
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Mixed Precision in Trilinos

Jenni fer Loe, S iva Rajamanickam

SAND2021-15114C

Mixed Precision Motivation
2

Mixed Precision is here to stay
• Primary driver: AI/ML workloads at data

centers drive new hardware features
• Secondary driver: Reduced power, data

movement costs, new floating point formats
(bfloat16, TF32 etc)

• This is very important for SNL and DOE to
be part of
• Actively investigating a variety of dataflow

architectures as an accelerator option for
forthcoming NNSA system procurements
• Already systems like Lassen connected

to a Cerebras accelerator
• Mistakes here can be costly, life-

threatening (Past mistakes: See “Round
off error and Patriot Missile Failure”)

This document contains proprietary and confidential information of Next Silicon Ltd. (“Next Silicon”). It may not be disclosed, used, reproduced or distributed without the prior written consent of Next Silicon. Nothing

herein contained shall be construed as granting any rights to this document and/or to any information, designs, materials and/or anything referenced herein. All rights including intellectual property rights in connection with

the foregoing are reserved by Next Silicon.

Copyright © 2017 Next Silicon, all rights reserved. Next Silicon retains the copyright in all of the material in this document as a collective work under copyright laws. You may not copy, republish, redistribute or exploit in

any manner any material from these pages without the express written consent of Next Silicon. All trademarks, trade names or logos included in this document are owned by Next Silicon or its business affiliates. All rights

in such names, marks or logos are reserved by Next Silicon and/or respective holders.

Proprietary and confidential information of Next Silicon Ltd.
Copyright © 2020 Next Silicon Ltd., all rights reserved.

A PCIe card for HPC
Built to Break Boundaries

NVIDIA Sparse Tensor Core

Building Blocks for Mixed-Precision
3

"A survey of numerical methods utilizing mixed precision
arithmetic." arXiv preprint arXiv:2007.06674 (2020). From
a large DOE multi-precision effort, several SNL
authors.

This document contains proprietary and confidential information of Next Silicon Ltd. (“Next Silicon”). It may not be disclosed, used, reproduced or distributed without the prior written consent of Next Silicon. Nothing

herein contained shall be construed as granting any rights to this document and/or to any information, designs, materials and/or anything referenced herein. All rights including intellectual property rights in connection with

the foregoing are reserved by Next Silicon.

Copyright © 2017 Next Silicon, all rights reserved. Next Silicon retains the copyright in all of the material in this document as a collective work under copyright laws. You may not copy, republish, redistribute or exploit in

any manner any material from these pages without the express written consent of Next Silicon. All trademarks, trade names or logos included in this document are owned by Next Silicon or its business affiliates. All rights

in such names, marks or logos are reserved by Next Silicon and/or respective holders.

Proprietary and confidential information of Next Silicon Ltd.
Copyright © 2020 Next Silicon Ltd., all rights reserved.

A PCIe card for HPC
Built to Break Boundaries

NVIDIA Sparse Tensor Core

§ Sandia is very active in this emerging field
§ xSDK multi-precision project

§ Algorithm and Trilinos focus
§ ARIAA Co-design center

§ Architecture focus
§ Half precision support in Kokkos Core

and Kokkos Kernels (ECP Sake project)
§ Programming models and linear

algebra focus

Mixed-Precision Kernels - SpMM
4

SpMM: Use block matrices from multiphysics use
cases or find blocks of entries to do low-precision
multiplies but accumulate in higher precision.
Use cases
• Multiphysics: Natural block sparse matrices

and block dense vectors
• Block sizes are not what tensor core wants

• General use case: Identify blocks in arbitrary
sparse matrices
• Blocks can be sparse too, not supported in

V100, special ML like use case supported
in A100. (Results are on V100)

Running on tensor cores –
multiple block-wise
GEMM operations

Running on regular SMs –
SpMM

x x
x x

x 0
x x

x x
x x

x 0
0 x

x x
x x
x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x
x x
x x

x x

x

x x

+ =

x x
x x
x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x
x x
x x

SpMV with sparse and Dense portions split for Tensor Cores

Early Results
• Kokkos Kernels implementation by Carl Pearson, CUDA

version by Gordon Moon
• CUDA version: Up to 2x improvement on SpMM on synthetic use

cases
• 0.64x – 1.7x faster than cuSPARSE, 0.74 - 2.3x faster than

academic state-of-the-art on Multiphysics (SPARC-like), poor
performance when block sizes do not match hardware which
requires padding and more computation

Caveats
• WMMA (low level NVIDIA interface) implementation
• Hard to do Kokkos portability

Mixed-Precision in Solvers
5

• GMRES-IR: Develop solver algorithms that use low precision advantages, but provide
high precision accuracy.

• Trilinos based experience:
• Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs,

Jennifer Loe, Christian Glusa, Ichitaro Yamazaki, Erik Boman, Siva Rajamanickam,
IPDPSW, 2021

• A Study of Mixed Precision Strategies for GMRES on GPUs, Jennifer Loe,
Christian Glusa, Ichitaro Yamazaki, Erik Boman, Siva Rajamanickam,
https://arxiv.org/abs/2109.01232

Iterative Refinement with GMRES (GMRES-IR)6

(At each restart, update solution vector and recompute residuals in double precision.)

Note: We store TWO copies of matrix A (double and single).

Not a new algorithm. See related works:

oNeil Lindquist, Piotr Luszczek, and Jack Dongarra. Improving the performance of the GMRES method using mixed-precision techniques.

oHartwig Anzt, Vincent Heuveline, and Bjorn Rocker. Mixed precision iterative refinement methods for linear systems: Convergence analysis
based on Krylov subspace methods.

oErin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative refinement in three precisions.

Mixed-Precision in Solvers
7

0 2000 4000 6000 8000 10000 12000 14000

Number of Iterations

10�11

10�10

10�9

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

R
el

a
ti

v
e

R
es

id
u

a
l

N
or

m

Linear Solver Convergence BentPipe2D1500

Double Precision
Single Precision
GMRES IR

Fig. 3. Relative residual norm convergence for matrix BentPipe2D1500.
Single precision GMRES(50) is represented by the blue dash-dot line, double
precision by green dashes, and mixed precision GMRES(50)-IR by the red
solid line.

Fig. 4. Solve times for GMRES(50) double (left) and IR (right) for the
matrix BentPipe2D1500. Each bar represents total solve time, split up to give
a breakdown of time spent in different kernels. The “Other” portion represents
timing for small dense (non-GPU) operations and, for GMRES-IR, computing
residuals in fp64.

solver. This phenomenon is related to the theory built by
[11] for non-restarted GMRES; it has also been observed by
[12] for restarted GMRES. To reiterate, the convergence of
the multiprecision version of the solver follows the double
precision version closely.

Figure 4 and Table I show the solve times and speedup of
the GMRES double and IR solvers, split over different kernels.
Solve times do not include time required to copy the matrix
A from fp64 to fp32 at the beginning of GMRES-IR. By
this measure, GMRES-IR gives 1.32⇥ speedup over the solve
time of GMRES double. The two GEMV kernels give 1.28
to 1.57⇥ speedup, but the SpMV gives a spectacular 2.48⇥
speedup! The bar segment in Figure 4 labeled “other” indicates
time solving the least squares problems and performing other
non-GPU operations in GMRES. For GMRES-IR, it also
includes computation of the new residual in double precision.

In Figure 5, we graph kernel speedups for the previous
problem and two additional matrices: a 3D Laplacian and the
matrix UniFlow2D2500 from Section V-A. (See Table III for
additional problem statistics.) Note that these bars show the
speedup of the entire time GMRES double spends in a kernel

TABLE I
SPEEDUP OF DIFFERENT KERNELS FOR THE MATRIX BENTPIPE2D1500.

Double Belos IR Belos Speedup
GEMV (Trans) 20.20 15.78 1.28
Norm 1.72 1.49 1.15
GEMV (no Trans) 19.01 12.10 1.57
Total Orthogonalization 41.85 30.30 1.38
SpMV 7.33 2.95 2.48
Total Time 50.26 38.03 1.32

Fig. 5. Speedups for different kernels going from GMRES double to GMRES-
IR over three different PDEs. (Note that this is speedup of the total time
spent in each kernel in GMRES double vs GMRES-IR. This is not a per-call
comparison.)

over the entire time GMRES-IR spends in the same kernel.
Since GMRES-IR needs a few extra iterations (and kernel
calls) beyond what GMRES double needs to converge, this is
not a per-call time comparison. Even so, speedups for a per-
call comparison are very similar to those presented in Figure 5.
It is interesting to note that the kernel speedups are relatively
consistent across the three problems. In particular, the SpMV
kernel improves by 2.4 to 2.6 times in all three cases. This
occurs due to near-perfect L2 cache reuse for the right-hand
side vector with SpMV float, while there is a high L2 cache
miss rate for SpMV double. We will discuss SpMV speedup
further in Section V-D. The total solve times to convergence
for the three problems improve by 24 to 36%.

C. Convergence and Kernel Speedup for Preconditioned GM-
RES vs GMRES-IR

In this section we compare three preconditioning options.
The matrix A is a 2D Laplacian over a stretched grid with
nx = 1500. It has a large condition number, so GMRES(50)
cannot converge without preconditioning. We apply a GM-
RES polynomial preconditioner [16] of degree 40, using a)
GMRES-fp64 with fp64 preconditioning, b) GMRES-fp64
with fp32 preconditioning, and c) GMRES-IR with fp32 pre-
conditioning. Here “fp32 preconditioning” indicates that the
polynomial is both computed and applied in single precision.

Figure 6 demonstrates that, just as before, the problems
with fp32 preconditioning converge very similarly to GMRES

§ Test Problem:
§ 2D convection-diffusion, 5-pt stencil

(Highly nonsymmetric.)
§ n = 2.25 million, nnz = 11,244,000

§ Convergence Tolerance: 1e-10
§ GMRES Convergence:

§ Single: Stalls near 1e-5
§ Double: 12,967 iterations, 50.26 seconds
§ IR: 13,150 iterations, 38.03 seconds

GMRES-IR convergence follows
convergence of GMRES Double!

Mixed-Precision in Solvers
8

Fig. 6. Convergence of the Stretched2D1500 problem with a degree 40
polynomial preconditioner. Squares indicate fp64 preconditioning, circles fp32
preconditioning, and triangles GMRES-IR with fp32 preconditioning.

Double
Prec

Single
Prec

IR Single
Prec

Solve Type

0

5

10

15

20

25

Ti
m

e
[s

]

Solver Timings Stretched2D1500 Poly Prec

Orthogonalization
SPMV
Other

Fig. 7. Solve times for polynomial preconditioned GMRES using polynomial
degree 40. The bar on the left shows solve time for fp64 GMRES, the bar in
the middle shows fp64 GMRES with an fp32 polynomial, and the bar on the
right gives timings for GMRES-IR with fp32 polynomial preconditioning.

in all fp64. Figure 7 shows solve times for all three con-
figurations. Times do not include creation of the polynomial
preconditioner, which was 0.5 seconds or less for all cases.
Similar to Figure 4, the “other” portion of each bar indicates
time spent in dense matrix operations, vector additions for the
polynomial, and computation of double-precision residuals in
GMRES-IR. Since the SpMV constitutes the majority of kernel
calls in the polynomial preconditioner and gets large speedup,
the total SpMV time drops significantly in single precision as
opposed to double. Time spent in “other” operations, however,
increases slightly due to the casting operations required to
multiply an fp32 matrix polynomial with an fp64 vector.
Ultimately, GMRES-IR gives 1.58⇥ speedup over GMRES
double. Even when testing other polynomial degrees, the fp32
preconditioned GMRES gives reasonable speedup over the all-
double precision GMRES, but run times are never faster than
those of GMRES-IR.

Unlike previous examples where solve time was dominated
by orthogonalization, polynomial preconditioning shifts the
cost toward the sparse matrix-vector product. Here, the SpMV
gets about 2⇥ speedup going from fp64 to fp32. Note that in

the previous example (Figure 4), the BentPipe SpMV kernel
only comprises 15% of the fp64 solve time, so the 2.5⇥ SpMV
speedup only removes 4.4 seconds from the original solve
time of 50 seconds. In this stretched Laplacian problem, the
SpMV comprises 64% of the total solve time for fp64, so
the improvement in SpMV time provides 32% of the ultimate
speedup in GMRES-IR. Polynomial preconditioning allows
us to take advantage of the large speedup from applying the
SpMV in lower precision.

While this analysis has only covered polynomial precondi-
tioning, we believe that the following concepts will also extend
to many other preconditioners: a) Convergence of problems
preconditioned in fp32 will typically follow convergence of
fp64 preconditioning; b) Using an fp32 preconditioner with
fp64 GMRES will typically improve solve time over using
the same preconditioner in fp64, but perhaps not as much
as applying that preconditioner within GMRES-IR; and c)
Preconditioning allows users to take advantage of kernels that
have large speedup in lower precisions.

D. Matrix Structure, Cache Reuse, and SpMV Performance

The roughly 2.5⇥ speedup of the sparse matrix-vector
product in the previous examples requires deeper explanation.
Intuitively, one might expect that changing the working preci-
sion from fp64 to fp32 should give at most 1.5 to two times
speedup since we are reducing the memory requirement by
almost half. We assume the integer index type stays the same.
If we halve the floating point data size and the index size stays
the same, then one might expect at most 1.5⇥ speedup. Below
we explain how lower precision can improve cache reuse and
give greater than 1.5 or even 2 times speedup.

Note that the SpMV kernel called in all previous examples
is an implementation native to Kokkos Kernels; we do not
employ CuSparse for SpMV (though CuBlas may be called in
other operations). The SpMV kernel is memory-bound, so the
limiting factor in speed is how fast data can be moved through
the memory hierarchy. Recall that storing a double requires 8
bytes of memory and that both integers and floats require 4
bytes of memory. Each of our matrices is stored in Compressed
Sparse Row (CSR) format. With NVIDIA profiling tools, we
observed that the L2 cache hit rate for the float SpMV was
almost twice the hit rate for the double SpMV. This appears
to be due to “perfect caching” of the right-hand side vector
x. Below we give a calculation to explain how this caching
effect can account for 2.5⇥ speedup.

Suppose that A has w nonzero elements per row and n rows
(so nnz = w⇤n) and that we are computing Ax = y. With the
CSR matrix storage format, we have two vectors of length nnz

[one for the values of A (denoted Aval) and another for the
column indices (denoted colId)] and a vector of row pointers
of length n + 1. For this calculation, we ignore reads of the
vector of row pointers and writes to y since they account for
only a small fraction of all memory traffic. To compute the
dot product for each element in the solution vector y, we have

Takeaways:
• Single precision preconditioning improves solve time ~ 30%.
• GMRES-IR improves solve time even more.
• Polynomial preconditioning shifts main expense to SpMV rather than dense

orthogonalization kernels.

Test Problem (same as previous slide):
• 2D Laplacian, Stretched Grid
• n = 2.25 million
• Polynomial preconditioner based upon GMRES polynomial**

Three solves compared:
1. GMRES double w/ double precision polynomial. (left)
2. GMRES double w/ single precision polynomial. (middle)
3. GMRES-IR w/ single precision polynomial. (right)
• (Solve times do not include preconditioner creation.)

Lot of work remains
10

• Several challenges remain on architectures,
algorithms, and software
• Precisely characterize the need of higher

precision at different levels of the software stack
similar to solvers and kernels

• Adapt the software to handle the need while
maintaining confidence in the higher precision
results

