ExaSheds &

Refactoring Amanzi-ATS to leverage Tpetra/Kokkos
abstractions for heterogeneous architectures

Julien Loiseau, David Moulton, Ethan Coon and Konstantin Lipnikov

RO?I;(GE »@Alamos X7 %USGS TEXAS

AAAAAAAAAAAAAAAAAA Pacific Northwest sciencefora changing world

R .. ocrarrenT or Office of Biological and Environmental Research
%@ ENERGY Earth and Environmental Systems Science Division
Data Management Program

LA-UR-21-31661

Environmental applications

e Climate impacts and feedbacks (carbon and
nitrogen cycling)

e Contaminant transport and reactions

e Complex interaction of land surface and
subsurface processes

@ Advancing Watershed System Science using
EanhedS < Machine Learning and Data-Intensive Simulation

Scientific Challenge l Observations —
e Develop approaches for machine learning-assisted P i E};'i;,l',',;p;;c;;;igg" """""
physics-based simulation of watersheds and river basins. : | CO;v};gm] s | [t
e Adapt DOE-developed watershed simulation tools to . aaininiinieiniinininvilndiny I’
. . Meshed Model Inputs
leadership-class computer architectures (GPUs). ~ L—n—— — '—| 7
] Simulation) Min
' Hydrology Biogeochemistry H Mod §
h : Amanzi-ATS on Crunch on :
A p p rO a C : € Heterogeneous Heterogeneous '
. . ' Architectures Architectures .
e Work with data from East River Watershed, : % S L Sonsor Hatwork
CO, Upper Colorado Water Resources | e
Region and Delaware River Basin. ML-Assisted Simulation Workflow
e Develop model inputs from sparse, coarse
and indirectly related information Upper Colorado Water Resources Region i - I?elaware River Basin Neversi i

e Hybridization of process-resolving and
data-driven ML simulations

e Refactor Amanzi-ATS using Tpetra/Kokkos
abstractions for heterogeneous N
architectures. . Vi -

Upper Colorado River Basin Delaware River Basin

Amanzi-ATS: Application-Centric High-Level Design

The hierarchical and modular design of Amanzi reflects the steps in translating a conceptual
model to a numerical model, producing output for analysis.

Amanzi-ATS: Application-Centric High-Level Design @

Low-level infrastructure
needs refactoring.

HPC Toolsets

The hierarchical and modular design of Amanzi reflects the ste
model to a numerical model, producing output for analysis.

Amanzi-ATS from Epetra to Tpetra

The stable (MPI-only) version of Amanzi-ATS is based on Epetra.
The aim of this task is to migrate Amanzi-ATS toward Tpetra to target
heterogeneous architectures.

® Generic changes of Epetra::X structures to Tpetra::X
® In depth change to use Kokkos’s data structures and paradigms to
target OpenMP and GPU.

Preserving the flexibility of the multiphysics framework and application
capabilities relies on our ability to refactor low-level support for

unstructured meshes, advanced discretizations and solvers.

https://github.com/amanzi/amanzi/tree/tpetra

Mesh &)

Amanzi provides a flexible and powerful mesh infrastructure for unstructured
polyhedral meshes (currently builds on MSTK or Moab).

® In the stable version a mesh cache was added to improve performance. It did
not hold all the mesh data, and its entries are filled only when first accessed.
® The cache approach is vital for a GPU implementation since most of the lazy

functions are host only (1/0).

Mesh

® Force the cache evaluation before its utilization.
e Data generated on the Host and copied on Device.

The initial cache was represented using std containers and had to be
adapted to be usable with Kokkos.

std::vector<T> -> Kokkos::View<T*>
std::vector<std::vector<T>> -> Kokkos::crs<T*>

Accessors were then added to extract the information from the Kokkos
data structures.

Mesh

Example, accessor for the faces of a cell (std::vector<std::vector>>):

Stable:

void cell_get_faces(
const Entity _ID c,
std::vector<Entity_ID> *faceids) const

{

if (Icell2face_info_cached_) cache_cell2face_info_();

std::vector<Entity_ID> &cfaceids = cell_face_ids_[c];
*faceids = cfaceids; // copy operation
}

}

Tpetra:

KOKKOS_INLINE_FUNCTION void
cell_get_faces(const Entity_ID cid,

{

Kokkos::View<Entity ID*>& faceids) const

assert(cell2face_info_cached_);
faceids =
Kokkos::subview(cfi_.entries,
Kokkos::make_pair(cfi_.row_map(cid),
cfi_.row_map(cid + 1)));

Discretization

The discretization in Amanzi is composed of two libraries:

e Low-level: Whetstone for dense matrices, dense vectors and tensors,
which are used for elemental matrices in discretizations (FV, MFD, etc.)
o Flexible approach for better memory handling on CPU
o Not suitable for GPU implementation:
m Expensive memory allocation, memory transfers and
non-contiguous accesses
e High-level: Operators for global matrices and assembly
o Dependent on the changes of Whetstone

Solution:
® Initialize the structure at the beginning of the run
® Recreate the objects as needed from contiguous memory

Discretization: Whetstone &

Example: Tensors struct Tensor{
[*...%1
intd_, rank_, size ;
double * data;

3
e Stored as Array of Structures: std::vector<Tensor> tensors;
e The data pointer can be allocated at any time and ownership can
change
Problems:

e Hard to copy on GPU efficiently (one copy per matrix)
® Hard to access on GPU (Matrices potentially not contiguous)

Discretization: Whetstone

Kokkos version: template<class MEMSPACE = DefaultHostMemorySpace>
class Tensor {

[* .0

intd_, rank_, size ;

Kokkos::View<double*, MEMSPACE> data_;

%

Now using CRS to store Tensor arrays.
The fields d , rank , size and data are retrieved from a common CRS
structure.

Discretization: Whetstone @J

CRS stores data/sizes of Tensors:

template<typename T, int D, class MEMSPACE>

. . class CSR({
By using DualView, the data can be /* Number of dimension for size */

|n|t|a||zed on HOSt or DeVICG and then static Constexpr intdim = D,

transferred from one to the other as using memory_space = MEMSPACE;

needed. /* Indices: number of element +1 */
Kokkos::DualView<int*, MEMSPACE> row_map _;
/* Data of object */

The object i can be retrieved from Kokkos::DualView<T* MEMSPACE> data_;

. T . [* Represents the sizes for matrices/tensors/vectors */
entries_ at indices row_map_[ijon | i 0o b alView<int™ MEMSPAGE> sizes |
the target memory space. };

Discretization: Whetstone

A TensorVector is based on CRS and
provides access the stored elements.

Each object has its own interface:
® TensorVector

® DenseMatrix_Vector

® DenseVector Vector

template<class MEMSPACE>
struct TensorVector {
[*..0%

KOKKOS_INLINE_FUNCTION
Tensor<DOMS> operator[](const int& i) {
return std::move(Tensor<DOMS>(d.at(i), d.size(i,0),
d.size(i,1), d.size(i,2)));
}

/* %

CSR<double,2, MEMSPACE> d;
CompositeVectorSpace map;

bool ghosted;
bool inited;

3

Virtual Functions

User-defined functions add flexibility to model specification in input files.
e Defining boundary and initial conditions, and source terms.
® Support polynomials, math functions, and composition
e Implemented as a vector of virtual object Function*
o Resolution is done via the virtual table
o RHS, LHS passed as references of std::vector<double>

Function
Function Function Function
Additive Bilinear Polynomial

Problem: Virtual table is not copied onto the Device.
Solution: Use Host for the resolution and start tasks on the Device inside
the Function’s core.

Solvers and preconditioners

In order to target families of multi-physics problems, Amanzi features a
generic solvers and preconditioners interface, and implement:

Non-linear solvers,
e Nonlinear Krylov Acceleration (NKA)
® Jacobian-free Newton-Krylov (JFNK)

implement backtracking and (process-informed) globalization strategies.

Linear solvers,

® Preconditioned Conjugate Gradient (PCG)
® Generalized Minimal Residual (GMRES)
which rely on preconditioners for performance.

These preconditioners are a vital piece of this migration to GPU.

Preconditioners in Amanzi/ATS

In the current stable (MPIl-based) code, we rely primarily on the three
preconditioners:

e Jacobi, provided by internal code

e Block incomplete LU factorization with thresholding (block-ILUt), provided
by the Trilinos IfPack library

e Algebraic multigrid (AMG) preconditioner, provided by the HYPRE

preconditioning library, accessed through the Trilinos IfPack interface
library.

Each of these preconditioners has different scaling and performance

characteristics, and is useful for specific tasks (varying from small tests to
large full-scale simulations).

Our goal is to provide three preconditioners on GPUs spanning the
performance characteristics of those three preconditioners.

Preconditioners

NS —)
In the migration to Tpetra we have the following preconditioners compiling and
running on CPU/GPU with our interface:

internal: identity, diagonal (Jacobi)

Ifpack2: ILUT, RILUK

Ifpack2 interface: ShyLU (FAST_ILUT), Hypre AMG
Muelu, Ginkgo

We observe acceleration of Amanzi-ATS with Tpetra compared to Epetra on CPU.

On GPU for a simple test, the internal preconditioner Diagonal is still the fastest on
our test application despite a very high number of iterations.

Preconditioners: Status

N2

Preconditioner Run | Status on Amanzi/ATS Tpetra

Ifpack2: ILUT Y Little improvement on GPU compared to single core CPU.

Ifpack2: RILUK - FV discretization runs but problem with the MFD
discretization: too much memory allocated.

ShyLU Y Good improvement on GPU compared to single CPU

(Ifpack2: FAST ILUT)

Hypre: AMG Y Existing interface was copying the matrix line by line. Fix:

(Ifpack2 interface) matrix copied at once from the CRS matrix interface. (issue
#9154)

Muelu N Ongoing investigation

Ginkgo Y Interface to Kokkos added in Amanzi, tested on CPU but not

GPU yet.

Preconditioners: Preliminary results

Example: Model Problem

PDE: Linear steady-state diffusion equation
Manufactured solution (e.g., various polynomials)
Boundary conditions: Dirichlet

o Derived from solution so they are exact
Discretization: Final Volume

o Leads to standard 7-point cell-centered discretization
Mesh type: Structured 3D (orthogonal hexahedral)
Solver: PCG

Preconditioner: Uses or is derived from the matrix

Initial Guess: “zero”.

Preconditioners: Preliminary results &

E

Time (seconds)

Epetra vs Tpetra implementation:
PCG + X

petra/Tpetra CPU Serial

we If2 ILUT Tpetra/CPU == If2: ILUT Epetra/CPU
250

200
150
100

50

50000 100000 150000 200000

Degrees of freedom

Tpetra implementation is faster than
Epetra

Tpetra acceleration: CPU 1 core vs GPU

w= ShyLU Scaling == Hypre: AMG Scaling ifpack2: ILUT
10

8

Acceleration

2
A
0

200000 400000 600000 800000

Degrees of freedom

Best is ShyLU with 8x faster on GPU
compared to single core CPU

Preconditioners: Preliminary results @

Current solvers on GPU:

PCG + X
Tpetra, PCG + X, GPU: solving time Tpetra, PCG + X, GPU: number of iterations
wu 1f2: ILUT == if2: ShylLU 2. RILUK == Hypre: AMG we If2) ILUT == if2: SkylU it2 RILUK == Hypre: AMG
12 100
10
75
g ° g
<
g £ %
e &
e 5
_E 4 a
25
2 //
0 0
50000 100000 150000 200000 50000 100000 150000 200000
Degrees of freedom Degrees of freedom

Hypre is slower but scales optimally, using far fewer iterations than other preconditioners.

Hypre is more robust (and necessary) on more challenging problems.
Hypre timing (left) shows GPU memory likely saturated after 403 mesh, this might be mitigated

by adjusting cycle parameters.

Ongoing work and next steps

Finish tests/optimizations on the preconditioners for
GPU and compare with OpenMP

Try to the latest version of Trilinos with no-UVM
support on GPU

Performance analysis on with large MPI multi-GPU
Add additional, harder tests to better understand
preconditioners on more realistic problems*
Continued evolution of software design for
representing physics and complete surface and
subsurface PKs.

Continue to refactor, adding more physics:
o Coupler integrating surface and subsurface
o Evapotranspiration, etc

*Next problem for testing: a deep
vadose zone infiltration problem that has
been benchmarked previously in Amanzi.
Above is concentration of a tracer in the
corresponding transport problem.

Arcos Multiphysics Framework

The Arcos multiphysics framework, is a fully functional framework serving
Amanzi and ATS, but may also be viewed as a reference implementation to
explore interface designs, coupling strategies and outreach to the community.

|
FieldMap dependency graph

Mesh . 1 [T€5f1ow| [T€Senergy

. e E] D / A A \
q

- State

O O 9,V e| |E qe,V - qE
Dynamic Data Manager k|
strong coupler = a [¢ u
T
Richards advection-diffusion Dependency Graph

Process Kernel Tree Coon et al. Env. Model. & Soft. 2016

