
P R E S E N T E D B Y

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration

under contract DE-NA0003525.

HPC Software Platform Trends:
The Evolution of Trilinos from 2001 to 2026

Michae l Heroux

SAND2021-15046 PE

Software Platforms: “Working in Public” Nadia Eghbal

Platforms in the software world are digital environments that intend to improve
the value, reduce the cost, and accelerate the progress of the people and teams
who use them
Platforms can provide tools, workflows, frameworks, and cultures that provide a
(net) gain for those who engage

Eghbal Platforms:

Trilinos has been several of these types of platforms over time, but none is a
perfect fit

Eghbal, Nadia. Working in Public: The Making and Maintenance of Open Source Software (p. 60). Stripe Press. Kindle Edition.

Motivation For Trilinos
§ Sandia does LOTS of solver work.
§ When I started at Sandia in May 1998:

w Aztec was a mature package. Used in many codes.

w FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.

w New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc…

§ The challenges:
w Little or no coordination was in place to:

• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

w ASCI was forming software quality assurance/engineering
(SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

TUG 20
03

Evolving Trilinos Solution
§ Trilinos1 is an evolving framework to address these challenges:

w Fundamental atomic unit is a package.

w Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).

w Provides a common abstract solver API (Thyra package).

w Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

w Specifies requirements and suggested practices for package SQA.

§ In general allows us to categorize efforts:
w Efforts best done at the Trilinos level (useful to most or all packages).

w Efforts best done at a package level (peculiar or important to a package).

w Allows package developers to focus only on things that are unique to

their package.

1. Trilinos loose translation: “A string of pearls”

TUG 20
03

Trilinos Strategic Goals
§ Scalable Solvers: As problem size and processor counts increase,

the cost of the solver will remain a nearly fixed percentage of the
total solution time.

§ Hardened Solvers: Never fail unless problem essentially
unsolvable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.

§ Full Vertical Coverage: Provide leading edge capabilities from
basic linear algebra to transient and optimization solvers.

§ Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

§ Universal Solver RAS: Trilinos will be:

w Integrated into every major application at Sandia (Availability).
w The leading edge hardened, efficient, scalable solutions for each of

these applications (Reliability).
w Easy to maintain and upgrade within the application environment

(Serviceability).

Algorithmic

Goals

Software

Goals

TUG 20
05

Trilinos Packages

§ Trilinos is a collection of Packages.
§ Each package is:

w Focused on important and state-of-the-art algorithms in its problem

regime.

w Developed by a small team of domain experts.

w Self-contained: No (or minimal) explicit dependencies on any

other software packages (with some special exceptions).

w Configurable/buildable/documented on its own.

§ Sample packages: NOX, AztecOO, IFPACK.

§ Special packages: Epetra, TSF, Teuchos.

TUG 20
03

Greek Names
ACTS Tuto

rial
 20

05

Day 1 of Package Life
§ CVS: Each package is self-contained in Trilinos/package/ directory.

§ Bugzilla: Each package has its own Bugzilla product.

§ Bonsai: Each package is browsable via Bonsai interface.

§ Mailman: Each Trilinos package, including Trilinos itself, has four mail
lists:

w package-checkins@software.sandia.gov
• CVS commit emails. “Finger on the pulse” list.

w package-developers@software.sandia.gov
• Mailing list for developers.

w package-users@software.sandia.gov
• Issues for package users.

w package-announce@software.sandia.gov
• Releases and other announcements specific to the package.

§ New_package (optional): Customizable boilerplate for

w Autoconf/Automake/Doxygen/Python/Thyra/Epetra/TestHarness/Website

TUG 20
05

Sample Package Maturation Process
Step Example

Package added to CVS: Import existing code or start
with new_package.

ML CVS repository migrated into Trilinos (July 2002).

Mail lists, Bugzilla Product, Bonsai database
created.

ml-announce, ml-users, ml-developers, ml-checkins, ml-
regression @software.sandia.gov created, linked to CVS (July
2002).

Package builds with configure/make, Trilinos-
compatible

ML adopts Autoconf, Automake starting from new_package
(June 2003).

Epetra objects recognized by package. ML accepts user data as Epetra matrices and vectors (October
2002).

Package accessible via Thyra interfaces. ML adaptors written for TSFCore_LinOp (Thyra) interface
(May 2003).

Package uses Epetra for internal data. ML able to generate Epetra matrices. Allows use of AztecOO,
Amesos, Ifpack, etc. as smoothers and coarse grid solvers (Feb-
June 2004).

Package parameters settable via Teuchos
ParameterList

ML gets manager class, driven via ParameterLists (June 2004).

Package usable from Python (PyTrilinos) ML Python wrappers written using new_package template
(April 2005).

Startup Steps Maturation Steps

TUG 20
05

Maturation Jumpstart: NewPackage
§ NewPackage provides jump start to develop/integrate a new

package
§ NewPackage is a “Hello World” program and website:

w Simple but it does work with autotools.

w Compiles and builds.

§ NewPackage directory contains:
w Commonly used directory structure: src, test, doc, example, config.

w Working Autoconf/Automake files.

w Documentation templates (doxygen).
w Working regression test setup.

w Working Python and Thyra adaptors.

§ Substantially cuts down on:
w Time to integrate new package.

w Variation in package integration details.

w Development of website.

NOTE: NewPackage can be use independent from Trilinos

TUG 20
05

Developer-Package Edges
A(i,j) = 1 if developer i contributes to package j

A = sparse(31,24);

A(RossBartlett,rythmos) = 1;
A(RossBartlett,thyra) = 1;
A(PaulBoggs,thyra) = 1;
A(ToddCoffey,rythmos) = 1;
A(JasonCross,jpetra) = 1;
A(DavidDay,komplex) = 1;
A(ClarkDohrmann,claps) = 1;
A(MichaelGee,ml) = 1;
A(MichaelGee,nox) = 1;
A(BobHeaphy,trilinosframework) = 1;
A(MikeHeroux,trilinosframework) = 1;
A(MikeHeroux,epetra) = 1;
A(MikeHeroux,aztecoo) = 1;
A(MikeHeroux,kokkos) = 1;
A(MikeHeroux,komplex) = 1;
A(MikeHeroux,ifpack) = 1;
A(MikeHeroux,thyra) = 1;
A(MikeHeroux,tpetra) = 1;
A(MikeHeroux,amesos) = 1;
A(MikeHeroux,belos) = 1;
A(MikeHeroux,epetraext) = 1;
A(MikeHeroux,jpetra) = 1;
A(UlrichHetmaniuk,anasazi) = 1;

A(MarzioSala,didasko) = 1;
A(MarzioSala,ifpack) = 1;
A(MarzioSala,ml) = 1;
A(MarzioSala,amesos) = 1;
A(AndrewSalinger,loca) = 1;
A(PaulSexton,epetra) = 1;
A(PaulSexton,tpetra) = 1;
A(BillSpotz,PyTrilinos) = 1;
A(BillSpotz,epetra) = 1;
A(BillSpotz,new_package) = 1;
A(KenStanley,amesos) = 1;
A(KenStanley,new_package) = 1;
A(HeidiThornquist,anasazi) = 1;
A(HeidiThornquist,belos) = 1;
A(HeidiThornquist,teuchos) = 1;
A(RayTuminaro,ml) = 1;
A(RayTuminaro,meros) = 1;
A(JimWillenbring,epetra) = 1;
A(JimWillenbring,new_package) = 1;
A(JimWillenbring,trilinosframework) = 1;
A(AlanWilliams,epetra) = 1;
A(AlanWilliams,epetraext) = 1;
A(AlanWilliams,aztecoo) = 1;
A(AlanWilliams,tpetra) = 1;

A(RobHoekstra,epetra) = 1;
A(RobHoekstra,thyra) = 1;
A(RobHoekstra,tpetra) = 1;
A(RobHoekstra,epetraext) = 1;
A(RussellHooper,nox) = 1;
A(VickiHowle,meros) = 1;
A(VickiHowle,belos) = 1;
A(VickiHowle,thyra) = 1;
A(JonathanHu,ml) = 1;
A(SarahKnepper,komplex) = 1;
A(TammyKolda,nox) = 1;
A(TammyKolda,trilinosframework) = 1;
A(JoeKotulski,pliris) = 1;
A(RichLehoucq,anasazi) = 1;
A(RichLehoucq,belos) = 1;
A(KevinLong,thyra) = 1;
A(KevinLong,belos) = 1;
A(KevinLong,teuchos) = 1;
A(RogerPawlowski,nox) = 1;
A(MichaelPhenow,trilinosframework) = 1;
A(MichaelPhenow,trilinosframework) = 1;
A(EricPhipps,loca) = 1;
A(EricPhipps,nox) = 1;

ACTS Tuto
rial

 20
05

Developer-Package Matrix
§ Number of developers per package:

w Maximum: max(sum(A)) = 6

w Average: sum(sum(A))/24 = 2.875

§ Number of package affiliations per
developer:
w Maximum: max(sum(A’)) = 12.

• Minus outlier: = 4.

w Average: sum(sum(A’))/31 = 2.26

§ Observations:
w Several developers per package.

w Several packages per developer.

spy(A);

ACTS Tuto
rial

 20
05

Developer-Developer Matrix (A*A’)

§ B = A*A’

§ Two developers connected if co-
authors of a package.

§ Apply Symmetric AMD
reordering.

§ Only two developers
“disconnected”:
w Clark Dohrmann: CLAPS.

w Joe Kotulski: Pliris.

Komplex Subteam

ML Subteam Anasazi Subteam

Epetra Subteam

NOX Subteam

Thyra Subteam
ACTS Tuto

rial
 20

05

Trilinos Interoperability Mechanisms

§ M1: Package accepts user data as Epetra objects.

§ M2: Package can be used via TSF abstract solver classes.

§ M3: Package can use Epetra for private data.

§ M4: Package accesses solver services via TSF interfaces.

§ M5: Package builds under Trilinos configure scripts.

TUG 20
05

Interoperability Example: AztecOO

§ AztecOO: Preconditioned Krylov Solver Package.

§ Primary Developer: Mike Heroux.

§ Minimal explicit, essential dependence on other Trilinos packages.

w Uses abstract interfaces to matrix/operator objects.

w Has independent configure/build process (but can be invoked at Trilinos level).

w Sole dependence is on Epetra (but easy to work around).

§ Interoperable with other Trilinos packages:

w Accepts user data as Epetra matrices/vectors.

w Can use Epetra for internal matrices/vectors.

w Can be used via TSF abstract interfaces.

w Can be built via Trilinos configure/build process.

w Can provide solver services for NOX.
w Can use IFPACK, ML or AztecOO objects as preconditioners.

TUG 20
05

Observations from Trilinos 2001 - 2009

Focus on creating a federation to address numerous stakeholder issues:
◦ Bringing independent teams together to address software quality requirements
◦ Provide community for inter-dependent development teams
◦ Provide a single collection of libraries for users
◦ Retain small team ability for name recognition, autonomy at local level
◦ Provide a large-scale product portfolio that sponsors can track, assess and talk about

Provide software platform:
◦ Common tools, processes and infrastructure
◦ Interoperable components for each other to use
◦ Ready-made NewPackage to kickstart a new effort
◦ Technical engagement with application teams
◦ Common data services API via Epetra abstract classes (e.g., Epetra_Operator)

Many of these attributes have modern replacements:
◦ Kokkos/KokkosKernels/Tpetra
◦ GitHub repos, tools, workflows
◦ TriBITS/CMake and Spack

Some have dropped (not always for the best)
◦ Use of APIs for inter-package interactions
◦ Kickstart for new package

Expanding the Trilinos Developer Community17

2010 –Focus on transition to community project
◦ Permissive license for easier corporate interactions
◦ Contributor agreements for non-Sandia members
◦ Website with non-Sandia and non-gov root
◦ Open repository
◦ Tremendous effort and commitment to make real

The Transition to GitHub18

Never migrated to SVN

EuroTUG as external collaboration diagnostic
19

EuroTUG meeting series has been around since 2012:
◦ 2012 in Lausanne, Switzerland

◦ 2013 in Munich, Germany
◦ 2014 in Lugano, Switzerland

◦ 2015 in Paris, France

◦ 2016 in Garching, Germany
◦ 2019 in Zurich, Switzerland

Recent challenges (starting in 2015 or so):
◦ Dev team focused on GPUs

◦ Heavy technical co-design work
◦ Disruptive usage model

◦ Many users not ready for GPU investment
◦ Ubiquitous, disruptive code changes
◦ GPU benefits for sparse codes only modest

Presently:
◦ Trilinos more ready for broad user group

◦ Users must transition to GPUs for performance

Time to renew outreach:
◦ Virtual and on-demand

◦ In-person as circumstances permit June 5, 2012 EuroTUG, EPFL, Lausanne, Switzerland

Observations from Trilinos 2010 - 2016

Focus on expanding communities:
◦ Developers outside of Sandia
◦ Users outside of Sandia

Mature software products:
◦ Good documentation
◦ Lots of examples
◦ Very powerful compositional capabilities for multi-physics
◦ Rich capabilities for circuits
◦ MPI-only

Transition to new tools:
◦ CMake (via TriBITS)
◦ Git and GitHub
◦ External web presence

New Package: Kokkos
§ Very new project.
§ Goal:

w Isolate key non-BLAS kernels for the purposes of optimization.

§ Kernels:
w Dense vector/multivector updates and collective ops (not in BLAS).

w Sparse MV, MM, SV, SM.

§ Serial-only for now.
§ Reference implementation provided.
§ Mechanism for improving performance:

w Default is aggressive compilation of reference source.

w BeBOP: Jim Demmel, Kathy Yelick, Rich Vuduc, UC Berkeley.

w Vector version: Cray.

TUG 20
03

22 Managed by UT-Battelle
for the U.S. Department of Energy Large-Scale Software For Generic Multi-core Nodes

Example Kernels: axpy() and dot()
template <class WDP>
void
Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>
WDP::ReductionType
Node::parallel_reduce(int beg, int end,

WDP workdata);

template <class T>
struct AxpyOp {

const T * x;
T * y;
T alpha, beta;
void execute(int i)
{ y[i] = alpha*x[i] + beta*y[i]; }

};

template <class T>
struct DotOp {

typedef T ReductionType;
const T * x, * y;
T identity() { return (T)0; }
T generate(int i) { return x[i]*y[i]; }
T reduce(T x, T y) { return x + y; }

};

AxpyOp<double> op;
op.x = ...; op.alpha = ...;
op.y = ...; op.beta = ...;
node.parallel_for< AxpyOp<double> >

(0, length, op);

DotOp<float> op;
op.x = ...; op.y = ...;
float dot;
dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

SIAM PP10

Bake
r &

 Hero
ux

23 Managed by UT-Battelle
for the U.S. Department of Energy Large-Scale Software For Generic Multi-core Nodes

Hybrid Timings (Tpetra)
• Tests of a simple iterations:

• power method: one sparse mat-vec, two vector operations

• conjugate gradient: one sparse mat-vec, five vector operations

• DNVS/x104 from UF Sparse Matrix
Collection (100K rows, 9M entries)

• NCCS/ORNL Lens node includes:

• one NVIDIA Tesla C1060

• one NVIDIA 8800 GTX

• Four AMD quad-core CPUs

• Results are very tentative!

• suboptimal GPU traffic

• bad format/kernel for GPU

• bad data placement for threads

Node PM
(mflop/s)

CG
(mflop/s)

Single thread 140 614

8800 GPU 1,172 1,222

Tesla GPU 1,475 1,531

Tesla + 8800 981 1,025

16 threads 816 1,376
1 node
15 threads + Tesla 867 1,731
2 nodes
15 threads + Tesla 1,677 2,102

SIAM PP10

Bake
r &

 Hero
ux

Changing HPC Landscape and Need for Performance Portability24

Intel Multicore Intel ManycoreNVIDIA GPU IBM Power AMD Multicore/APU ARM

IBM BGQ (Sequoia, Mira)

NVIDIA Kepler (Titan)

Intel KNL
(Trinity, Cori)

NVIDIA Volta (Summit, Sierra) Intel A21

AMD GPU

NVIDIA GPU
ARM (Astra)

2012 2016 2018 2021
Decade of DOE HPC
will have seen 4-5
“new” paradigms!

• Several architectures, many with different programming models
• Applications struggle to obtain good performance on all of these

Several many/multi-core architecture central to DOE/NNSA HPC202
1 A

lph
abe

t Ta
lk

S. R
aja

mani
cka

m

Approaches to Programming GPUs25

Native Programming Models
◦ CUDA (NVIDIA), HIP (AMD), SYCL (Intel)
◦ Pros: Customized for each architecture, so low level control
◦ Cons: Rewrite code every time you buy a hardware from a new vendor

Directive Based Approach
◦ OpenMP, OpenACC
◦ Pros: Standards based, General
◦ Cons: Long lag time between what is needed and when they are needed, Might have to resort to

#ifdef after all, Different level of support from vendors

Library Based Approach
◦ Kokkos, RAJA
◦ Pros: Portable, Clean abstractions, Quicker turnaround, Reference implementations of standards
◦ Cons: Dependency on libraries

Library based performance portability allows for writing applications to several
architectures with limited dependencies

202
1 A

lph
abe

t Ta
lk

S. R
aja

mani
cka

m

26
Kokkos Ecosystem for Performance Portability

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise

202
1 A

lph
abe

t Ta
lk

S. R
aja

mani
cka

m

Kokkos Kernels is rapidly growing to support the needs of computational science
applications.

Software
üCMake support

üETI changes to allow ETI

file generation at compile

time

Portable Vectorization
ü Support ARM platforms

ü Improved application

performance on CPU,

KNL, GPU and ARM

ü Portable SIMD primitive

Graph Algorithms
üDistance-2 graph coloring

üFaster distance-1 graph

coloring

üBalanced distance-1

coloring

üBalanced “well shaped”

graph clustering

üRCM ordering for

preconditioners

ü MIS-2 and Coarsening

Sparse Linear Algebra
üCluster Gauss-Seidel

ü Sparse ILU factorization

ü Sparse triangular solves

for sparse L and U

ü Sparse triangular solves

for supernodal L and U

ü Structured sparse matrix

vector multiply

ü Cluster Gauss Seidel

Dense Linear Algebra
ü Faster kernels for

orthogonalization

ü Complex support for

dense LU factorization

üInterfaces to vendor

libraries

üMore BLAS and LAPACK

support with Kokkos

views

Team Level Kernels
ü Team level sorting utilities

ü Team level DFS

ü More team level BLAS

and LAPACK support

New Features in Kokkos Kernels 3.X27

202
1 A

lph
abe

t Ta
lk

S. R
aja

mani
cka

m

Trilinos: Open-Source Toolkit of Mathematical Algorithms for HPC
28

Trilinos product areas (Lead : Heroux)
◦ Framework – Build, install, and test infrastructure; application integration (Product Lead: Willenbring)
◦ Data Services – Linear algebra, Kokkos performance-portability, load balancing, mesh services (Product Lead: Devine)
◦ Linear Solvers – Iterative/direct solvers, preconditioners (domain-decomposition, multigrid, block) (Product Lead: Rajamanickam)
◦ Nonlinear Solvers – Time-stepping methods, non-linear solvers (Product Lead: Pawlowski)
◦ Discretization – Matrix assembly, discretization support (Product Lead: Perego)

55 packages in five areas
~100 contributors in total
~50+ active contributors
30-140 commits per week
400 forks

Trilinos Software
◦ Solid mechanics, fluid

dynamics, electrical
circuits, etc.

◦ SIERRA, Empire,
SPARC, Xyce, Drekar,
Charon, etc.

Application Impact

Trilinos provides scalable algorithms to ASC-IC/ATDM applications,
enabling high performance on current and next generation HPC platforms

Framework

Data Services

Linear Solvers Discretization

Nonlinear Solvers

Science and Engineering Applications

Trilinos

Two main codes paths:
• 32-bit stack (maintenance)
• Templated C++ stack (active)

29

DOE HPC Roadmap to Exascale Systems

Version 2.0

30

Heterogeneous accelerated-node computing
Accelerated node computing: Designing, implementing, delivering, & deploying advanced
agile software that effectively exploits heterogeneous node hardware

• Execute on the largest systems … AND on today and tomorrow’s laptops, desktops, clusters, …

• We view accelerators as any compute hardware specifically designed to accelerate certain mathematical
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used
algorithms. We often use the term GPUs synonymously with accelerators.

Diagram credit:
Andrew Siegel

Text credit: Doug Kothe

Ref: A Gentle Introduction to GPU Programming, Michele Rosso and Andrew Myers, May 2021

https://bssw.io/blog_posts/a-gentle-introduction-to-gpu-programming

Observations from Trilinos 2017 - now31

The move to accelerator platforms has been incredibly disruptive for everyone:
◦ Change in execution model (scale inward, discrete memory, new ISAs, new programming models, etc)

◦ New algorithms, aggregated applications

◦ New vendor hardware and software products

◦ Ubiquitous change to application source code

Demands a vertical co-design/development from vendor to libraries to applications

Result is an inward focus:
◦ Work with teams who are funded to work together and paid to embrace disruption

◦ Others must wait for new functionality and documentation until intensive design and development efforts stabilize

Still in this phase, but approaching its end?

Expanding the DOE Open-
Source Software
Ecosystem: ECP and E4S

33

ST L4 Teams

- WBS
- Name
- PIs
- PCs - Project
Coordinators

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, McInnes, Lois
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Balaji, Pavan Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trujillo, Gabrielle
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Meng, Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Glassbrook, Dick
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chapman, Barbara Kale, Vivek
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis
2.3.3 Mathematical Libraries Li, Sherry
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Munson, Todd Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Sherry Li, Sherry
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Turner, John Grundhoffer, Alicia
2.3.3.15 Sake: Scalable Algorithms and Kernels for Exascale Rajamanickam, Siva Trujillo, Gabrielle
2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Grundhoffer, Alicia
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry
2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.5.10 ExaWorks Laney, Dan Laney, Dan
2.3.6 NNSA ST Mohror, Kathryn
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST Stats

- 35 L4 subprojects
- ~27% ECP budget

•~250 staff

• ~70 products

• 34 teams

• ~30 universities

• ~9 DOE labs

• 6 technical areas

• 1 focus area of 3 in ECP

34

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:
• Focus: GPU node architectures and advanced memory & storage technologies
• Create: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software product
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, Trilinos)
• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

35

A Sampler of Products

• No two project alike

• Some personality driven

• Some community driven

• Small, medium, large

36

Takeaways from product sampler

• Wide range of products and teams: libs, tools, small personality-driven, large community-driven

• Varied user base and maturity: widely used, new, emerging

• Variety of destinations: direct-to-user, facilities, community stacks, vendors, facilities, combo of these

• Wide range of dev practices and workflows from informal to formal

• Wide range of tools: GitHub, GitLab, Doxygen, Readthedocs, CMake, autotools, etc.

• Question at this point might (should?) be:
– Why are you trying to make a portfolio from this eclectic assortment of products?

• Answer:
– Each product team charged with a task: Provide capabilities for next-generation leadership platforms

– Going together into the frontier is better than going alone

37

About Platforms and ECP

• The ECP is commissioned to provide new scientific software capabilities on the frontier of
algorithms, software and hardware

• The ECP uses platforms to foster collaboration and cooperation as we head into the frontier

• The ECP has two primary software platforms:
– E4S: a comprehensive portfolio of ECP-sponsored products and dependencies

– SDKs: Domain-specific collaborative and aggregate product development of similar capabilities

38

Delivering an open, hierarchical software ecosystem

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

39

xSDK: Primary delivery mechanism for ECP
math libraries’ continual advancements

ECP Math
libraries

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Improving library
quality,

sustainability,
interoperability

Next-generation
algorithms

Advances in data
structures for new

node
architectures

Toward
predictive
scientific

simulations

Increasing
performance,

portability,
productivity

xSDK release
1

xSDK release
2

xSDK release
n…..Timeline:

As motivated and validated by
the needs of ECP applications:

xSDK release 0.7.0
(Nov 2021)

hypre
PETSc/TAO
SuperLU
Trilinos
AMReX
ArborX
ButterflyPACK
DTK
Ginkgo
heFFTe
libEnsemble
MAGMA
MFEM
Omega_h
PLASMA
PUMI
SLATE
Tasmanian
SUNDIALS
Strumpack
Alquimia
PFLOTRAN
deal.II
preCICE
PHIST
SLEPc

from the
broader
community

Ref: xSDK: Building an Ecosystem of Highly Efficient Math Libraries for Exascale, SIAM News, Jan 2021

xSDK lead: Ulrike Meier Yang (LLNL)
xSDK release lead: Satish Balay (ANL)

https://sinews.siam.org/Details-Page/xsdk-building-an-ecosystem-of-highly-efficient-math-libraries-for-exascale

40

An SDK Maturity Model or, The Benefits of Coop-etition
Scenario: Two Product Teams in the Same SDK (e.g., math libs SDK aka xSDK)

Level 0:
Their software
approach is nuts!

Level 1:
They seem to
have some good
ideas…

Level 2:
Let’s do some
joint planning
and tutorials

Level 3:
Let’s explore
multi-precision
algorithms for
GPUs together

41

ECP xSDK Mixed/Multi-precision Initiative:
Pitch talks Nov 2021 – May 2020
• Thomas Grützmacher (KIT) Are Posits an option for reducing the memory access volume?
• Stan Tomov (UTK) Low Precision BLAS on AMD GPUs
• Natalie Beams (UTK) A mixed-precision future in libCEED
• Thomas Grützmacher (KIT) Status update on the memory accessor design and interface
• Toshiyuki Imamura (RIKEN) Mixed Precision Numerics and HPL-AI on the Fugaku Supercomputer
• Nico Trost (AMD) ROCm™ Low Precision Capabilities
• James Diffenderfer (LLNL) QDOT: Quantized Dot Product Kernel for Approximate High-Performance Computing
• Mantas Mikaitis (University of Manchester) Numerical Behavior of NVIDIA Tensor Cores
• Azzam Haider (Nvidia) Tensor Core Accelerated Iterative Refinement Solvers and its impact on scientific computing
• Sebastien Cayrols (UTK) Design and optimization of mpi_alltoall for mixed-precision FFT algorithms
• Ichitaro Yamazaki (SNL) Mixed precision s-step Lanczos and CG
• Hartwig Anzt (KIT) Pushing the memory roofline with the accessor
• Daniel Osei-Kuffuor (LLNL) Towards a Multi-Precision Linear Solver Library in hypre
• Tim Kelley (NCSU) Newton's Method in Mixed Precision
• Theo Mary (Sorbonne University) Mixed Precision Low Rank Compression and its Application to BLR Matrix Factorization
• Erin Carson (Charles University) Using Mixed Precision in s-step Krylov Subspace Methods
• Sherry Li (LBNL) Performance and accuracy of sparse direct solver with mixed precision arithmetic on GPU
• Stephen Thomas (NREL) The Mathematics of Arrays (MoA) for Fast Matrix Algorithms on Exascale Architectures
• Tobias Ribizel (KIT) Implementing Mixed Precision Operations in Ginkgo
• Hartwig Anzt (KIT,UTK) Preparing for the Multiprecision ECP Review
• Jennifer Loe (Sandia National Laboratories) Multiprecision Krylov Solvers in Trilinos
• Mike Tsai (University of Tennessee) Mixed-precision algorithm for finding selected eigenvalues and eigenvectors of symmetric and Hermitian matrices
• Erin Carson (Charles University) Mixed Precision Lanczos-CG
• Andres Tomas (University of Jaume I) Balanced and Compressed Coordinate Layout for the Sparse Matrix-Vector Product on GPUs
• Yu Pei, George Bosilca (Tennessee) Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach with Parsec
• Thomas Grützmacher (KIT) Memory Accessor Design
• Srikara Pranesh (University of Manchester) Answering two numerical linear algebra questions with the help of fp16
• Sebastien Cayrols (UTK) Design and optimization of MPI_Alltoall for Mixed-precision algorithms
• Piotr Luszczek, Mike Tsai, Jack Dongarra (UTK) Towards LU Factorization Based on Integer Arithmetic with Floating-Point Accuracy
• Thomas Grützmacher (KIT) Compressed Basis GMRES on High Performance GPUs
• Steve Thomas and Kasia Swirydowicz (NREL) Mixed Precision FGMRES Iterative Refinement for Large Sparse Indefinite A=LDL^T
• Rasmus Tamstorf (Disney Research) Mixed Precision Multigrid
• Fritz Göbel (KIT) Multiprecision block-Jacobi for Iterative Triangular Solves

42

2021 Mixed/Multi-precision
Progress Report

• Cross-team design space exploration

• Rapid info creation and dissemination

• Integration of ideas into all products

• Example of coop-etition

43

Takeaways from SDKs

• Establish coop-etition:
– Lower-cost comparison of products, increased incentives for improvement

– Encourages SDK participation: learn from each other, be in the know

• Lead to community growth:
– Humanizes the other teams

– Exposes opportunities to share strengths

• Retain autonomy of SDK member teams
– Each team makes its own informed decisions

– Better decisions from shared study of new ideas

• Challenges
– Coordination has overhead, some developers don’t see the net benefit

– Poor habits can spill over (but so can good ones)

• Bottom line: SDKs as we define them:
– Are platforms to support open, collaborative scientific discovery across teams

– Make sharing and cooperation, which are fundamental to science, easier to realize

44

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC software ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• Growing functionality: Nov 2021: E4S 21.11 – 91 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to software quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 1.2 – November

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io

E4S Strategy Group
US agencies, industry,

international

https://e4s.io/
https://spack.io/
https://e4s.io/

45

Policies: Version 1
https://e4s-project.github.io/policies.html

• P1: Spack-based Build and Installation

• P2: Minimal Validation Testing

• P3: Sustainability

• P4: Documentation

• P5: Product Metadata
• P6: Public Repository

• P7: Imported Software

• P8: Error Handling

• P9: Test Suite

E4S Community Policies: A commitment to quality improvement

We welcome feedback. What policies make sense for your software?

• Purpose: Enhance sustainability and
interoperability

• Will serve as membership criteria for E4S
– Membership is not required for inclusion in E4S

– Also includes forward-looking draft policies

• Modeled after xSDK community policies
• Multi-year effort led by SDK team

– Included representation from across ST
– Multiple rounds of feedback incorporated from

ST leadership and membership

SDK lead: Jim Willenbring (SNL)

https://e4s-project.github.io/policies.html

46

E4S DocPortal

• Single point of access

• All E4S products

• Summary Info
– Name

– Functional Area

– Description

– License

• Searchable

• Sortable

• Rendered daily from repos

https://e4s-project.github.io/DocPortal.html

All we need from the software team is
a repo URL + up-to-date meta-data files

https://e4s-project.github.io/DocPortal.html

47

Goal: All E4S product documentation accessible from single portal on E4S.io
(working mock webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

48

Speeding up bare-metal installs using the E4S build cache

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html

E4S Spack build cache:

• Fusion plasma:
• WDMapp added E4S mirror

• Speedup: 10X

• Turbine wind plant:
• ExaWind (Nalu-Wind)

• 6 minutes with build cache
• Up to 4 hours without

Special thanks
to Sameer
Shende,

WDMapp and
ExaWind teams

• 75,000+ binaries
• S3 mirror
• No need to build

from source code!

https://oaciss.uoregon.edu/e4s/inventory.html

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html
https://oaciss.uoregon.edu/e4s/inventory.html

49

Summary: E4S and SDKs as Platforms
Activity SDKs E4S

Planning Transparent and collaborative requirements, analysis and design,
delivery

Campaign-based portfolio planning coordinated with Facilities, vendors,
community ecosystem, non-DOE partners

Implementation Leverage shared knowledge, infrastructure, best practices ID and assist product teams with cross-cutting issues

Cultivating
Community

Within a specific technical domain: Portability layers, LLVM
coordination, sparse solvers, etc.

Across delivery and deployment, with software teams, facilities’ staff

Resolving issues,
sharing solutions

Performance bottlenecks and tricks, coordinated packaging and use
of substrate, e.g., Desul for RAJA and Kokkos

Build system bugs and enhancements, protocols for triage, tracking &
resolution, leverage across & beyond DOE

Improving quality Shared practice improvement, domain-specific quality policies,
reduced incidental differences and redundancies, per-commit CI
testing

Portfolio-wide quality policies, documentation portal, portfolio testing on
many platforms not available to developers

Path-finding Exploration and development of leading-edge computational tools
that provide capabilities and guidance for others

Exploration and development of leading-edge packaging and distribution
tools and workflows that provide capabilities and guidance for others

Training Collaborative content creation and curation, coordinated training
events for domain users, deep, problem-focused solutions using
multiple products

Portfolio installation and use, set up of build caches, turnkey and
portable installations, container and cloud instances

Developer
experience

Increased community interaction, increased overhead (some devs
question value), improved R&D exploration

Low-cost product visibility via doc portal, wide distribution via E4S as
from-source/pre-installed/container environment

User experience Improve multi-product use, better APIs through improved design,
easier understanding of what to use when

Rapid access to latest stable feature sets, installation on almost any
HPC system, leadership to laptop

Scientific Software
R&D

Shared knowledge of new algorithmic advances, licensing, build
tools, and more

Programmatic cultivation of scientific software R&D not possible at
smaller scales

Community
development

Attractive and collaborative community that attracts junior members
to join

Programmatic cultivation of community through outreach and funded
opportunities that expand the membership possibilities

50

Advancing scientific productivity through better scientific software
Science through computing is only as good as the software that produces it.

https://ideas-productivity.org

Customize and curate
methodologies
● Target scientific software

productivity and sustainability
● Use workflow for best practices

content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress
● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility
● Create Software Development Kits (SDKs)

to facilitate the combined use of
complementary libraries and tools

Engage in community outreach
● Broad community partnerships
● Collaboration with computing facilities
● Webinars, tutorials, events
● WhatIs and HowTo docs
● Better Scientific Software site (https://bssw.io)

1

2

3

4

https://bssw.io/

Observations for Trilinos and ECP E4S and the SDKs51

ECP is large, structured, and spanning enough time to establish new software approaches
◦ Creation of a 3-tier software org and corresponding levels of software aggregation (product, SDK, E4S)
◦ Time enough to change culture and demonstrate value to stakeholders

Trilinos efforts are both part of E4S and the xSDK and outside of them
◦ Majority of funding is not ECP-related
◦ Benefits include

◦ Being part of a larger community
◦ Increased mindshare, recruiting new staff,
◦ Shared exploration of new topics (e.g., mixed/multi-precision)
◦ Better ecosystem interoperability

◦ Costs include
◦ Overheads of synchronizing, coordinating
◦ Complications from need for collaborative open-source development and mission security needs

Toward a DOE
ASCR Leadership
Software Center
(LSC)

Transforming ASCR
Science R&D into
World-class
Leadership Software

Background

• The US DOE Exascale Computing Project (ECP) initiated the Extreme-scale Scientific
Software Stack (E4S)

• E4S development will continue under ECP for two more years
• To better ensure continued growth and sustainability beyond ECP, we are exploring ideas

now to better orient E4S efforts toward the post-ECP era
• Engaging key US agencies and international institutions is essential to the longevity of E4S

• We propose a plan for
• A DOE ASCR Leadership* Software Center (LSC)
• A leadership and stewardship role in sustaining and growing E4S through LSC

*We intend leadership in our setting to mean emerging and leading-edge software for emerging and leading-edge
scientific computing environments, including HPC, AI/ML for science, large-scale edge computing for science, quantum,
and other scientific computing software products that complement industry efforts and facilitate scientific progress.

LSC Motivation

• ECP makes a compelling case for coordinated development
and delivery of DOE software products
• Planning: Portfolio of inter-related capabilities in

collaboration with application teams, facilities, vendors,
open-source communities

• Execution: Development and dissemination of best
practices; use of shared platforms (e.g., Atlassian tools),
testing infrastructure, effective and efficient processes

• Tracking: Coordinated and transparent progress tracking,
adaptation to evolving requirements

• Assessment: Regular assessment and reporting of
progress to stakeholders and community

• The ECP ST Portfolio approach promises improved
effectiveness and efficiency of DOE software efforts vs
independent software teams working alone

• The E4S/SDK open software architecture provides a framework
for successful software development and delivery

• ECP has fostered a holistic approach to scientific software
workforce development

• A Leadership Software Center (LSC) provides a compelling
approach as an enabler to coordinate the development and
delivery of DOE software products after the end of ECP

55

LSC Sketch

ECP Sustainability: The Leadership Software Center (LSC)
will enable the sustainability of ECP contributions, and
development and delivery of future capabilities, including
new domains like AI/ML, Edge and Quantum

Tailored Agile: The LSC will use tailored project
management practices, processes, tools, and a distributed
multi-institutional organization to enable effective and
efficient delivery of ASCR software investments

New Ecosystem Entity: The LSC will establish an essential
and new ecosystem entity to complement Facilities, ASCR
Research, vendors, industry and other entities.

Workforce Development: Establishing the LSC assures the
creation of a scientific software workforce for sustainable
leadership scientific software development and delivery

56

Leadership Software Center Cadence
Ongoing + Campaigns

LSC-1 (2024-26)

• Next phase core SW*
• Establish AI/ML SDK
• Scope Edge SDK
• Contingency

LSC-2 (2027-2029)

• Next phase core SW
• Next phase AI/ML
• Establish Edge SDK
• Scope Quantum SDK
• Contingency

LSC-3 (2030-32)

• Next phase core SW
• Next phase AI/ML
• Next phase Edge
• Establish Quantum SDK
• Contingency

Initiate Refine SustainLSC Core

Leadership
Software

Campaigns

*Next phase core SW: Scope necessary to address emerging needs in programming models, runtimes, tools, math libs, data,
visualization, workflows and other established software technologies. Often this scope will be new features in existing LSC products,
such as AI linear algebra features being added, or support for the latest AI devices, or both, to our existing Math Libs SDK.

57

Portfolio Project
Management

Plan, Execute, Track, Assess Lifecycle

• All activities governed by phased development process
• Executed as “campaigns”
• Tailored agile approach
• Collective coordination, first-class HPC ecosystem entity
• Hierarchical approach:

• Multi-year baseline as campaign
• Refine annually
• Add milestone fidelity at “last responsible moment”

Change Management Process:

• Changes from campaign base plan managed by a process
• Any changes to cost, scope and schedule
• Explicit review process determined by degree of change
• Change control process assures lightweight transparency
• Objective: Always do most important work at any time

58

Capability
Integration
Strategy

DOE software products have four primary
integration targets:
• Vendors: Specific HPC enhancements, integrated into

system vendor stacks
• Community SW: C++, Fortran, LLVM
• Facilities: Tuned open-source SW for key platforms
• Direct to apps: Application teams download and build
• Note: Some products are available via 2 – 3 of the above

targets

Project goals:

• Establish and ensure quality standards for product
development and delivery

• Assure that funded projects develop and deliver to one
or more integration targets

• Track and assess integration status of new capabilities

Current Activities & Next Steps

• Software Sustainability Strategic Plan:
• ECP ST & Co-design leadership draft document
• Part of response to Feb 2021 IPR recommendation
• Target 20 – 30 pages
• Current draft provided much of the content for these slides
• Developing concurrently with community outreach

• Leadership Scientific Software Sustainability Town Halls:
• Themed discussions led by ECP ST leads, E4S leads
• 3rd Thursday of the month, 3 – 4:30 pm ET
• Broadest possible public engagement
• https://lssw.io

• DOE ASCR Request for Information (RFI) on Software Sustainability
• https://www.federalregister.gov/documents/2021/10/29/2021-23582/stewardship-of-software-for-scientific-and-high-performance-computing
• RFI responses due Dec 13, 2021

https://lssw.io/
https://www.federalregister.gov/documents/2021/10/29/2021-23582/stewardship-of-software-for-scientific-and-high-performance-computing

Opportunities for Trilinos 2022 - 202660

The ECP has demonstrated the potential of a sustained open-source software organization to:
◦ Deliver DOE ASCR R&D to users, facilities, vendors and the open-source community via a curated software portfolio
◦ Grow the next generation workforce
◦ Address growing reliance on software as first-class entity
◦ Raise the quality of the software we provide

Software platforms like GitHub, Spack, containers provide unprecedented opportunities to accelerate scientific progress:
◦ Tools and workflows enable rich collaboration
◦ Example: Richard McElreath “Science as Amateur Software Development” https://youtu.be/zwRdO9_GGhY

Next generation software teams need to include skills in cognitive and social sciences
◦ Many future challenges and opportunities for scientific progress are about people and technology
◦ As computational scientists we can appreciate the role of science to inform and improve how we develop and use software to do research

The path to HPC success is through execution on heterogeneous devices
◦ Solving the problem of utilizing multiple homogeneous GPU devices is just the first step
◦ ECP helps toward portability across multiple vendor GPU offerings, but there is so much more to come

The Trilinos team can be a leader among peers in establishing this organization
◦ Trilinos on top of Kokkos is well positioned to rapidly adapt to future emerging devices
◦ Trilinos team has deep knowledge and experience in key areas needed for organization success
◦ Trilinos team in a privileged position to explore the critical need for software quality assurance while “Working in Public”
◦ Challenge: We must learn how to be fully part of future DOE open science software efforts while also addressing DOE mission needs

https://youtu.be/zwRdO9_GGhY

61

Working toward software sustainability: Join the conversation

Workshop on
Research Software Science
Software is an increasingly important component in the
pursuit of scientific discovery. Both its development and use
are essential activities for many scientific teams. At the
same time, very little scientific study has been conducted to
understand, characterize, and improve the development and
use of software for science.

https://lssw.io

• LSSw Town Hall Meetings (ongoing)
– 3rd Thursday each month, 3 – 4:30 pm Eastern US time
– Next meeting Dec 16, topic: Leadership SW beyond HPC

• Slack: Share your ideas interactively

• Whitepapers: Written content for LSSw conversations
– We need your ideas (2-4 page whitepapers)
– Submit via GitHub PR or attachment to

contribute@lssw.io
• References

– Help us build a reading list
– Submit via GitHub PR or email to contribute@lssw.io

• Info and registration at:
https://www.orau.gov/SSSDU2021

• Whitepapers: 120+ submissions

RFI: Stewardship of Software for Scientific and High-Performance Computing, deadline Dec 13
https://www.federalregister.gov/documents/2021/10/29/2021-23582/stewardship-of-software-for-scientific-and-high-performance-computing

https://lssw.io/
mailto:contribute@lssw.io
mailto:contribute@lssw.io
https://www.orau.gov/SSSDU2021

P R E S E N T E D B Y

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration

under contract DE-NA0003525.

Trilinos 20th Anniversary Celebration

T he Tr i l inos Communi ty

Some Trilinos History63

Trilinos started in December 2001
◦ Fun fact: The first Trilinos commit was on Fri Dec 14 22:43:40 2001
◦ While the command `commit log --reverse` shows the first Trilinos commit was on Fri Feb 13 23:00:10 1998,

this is a commit preserved from the partitioning package Zoltan that was integrated into Trilinos years later
◦ There are similar commits for the multigrid package ML

The “Tri” in Trilinos was determined by the intent for three packages, there are now 50+ packages

Trilinos phases:
◦ Started with the Epetra stack: MPI-only, double precision arithmetic, up to 2B equations
◦ New stack based on Tpetra: MPI+Kokkos, templated precisions, arbitrary problem size

Trilinos-Kokkos/KokkosKernels relationship:
◦ Kokkos started in Trilinos: Extracted to support users who don’t need solvers, and those who do
◦ Kokkos and KokkosKernels snapshotted into Trilinos regularly

Ray Tuminaro, John Shadid, and Scott Hutchinson, co-
inventors of Aztec (the precursor to AztecOO) circa 1997.

Best commit message ever…
"hope this works ... but vacation will be nice either way."

Ray Tuminaro, Commit message for a9065d33268142873f5d575164b5fd2f07d335c4, 06/23/2011

What’s in a name?

The acronym FROSch actually is the German word

for ”frog“. Hence, the logo shows two overlapping frogs

and is strongly inspired by the domain decomposition

methods logo (see http://www.ddm.org) showing a

computational domain composed of a circle overlapping

with a rectangle.

Teuchos – Where’s the f?!?!
Costas Bekas heard a talk on Trilinos at the U of MN while

a grad student of Youcef Saad. He corrected (as best he

could) the English pronunciation of Teuchos.

Trilinos is a Greek word for a (three-stranded) string of

pearls. From the beginning it was intended to evoke the

idea that Trilinos is a collection of packages (pearls)

whose whole is more than just the sum of its parts.

http://www.ddm.org/

Git and GitHub stats
1. Contributors before=12/14/2001 – 16 contributors

589 Karen D. Devine

462 Raymond Tuminaro

387 Erik G. Boman

231 Roscoe A. Bartlett

179 Jonathan Hu

95 chtong

59 Tamara G. Kolda

58 Bruce A. Hendrickson

56 wfmitch

44 Courtenay T. Vaughan

39 mmstjohn

21 Roger P. Pawlowski

14 gerval

13 acbauer

5 Robert Heaphy

4 Michael A. Heroux

1. Contributors at 20 years – 540 contributors

7818 Roscoe A. Bartlett

6158 Mark Hoemmen

3969 Karen D. Devine

3492 Jonathan Hu

3208 Christopher Siefert

2846 trilinos-autotester ß ????

2517 Eric T. Phipps

2456 Marzio Sala

2334 William F. Spotz

2177 James M. Willenbring

2165 Greg Sjaardema

2053 Roger P. Pawlowski

1900 Tobias Wiesner

1760 Lee Ann Riesen

1702 Eric C. Cyr

1657 Andrey Prokopenko

…

Git and GitHub stats
1. PR with the most comments

1. 438 - Trilinos: Fix/Update build stats tools #8638

2. only four participants: James Elliot, Ross Bartlett,

Christian Glusa, and Trilinos Autotester.

3. Here are the top 7.

4. Two are still open!

Git and GitHub stats
1. Most commits

2. jhux2 and csiefer2? Are these their clones,

e.g., <id>2?

Git and GitHub stats
1. Most lines added

2. Karen by a lot!

Git and GitHub stats
1. Most lines deleted.

2. Karen by a lot!

Trilinos is an effective recruiting tool!

Working with and then on Trilinos starting in 2013 was my first exposure to SNL (in fact attending a TUG

either in 2013 or 2014 was my first trip visit to SNL). Working on Trilinos and with the Trilinos team made me

consider SNL as a future career opportunity and led to me joining the labs in 2017 as a staff member in

Center 1600, where I’m now managing a department.

Kris Beckwith, 1684 Manager

Awards

Trilinos received a 2004 R&D
100 Award, given out yearly
by R&D Magazine to
recognize the “100 most
technologically significant
products introduced in the
past year.”
The formal announcement was made in the September
2004 issue of R&D Magazine.

Water bottles

• We are getting the silver water bottle
• With

• Trilinos 2nd generation logo
• Black on silver lettering

• Phyllis Rutka is coordinating

75

