decomposition.

Boundary conditions

= Upper surface: €, =0, j=1,2
(stress-free Neumann condition)

= Lower surface: 2puc€;-n+ pfu=0, j=1,2
(sliding Robin condition with friction coefficient 3)

= [ateral boundary: 2pé; - n = %gH (p; — pwrz) m,j=12
(open-ocean Neumann condition with density of ocean
water p,, and ratio of submerged ice thickness r)

Velocity u solution

See Perego, Gunzburger, Burkardt (2012) and Tezaur, Perego, Salinger, Tuminaro, Price (2015) for more details.
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Antarctica Velocity Problem — Comparison of Coarse Spaces (Strong Scaling)

Without rotational coarse basis functions (2 rigid body modes)

GDSW RGDSW
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vg (nl its) setup solve | dim Vg (nl its setup solve

)
512 4598 40.8 (11) 15.36s 12.38s 1834 426 (11) 14.99s 12.50s
1024 9306 43.3 (11) 5.80s 6.27s 3740 445 (11) 5.65s  6.08s
2048 18634 41.7 (11) 3.27s 2.91s 7586 42.7 (11) 3.11s  2.79s
4006 | 37184 41.4 (11) 2.59s  2.07s | 15324 425 (11) 1.07s  1.54s
8192 72964  39.5 (11) 1.51s 1.84s | 30620 42.0 (11) 1.20s 1.16s
With rotational coarse basis functions (3 rigid body modes)

GDSW RGDSW
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vg (nl its) setup solve | dim Vp (nl its setup solve

)

512 6897 355 (11) 15.77s 11.21s | 2751 407 (11) 15.23s 12.22s
1024 | 13959 35.6 (11) 6.16s 5.78s | 5610 429 (11) 5.65s  6.04s
2048 | 27951 33.5(11) 3.78s  3.45s | 11379 422 (11) 3.17s  2.81s
4096 | 55776 31.8(11) 221s  3.80s | 22986 443 (11) 1.95s 2.70s

)

8192 | 109446 29.3 (11) 2.49s 5.33s | 45930 40.8 (11 1.19s 3.13s
Problem: Velocity Mesh:  Antarctica Size:  35.3m degrees
4 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Antarctica Velocity Problem — Weak Scalability

= Weak scalability study for an increasing
horizontal mesh resolution.
= 1 OpenMP thread: From 32 to 8192
processor cores
= 4 OpenMP threads: From 128 to
32768 processor cores
= The number of vertical layers is fixed to 20.

= P1 FEM spatial discretization. Antarctica mesh & domain decomposition.
1 OpenMP thread 4 OpenMP threads

MPI mesh # avg. its avg. avg. avg. its avg. avg.

ranks dofs (nl its) setup solve (nlits) setup  solve

32 | 16km | 22m || 241 (11) 11.97s 947s | 235(11) 4.15s 3.25s
128 | 8km | 88m || 32.0 (10) 14.08s 8.71s | 32.0 (10) 4.97s 2.85s
512 | 4km | 353m || 426 (11) 14.99s 12.50s | 42.6 (11) 550s 4.02s

2048 | 2km | 141.5m || 61.0 (11) 22.83s 19.76s | 61.0 (11) 7.36s 6.55s
8192 | 1km | 566.1m || 67.1 (14) 17.36s 22.91s | 67.1 (14) 6.20s 7.39s

Problem: Velocity Meshes: Antarctica Discretization: P1 FE  Coarse space: RGDSW
20 vert. layers

A. Heinlein, M. Perego, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) TUG 2021




Temperature Problem
The steady state enthalpy equation reads
V-q(h)+u-Vh:4ue§
with the enthalpy growing linearly with the water content ¢
b pic (T — Ty), for cold ice (h < hy,),
] hm+ pwl @,  for temperate ice.
the melting enthalpy h,, := p,,c(T,, — To), the uniform
reference temperature Ty, and the enthalpy flux
KV, for cold ice (h < hp,), :
q(h) = Ikl Yh, + Li(h f . Greenland mesh & domain decomposition
e Vhm + pwLj(h), for temperate ice.

228 20 285 260 25

270 2731

Water flux term

The water flux term

1
i(h) = = (pw = pi)kod" 8

w

describes the percolation of water driven by gravity;
_ cf. Schoof and Hewitt (2016, 2017).
Temperature T solution

See Perego et al. (in preparation) and Heinlein et. al (submitted 2021) for more details.
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Temperature Problem

The steady state enthalpy equation reads
V-q(h)+u-Vh=4uée
with the enthalpy growing linearly with the water content ¢
b { pic (T — Ty), for cold ice (h < hy,),
hm + pwl @,  for temperate ice.
the melting enthalpy h,, := p,,c(T,, — To), the uniform
reference temperature Ty, and the enthalpy flux

k .
a(h) = g Vh, for cold ice (h < hyp), T .
pf(q Vh, + prj(h)7 for temperate ice. reenland mes| omain decomposition.
228 2w w5 0 s 20 om Boundary conditions

= Upper surface: h = p;jc(Ts — Tp)
(Dirichlet boundary condition)
= Bed: m= G+ pvVu?2+vZ—kVT-n,
m(T = Tm)=0, T <O0.
Temperature T solution (Stefan boundary condition with melting rate m)

See Perego et al. (in preparation) and Heinlein et. al (submitted 2021) for more details.
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Greenland Temperature Problem — One-Level Schwarz VS Two-Level Schwarz

one-level Schwarz preconditioner

one layer of algebraic overlap | two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.

ranks its  setup solve its  setup solve

512 | 18.1 (11) 0.42s 0.35s | 17.1 (11) 0.51s 0.40s

1024 | 23.7 (11) 0.25s 0.25s | 22.1 (11) 0.27s 0.27s

2048 | 29.6 (11) 0.16s 0.17s | 27.6 (11) 0.23s 0.20s

4006 | 39.8 (11) 0.15s 0.15s | 35.6 (11) 0.17s 0.17s

RGDSW preconditioner

one layer of algebraic overlap | two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.

ranks avg. its  setup solve avg. its  setup solve

512 | 19.5 (11) 0.44s 0.41s | 18.7 (11) 0.55s 0.46s

1024 | 25.2 (11) 0.28s 0.29s | 23.9 (11) 0.35s 0.33s

2048 | 31.5(11) 0.26s 0.24s | 29.5 (11) 0.25s 0.27s

4096 | 42.2 (11) 0.25s  0.27s | 38.2 (11) 0.25s 0.29s

Problem:  Temperature Mesh:  Greenland Size: 1.9 m degrees

1-10 km hor. resolution of freedom

20 vert. layers (P1 FE)

A. Heinlein, M. Perego, S. Rajamanickam, |. Yamazaki (TU Delft, SNL)
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Coupled Problem

Couple the velocity and temperature problems. Therefore,
compute the vertical velocity w using the incompressibility
condition

Oxu+ 0yv+ 0w =0,

with the Dirichlet boundary condition at the ice lower surface
m

T T — pud)

2128 % 2 % w20 2w
— Greenland mesh & domain decomposition.

Then, the tangent matrix of the
coupled problem has the structure

Ay (G Xu Fy
Temperature T solution Cr, At |xr r
Velocity u solution

See Perego et al. (in preparation) and Heinlein, Perego, Rajamanickam (submitted 2021) for more details.
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner

Consider the discrete saddle point problem

A BT

TR

We construct a monolithic GDSW preconditioner

N
—il —1,T T 4—1
Mabsw = 64507+ RTATR;,

with block matrices Ag = ¢T A, A; = Ri-AR,-T, and

R 0
Ri = ’
|: 0 Rp

and d) — ¢U:U0 ¢“1P0 .
Wi ¢P,U0 q>P»P0

Using A to compute extensions: ¢; = —A,?lA/rd)r;
cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

o002 05 o7 1w
o832 e
— i

, M. Perego, S. Raj

0 02 05 o im0
q0. s wses
s — o

anickam, |. Yamazaki (TU Delft, SNL)

Stokes flow Navier—Stokes flow
Related work:

= Original work on monolithic Schwarz
preconditioners: Klawonn and Pavarino (1998,
2000)

= Other publications on monolithic Schwarz
preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014), and
the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Domain Decomposition Methods in Milan.
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner

Consider the discrete saddle point problem

A BT| |u f
= = = [,
We construct a monolithic GDSW preconditioner
N
—il —1,T T 4-1
Mapsw = ¢4y @7 + Zi:l Ri AR,

with block matrices Ag = ¢T A, A; = RiAR,-T, and

Ri=|Roi 0l and g=|Puw Pum|
0 Rp, ®p,p0

Using A to compute extensions: ¢; = —AﬁlA/rd)r;
cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

0 025 05  om 1w 0 02 05 o im0
ez e 10 e usse
— — L s —  —

, M. Perego, S. Rajamanickam, |. Yamazaki (TU Delft, SNL)

Monolithic vs Block Preconditioners

Stokes flow

£ Monolithic
500 7 Triangular
450  +-Diagonal

§400K
£350

£300
250
w
@ 200
=
G 150 p7— v v
100
50 &
0
0 1000 2000 3000 4000

# cores

Computations performed on magnitUDE, University
Duisburg-Essen.
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Monolithic (R)GDSW Preconditioners for Multiphysics Land Ice Simulations

We construct a monolithic two-level
(R)GDSW preconditioner (Heinlein,
Hochmuth, Klawonn (2019, 2020))

N
Mabsw = 0Ag'eT +> RTATR,

for the tangent matrix of the coupled problem - Ea”

Au CuT Xy T’u Temperature T solution
Ax = = |27 = 7
2 " Velocity u solution

Cru Ar
We use an equal-order P1 finite element discretization in space for all variables. Therefore,
the null space in each finite element node is spanned by:

s 2%

Null space

0

o
<

—X
sl i= ) a = fusti= e , and rr =

O O O =
= O O O

1
0 )
0

o = O

See Heinlein, Perego, Rajamanickam (submitted 2021) for more details.
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Monolithic (R)GDSW Preconditioners for Multiphysics

We construct a monolithic two-level
(R)GDSW preconditioner (Heinlein,
Hochmuth, Klawonn (2019, 2020))

N
Mabsw = 0Ag'eT +> RTATR,
for the tangent matrix of the coupled problem
As Gt Xy _ ¥, —
AT XT FT Y

Ax =
CTu
Fully coupled extensions

We compute coarse basis function using
extensions
—1 4T
— A Ar Or

. [ e
based on the coupled matrix A.
See Heinlein, Perego, Rajamanickam (submitted 2021) for
more details.

A. Heinlein, M. Perego, S. Rajamanickam, |. Yamazaki (TU Delft, SNL)

Land Ice Simulations

Temperature T solution

Velocity u solution
Decoupled extensions

We compute coarse basis function using
extensions
i1 AT
— A Ar or

o= | ][ 2]

based on the decoupled matrix
- A, O
0 Ar|’

TUG 2021



Greenland Coupled Problem — Coarse Spaces

fully coupled extensions

no reuse reuse coarse basis
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vo (nl'its) setup  solve (nl its setup  solve

)

256 1400 || 100.1 (27) 4.10s 6.40s | 18.5 (70) 2.28s 1.07s
512 2852 129.1 (28) 1.88s 4.20s | 24.6 (38) 1.04s 0.70s
1024 6036 || 191.2 (65) 1.21s 4.76s | 34.2(32) 0.66s 0.70s
2048 | 12368 || 237.4 (30) 0.96s 4.06s | 37.3 (30) 0.60s 0.58s
decoupled extensions

no reuse reuse coarse basis
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vo (nl'its) setup  solve (nl its setup  solve

)
256 | 1400 || 23.6(29) 3.90s 1.32s | 21.5(34) 2.23s 1.18s
512 | 2852 || 27.5(30) 183s 078s | 26.4(33) 1.13s 0.78s
1024 | 6036 || 30.1(29) 1.19s 0.60s | 28.6 (43) 0.66s 0.61s
2048 | 12368 || 36.4 (30) 0.69s 056s | 31.2 (50) 0.57s 0.55s

Problem: Coupled Mesh: Greenland Size: 7.5m degrees Coarse space: RGDSW
3-30 km hor. resolution of freedom
20 vert. layers (P1 FE)

A. Heinlein, M. Perego, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) TUG 2021




Greenland Coupled Problem — Large Problem

2428 250 255 20 265 270 2731

decoupled fully coupled decoupled
(no reuse) (reuse coarse basis) (reuse 1st level symb. fact.
+ coarse basis)
MPI avg. its. avg. avg. avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup  solve (nl its) setup  solve (nl its) setup  solve
512 | 41.3 (36) 18.78s 4.99s | 45.3 (32) 11.84s 5.35s | 45.0 (35) 10.53s 5.36s
1024 | 53.0 (29) 8.68s 4.22s | 47.8 (37) 5.36s 3.82s | 54.3 (32) 4.59s 4.31s
2048 | 622 (86) 4.47s 4.23s | 66.7(38) 2.8ls 4.53s | 59.1 (38) 2.32s 3.99s
4096 | 68.9 (40) 2.52s 2.86s | 79.1 (36) 161s 3.30s | 78.7(38) 1.37s 3.30s
Problem: Coupled Mesh:  Greenland Size:  68.6 m degrees  Coarse space: RGDSW
1-10 km hor. resolution of freedom
20 vert. layers (P1 FE)

A. Heinlein, M. Perego, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) TUG 2021




Sparse Triangular Solver in Kokkos-Kernels (Amesos2 — SuperLU/Cholmod)

The sparse triangular solver is an important kernel in many codes
(including FROSch) but is challenging to parallelize

= Factorization using a sparse direct solver typically leads to
triangular matrices with dense blocks called supernodes

= In supernodal triangular solver, rows/columns with a similar
1
sparsity pattern are merged into a supernodal block, and the solve

is then performed block-wise

= The parallelization potential for the triangular solver is

determined by the sparsity pattern - T
o 05 1 15 2 25
X nz = 13950798 <10*
Parallel supernode-based triangular solver: Lower-triangular matrix — SuperLU
1. Supernode-based level-set scheduling, where all with METIS nested dissection ordering
leaf-supernodes within one level are solved in parallel
. . . Q Level 4
(batched kernels for hierarchical parallelism) PN
Level 3
2. Partitioned inverse of the submatrix associated with each level:
SpTRSV is transformed into a sequence of SpMVs avel 2
See Yamazaki, Rajamanickam, Ellingwood (2020) for more details. b é é 1

TUG 2021
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Performance Results With Matrices From the SuiteSparse Matrix Collection

Comparison of the sparse-triangular solve in GEMV and SpMV mode for the matrix vector

multiplications against CuSparse sparse triangular solver.

NVIDIA V100 GPU

PRI

7 Lol
T e
L
k] d | name type n nn n error
P ’
ACTIVSg70K | power system grid 69,999 I3 83 0.003
(&) 2 | dawson5 structural problem 51,537 4 1277 3.512
- E qa8fk acoustic problem 66,127 22 0.006
g 4 | FEM3Dtherm thermal problem 17,880 32 15 0.008
thermall thermal problem 82,654 ¢ 27 0.002
3 | 5 | apachel 3D finite difference 80,800 240 25 0.002
apache2 3D finite difference 715,176 3.6 32 0.001
helm2d03 2D problem 392,257 4.9 109 0.018
<
' . |
. m
| 2 3 4 S 13
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Performance Results With Matrices From the SuiteSparse Matrix Collection

Comparison of the sparse-triangular solve in GEMV and SpMV mode for the matrix vector

multiplications against CuSparse sparse triangular solver.

NVIDIA V100 GPU

7 Lol
T e
L
k] d | name type n nn n error
P ’
ACTIVSg70K | power system grid 69,999 I3 83 0.003
(&) 2 | dawson5 structural problem 51,537 4 1277 3.512
- E qa8fk acoustic problem 66,127 22 0.006
g 4 | FEM3Dtherm thermal problem 17,880 32 15 0.008
thermall thermal problem 82,654 ¢ 27 0.002
3 | 5 | apachel 3D finite difference 80,800 240 25 0.002
apache2 3D finite difference 715,176 3.6 32 0.001
helm2d03 2D problem 392,257 4.9 109 0.018
<
' . |
. m
| 2 3 4 S 13

PRI
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Preliminary Strong Scaling Results

Computations on Summit (ORNL); 6 x NVIDIA V100 GPUs and 2 x 21-core Power9 per node

42 MPI ranks 6 MPI ranks, 12 MPI ranks, 42 MPI ranks,
per node | 6 GPUs per node | 6 GPUs per node | 6 GPUs per node
its (nl its) 171
1 node |subd. setup time 42 506.7s| 6 OoOoM| 12 OOM| 42 OOM
solve time 29.3s
its (nl its) 200 (9) 156 (9) 165 (9)
2 node |subd. setup time 96 165.9s| 12 2892.7s| 24 884.8s| 96 OOM
solve time 15.3s 59s 53s
its (nl its) 208 (9) 178 (9) 180 (9) 208 (9)
3 node |subd. setup time|| 126 88.1s| 18 1485.3s| 36 506.3s| 126 96.1s
solve time 9.7s 40s 3.7s 10.7s
its (nl its) 217 (9) 165 (9) 197 (9) 217 (9)
4 node subd. setup time|| 168 49.0s| 24 848.0s| 48 307.7s| 168 59.9s
solve time 7.0s 3.2s 3.3s 6.6s
Problem: Coupled Mesh: Greenland (structured) Size: 2.0m degrees Prec.:  One-level
16 km hor. resolution of freedom Schwarz with
20 vert. layers (P1 FE) alg. overlap 0
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= For many configurations, we obtain a significant speedup in the solve times
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= Generally, higher setup times for the GPU configurations
= For many configurations, we obtain a significant speedup in the solve times
— Removing UVM dependency and better parallelization on the GPUs: MPS and SuperLU_DIST
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Thank you for your attention!

Summary Outlook
= Scalable FROSch preconditioners = Improving the robustness of the nonlinear
= for the single physics velocity and convergence.
temperature problems and = Improving the setup times on GPUs.

= for the coupled multi physics problem
(monolithic (R)GDSW precondititoners).

= Preliminary results on GPUs using parallel sparse
triangular solver.
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