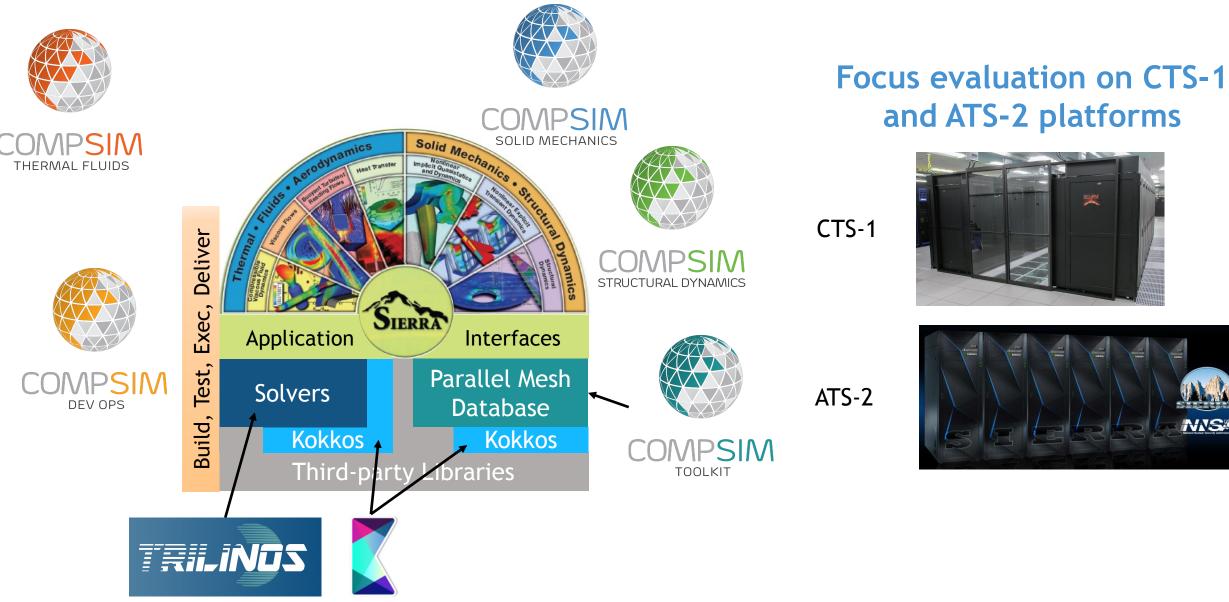


Sierra Thermal Fluids use of Trilinos and FY21 GPU porting milestone recap

Jonathan Clausen

Trilinos User Group meeting, December 1, 2021

SAND2021-15104 PE

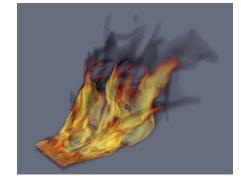


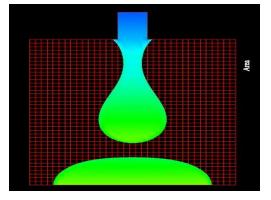
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

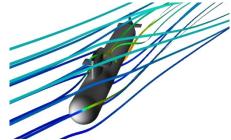
² Discussion outline

- 1. Overview of Sierra and TF codes
- 2. Sierra/TF TPLs
- 3. Collaboration areas
- 4. FY21 L2 milestone recap
- 5. FY22 milestone needs

SIERRA Mechanics Overview 3

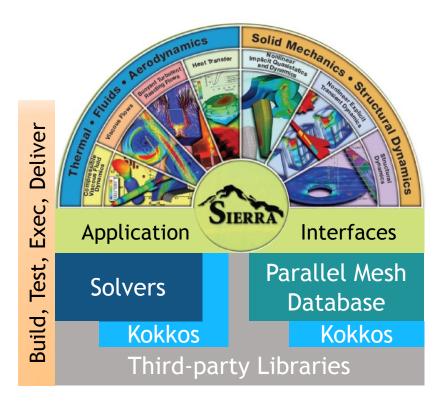



NNS


Computational Thermal & Fluid Mechanics

•Thermal - Heat Transfer, Enclosure Radiation and Chemistry

- Dynamic enclosures
- Element birth death
- Contact
- Aero/Sparc Compressible Fluid Mech.
 - Subsonic through hypersonic
 - Laminar and turbulent
 - Unstructured mesh
- Multiphase Non-Newtonian, Multi-physics, and Free Surface Flows
 - Complex material response
 - Level sets for surface tracking
 - Flexible coupling schemes
 - Pressurization models
- Fire/Combustion Low Speed, Variable Density, Chemically Reacting Flows
 - Eddy dissipation and mixture fraction reaction models
 - RANS and LES based turbulence models
 - Unstructured Mesh


5 Sierra/TF codes

Sierra/TF primary codes

- Aria
- Fuego
- Sparc
- Nalu

Thermal/fluids/aerodynamics

- Compressible fluid mechanics with subsonic through hypersonic flows
- Non-newtonian reacting flow with free surfaces and complex material response
- Low mach number turbulent reacting flow participating media radiation
- Heat transfer with limited convection, chemistry, and enclosure radiation

Third party libraries & Trilinos usage

Trilinos packages:	Other packages:
• STK	• Sierra
• Kokkos	 Sierra Utilities
• Krino	Framework
• Tpetra	• Apublic
• Sacado	Contact
• Zoltan2	 Seacas (NetCDF/HDF5)
• Teko	• Boost
• ROL	• Gtest
 FEI (Fuego only; deprecated) 	
 Solvers/preconditioners 	

Belos

- Amesos2, ifpack2
- Muelu

Current collaboration areas between Sierra/TF and Trilinos

- 1. Sierra/TF successfully using many Trilinos TPLs
- 2. Frequent integration of Trilinos into Sierra (needs improvement)
- 3. Kokkos used extensively as abstraction layer
- 4. Kokkos ODE solver library
- 5. FY21 and FY22 joint L2 milestones
- 6. Trilinos Sierra/TF meetings, every 3 weeks
- 7. Teko block preconditioning research

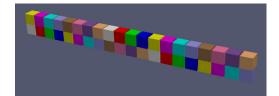
8 FY21 Milestone Goals

Enable production normal environment Qualification Evidence Report (QER) simulations on ATS-2

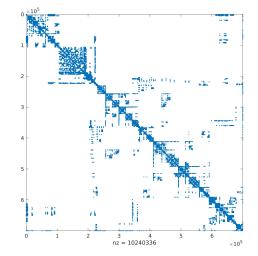
Improve GPU-solver performance and scaling to support SIERRA applications on ATS-2

Milestone Problems

9


Thermal Fluids Development Team Victor Brunini Sam Subia Alex Kucala Dan Moser Justin Lamb Lincoln Collins Mike Hansen Neil Matula Phil Sakievich **Robert Knaus** Stephen Lin Tom Ransegnola Tyler Voskuilen Yaro Vasyliv

COMPSIM THERMAL FLUIDS


> Classified Model

Normal Thermal

Surrogate

Representative systems of eqs. from apps

COMPSIM

THERMAL FLUIDS

FY21 Milestone Goal: Enable production normal environment QER simulations on ATS-2

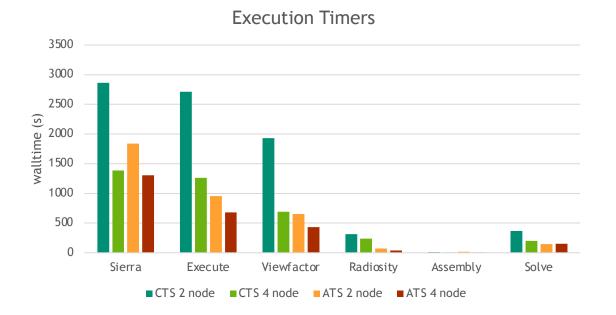
Meets:

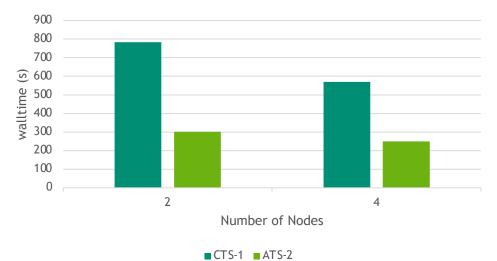
Correct simulation of analyst provided system model on ATS-2 hardware

Exceeds:

4x end-to-end simulation performance improvement when comparing ATS-2 to CTS-1 hardware

FY21 SIERRA/TF Milestone Problem


- Classified Normal thermal model as of Q1FY21 (frozen)
- 6.7 M Elements (FY20 milestone was 3.9 M)
- Radiation enclosures were biggest surprise
 - 80 enclosures
 - largest: 109,090 facets @ 73% dense (~70 GB of data!)
 - FY20 milestone had 63 K, 40K and smaller at ~25% dense
- Uses contact (late realization)
- Correctness demonstrated on ATS-2 hardware (Meets)
- Surrogate generated for performance monitoring and development


12

FY21 Sierra/TF Milestone Problem

COMPSIM THERMAL FLUIDS

Execute - Viewfactor

Comments & Challenges:

- steady state
- large enclosures
 - memory constraints
 - poor solver scalability

13

FY21 SIERRA/Production Readiness

COMPSIM THERMAL FLUIDS

- Integrated latest Trilinos changes and delivered for 5.2 Sierra release
- Improved testing on ATS-2
 - Nightly testing of normal thermal regression & verification tests
 - GPU continuous integration (CI) testing
- Significant porting of Aria capabilities
 - Encore postprocessing
 - Additional physics
 - Contact
 - Initialization (particularly mesh read & solver setup)
 - Viewfactor optimization
 - Radiosity solve performance

FY22 Milestone Goal: Enable production abnormal environment QER simulations on ATS-2

COMPSIM THERMAL FLUIDS

Meets:

Correct simulation of analyst approved system model surrogate on ATS-2 hardware

Exceeds:

4x end-to-end simulation performance improvement when comparing ATS-2 to CTS-1 hardware

Correct execution on classified model with performance data

FY22 Milestone Goal: Enable production abnormal environment QER simulations on ATS-2

- all normal physics from lastyear's milestone
- level set burn front model
- chemistry solver infrastructure

- ODE solver library as backend for chemistry solves
- much "harder" linear solves (ddilu/GMRES)

Questions?

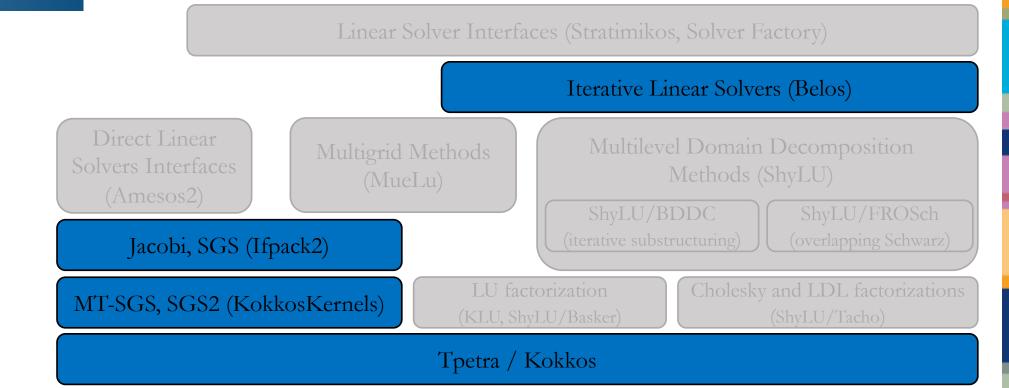
Backup Slides

Milestone Goal: Improve GPU-solver performance and scaling to support SIERRA applications on ATS-2

Meets:

✓ Support SIERRA application needs for bug ✓ fixes and performance improvements

Demonstrate >=4x linear solver performance √ on ATS-2 relative to CTS-1 for CG, BiCGSTAB and GMRES solvers with Jacobi preconditioner


✓ Any performance improvements to TRILINOS will be available for SIERRA build/installation

Exceeds:

Demonstrate >= 4x linear solver performance on ATS-2 relative to CTS-1 for CG, BiCGSTAB and GMRES solvers with SGS and DD-ILU preconditioners

Demonstrate >= 4x in-situ performance of solver/ preconditioner on ATS-2 relative to CTS-1 for system model

Relevant Components for Milestone

Solver methods

Krylov methods

- Conjugate gradients, GMRES, BiCGStab
- Algebraic preconditioners
- Jacobi, symmetric Gauss-Seidel (SGS)

TRILINDS

• Domain decomposition / ILU(k)

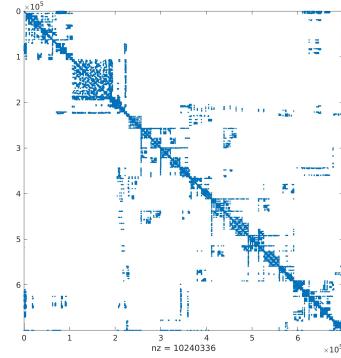
- Fundamental reliance on Tpetra and Kokkos
- Not all solver/preconditioner combinations are valid
 - CG theoretically requires symmetric preconditioner

20

Performance comparisons on CTS-1 (Eclipse) and ATS-2 (Vortex)

- Representative linear systems from SIERRA/TF thermal solve
 - 699,466 rows and 10,302,620 non-zeros
 - Systems have a few non-sparse "bulk" rows
 - Two rows with 40K and 30K entries, respectively
 - One row with 5K entries
- Using matrix reading for initial experiments
 - Initial testing prior to milestone problem being defined

Bulk Nodes:


- Couples a node/DOF with all the faces on a surface.
- Example bulk-node temperature (T_{∞}) for enclosed space to calculate convective heat transfer, $h(T - T_{\infty})$.
- Generates non-sparse rows.

21

Final Accomplishments/Status

Eclipse and Vortex results, Trilinos develop branch (SHA e726b6aff)

Krylov method	Preconditioner	CTS-1* (seconds)	ATS-2 (seconds)	Speedup
GMRES	Jacobi	4.60	0.76	6x 🗸
	SGS	2.55	1.02	2.5x
	DD-ILU(0)	0.41	1.1	<1
BiCGStab	Jacobi	2.3	0.53	4.3x 🗸
	SGS	1.72	1.13	1.5x
	DD-ILU(0)	0.38	2.0	<1
CG	Jacobi	1.22	0.29	4.2x √
	SGS	1.32	0.91	1.45x
	DD-ILU(0)	0.20	breakdown	

*using uniform rowmap

Meets: Achieved >4x for all Krylov methods using Jacobi. Exceeds: Made progress in SGS & ILU(k), but didn't achieve 4x.

FY21 Improvement of Trilinos Performance on ATS-2

Krylov method	Preconditioner	Trilinos release 13 Nov. 2020 (seconds)	Trilinos develop e726b6aff (seconds)	Speedup
GMRES	Jacobi	3.86	0.76	5x
	SGS	5.52	1.02	5.4x
	DD-ILU(0)	1.18	1.08	1.1x
BiCGStab	Jacobi	5.62	0.53	10.6x
	SGS	7.75	1.13	6.86x
	DD-ILU(0)	2.08	1.96	1.1x
CG	Jacobi	3.34	0.29	11.5x
	SGS	5.95	0.91	6.5x
	DD-ILU(0)	Did not converge	Did not converge	-

• Specialized SGS kernels for matrices with bulk rows (B. Kelley)

- Tpetra, Ifpack2 UVM removal (Tpetra and SAKE teams)
- Fused residual, SpMV communication optimizations (C. Glusa)
- Myriad of other changes throughout Tpetra stack