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Mixed Precision Motivation

Mixed Precision is here to stay
* Primary driver: AI/ML workloads at data
centers drive new hardware features
* Secondary driver: Reduced power, data
movement costs, new floating point formats
(bfloat16, TF32 etc)
* 'This 1s very important for SNL and DOE to
be part of
* Actively investigating a variety of datatlow
architectures as an accelerator option for
torthcoming NNSA system procurements
* Already systems like Lassen connected
to a Cerebras accelerator
* Mistakes here can be costly, life-
threatening (Past mistakes: See “Round
off error and Patriot Missile Failure”)

NVIDIA Sparse Tensor Core

cerebras




Building Blocks for Mixed-Precision

" Sandia is very active in this emerging field
= xSDK multi-precision project

* Algorithm and Trilinos focus
= ARIAA Co-design center
®  Architecture focus

NVIDIA Sparse Tensor Core

= Half precision support in Kokkos Core

and Kokkos Kernels (ECP Sake project) cerebras

" Programming models and linear
algebra focus

"A survey of numerical methods utilizing mixed precision

arithmetic." arXiv preprint arXiv:2007.06674 (2020). From
a large DOE multi-precision effort, several SNL
authors.
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4‘ Mixed-Precision Kernels - SpMM

SpMYV with sparse and Dense portions split for Tensor Cores

SpMM: Use block matrices from multiphysics use

cases or find blocks of entries to do low-precision Running on tensor cores — Running on regular SMs ~
Lo . . L multiple block-wlse SpMM
multiplies but accumulate in higher precision. GEMM operations —
Use cases xx x
1 1cQ° 1 x| x x| x x| x x| x x| x
*  Multiphysics: Natural block sparse matrices x1x XX x| Dl el
and block dense vectors i i x[x| [xlx] [x]x
. X | X X | X — X | X
*  Block sizes are not what tensor core wants x| x|x x| x| = [x[x I
. . . X X | X X | X
* General use case: Identify blocks in arbitrary e = T — e e T
. [*]
sparse matrices = = - = S [x|x| (Bl
* Blocks can be sparse too, not supported in = = =
V100, special ML like use case supported Mo 1 X
in A100. (Results are on V100)
Early Results Caveats
*  Kokkos Kernels implementation by Carl Pearson, CUDA * WMMA (low level NVIDIA interface) implementation
version by Gordon Moon * Hard to do Kokkos portability

* CUDA version: Up to 2x improvement on SpMM on synthetic use
cases

*  0.64x — 1.7x faster than cuSPARSE, 0.74 - 2.3x faster than
academic state-of-the-art on Multiphysics (SPARC-like), poor
performance when block sizes do not match hardware which
requires padding and more computation




Mixed-Precision in Solvers

*  GMRES-IR: Develop solver algorithms that use low precision advantages, but provide

high precision accuracy. ‘
* Trilinos based experience:
* Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs,
Jennifer Loe, Christian Glusa, Ichitaro Yamazaki, Erik Boman, Siva Rajamanickam, I

IPDPSW, 2021
* A Study of Mixed Precision Strategies for GMRES on GPUs, Jennifer Loe,

Christian Glusa, Ichitaro Yamazaki, Erik Boman, Siva Rajamanickam,
https:/ /arxiv.org/abs/2109.01232

i-INOS



¢ | Iterative Refinement with GMRES (GMRES-IR)

Algorithm 1 Iterative Refinement with GMRES Error Correction
. 79 = b— Axg [[double

1

2: for +=1,2,... until convergence: do

3 Use GMRES(m) to solve Au; = r; for correction w; |[single]
4: Tiv1 = X; +uy double]
5
6

Tit1 = b — Az;;1 |[|double]
: end for

(At each restart, update solution vector and recompute residuals in double precision.)

Note: We store TWO copies of matrix A (double and single).

Not a new algorithm. See related works:

oNeil Lindquist, Piotr Luszczek, and Jack Dongarra. Improving the performance of the GMRES method using mixed-precision technigues.

based on Krylov subspace methods.

i

i
oHartwig Anzt, Vincent Heuveline, and Bjorn Rocker. Mixed precision iterative refinement methods for linear systems: Convergence analysis ‘
oErin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative refinement in three precisions.




Mixed-Precision in Solvers

===Double Precision
== Single Precision
- GMRES IR

7
= Test Problem: 100
= 2D convection-diffusion, 5-pt stencil 101k
(Highly nonsymmetric.) £ 1072
» n=225million, nnz = 11,244,000 z 10731
= Convergence Tolerance: le-10 E 18:: I
* GMRES Convergence: E 0
» Single: Stalls near le-5 PR
= Double: 12,967 iterations, 50.26 seconds ;g 108
= JR: 13,150 iterations, 38.03 seconds E 10-9
10—10
10—11
0

GMRES-IR convergence follows
convergence of GMRES Double!
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Mixed-Precision in Solvers
8

Test Problem (same as previous slide):

* 2D Laplacian, Stretched Grid ) 5Solver Timings Stretched2D1500 Poly Prec

* n = 2.25 million B Orthogonalization
*  Polynomial preconditioner based upon GMRES polynomial** 20 == SPMV
i EE= Other |

Three solves compared: s

1. GMRES double w/ double precision polynomial. (left) -

2. GMRES double w/ single precision polynomial. (middle) E 10

3. GMRES-IR w/ single precision polynomial. (right)

* (Solve times do not include preconditioner creation.) 5

0

Takeavays: e B g
* Single precision preconditioning improves solve time ~ 30%. Solve Type

*  GMRES-IR improves solve time even more.

*  Polynomial preconditioning shifts main expense to SpMV rather than dense
orthogonalization kernels.




0 Lot of work remains
* Several challenges remain on architectures,

algorithms, and software ‘

* Precisely characterize the need of higher I
precision at different levels of the software stack
similar to solvers and kernels

* Adapt the software to handle the need while
maintaining confidence in the higher precision ‘
results
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