
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Exceptional service in the national interest

Automated Preconditioner Design in
the Trilinos/Teko Package (UUR)

Malachi Phillips and Aidan Gould

SAND2025-05458C

Interested in solving complex
multiphysics problems (e.g., thermal
batteries)

Often require monolithic linear
system approaches (i.e., no
operator splitting)

Thermal batteries include several
multi-physics couplings0:

Butler-Volmer
Stefan-Maxwell
Darcy’s Law
Continuity

Weak Scaling: 57,640 to 461,120
DOFs

Figure: 2D axisymmetric multi-physics
simulation domain0

Compare (flexible) GMRES with two
preconditioners:

‘Black-box’ domain-decomposition
‘Physics-aware’ block
preconditioning

0
Voskuilen, Moffat, Schroeder, and Roberts, “Multi-fidelity electrochemical modeling of thermally

activated battery cells”. 2

0 50 100 150 200
Iteration Count

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Re
sid

ua
l,

||r
N
|| 2

||r
0||

2

Battery Weak Scaling, GMRES(200)

DD-Direct, Overlap=1, 1X
DD-Direct, Overlap=1, 2X
DD-Direct, Overlap=1, 4X
DD-Direct, Overlap=1, 8X
Multiphysics preset, 1X
Multiphysics preset, 2X
Multiphysics preset, 4X
Multiphysics preset, 8X
Convergence Target

(a) ‘Black-box’

0 1 2 3 4 5 6 7
Iteration Count

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Re
la

tiv
e

Re
sid

ua
l,

||r
N
|| 2

||r
0||

2

Battery Weak Scaling, F-GMRES(200), Teko
1X
2X
4X
8X
Convergence Target

(b) ‘Physics-aware’

Figure: ‘Black-box’ versus ‘physics-aware’ preconditioner performance.
3

‘Physics-aware’ block approach (Trilinos/Teko) works well for multi-physics
problems
Why not always use a ‘physics-aware’ preconditioner?

Even limiting to block Gauss-Seidel, requires:

Ingredients for ‘Physics-aware’ Solver Setup
1. Physics-to-sub-block mapping
2. Ordering sub-blocks
3. Solvers/preconditioners for each sub-block

Goal: provide ‘physics-aware’ performance with ‘black-box’ interface:� �
1 begin tpetra equation solver teko_linear_solver
2 begin preset solver
3 solver type = teko_multiphysics
4 end preset solver
5 end tpetra equation solver� �

4

Ease of Adoption for Generic Multiphysics Cases

M
ul

tip
hy

sic
s P

er
fo

rm
an

ce
Operator-Splitting
(Navier-Stokes)

Black-box Monolithic
(DD-ILU)

Physics-aware Monolithic
(Teko)

X

Black-box and Physics-aware
Monolithic (Heuristic Teko)

5

Example user-app interaction with ‘black-box’-like interface:� �
1 // based on driver -heuristic -permutation.cpp
2 using Teko:: TpetraHelpers :: BlockedTpetraOperator;
3

4 // vector <vector <GO>> with (rank -local) GOs for each physics
5 auto A_b = make_rcp <BlockedTpetraOperator >(dof_gids , crsMat);
6

7 // Run alg , generate gids vector <vector <GO>> for (merged) physics
8 auto [permutation, score] = Teko::generate_heuristic_permutation(A_b);
9 auto gids = Teko:: construct_block_gids_from_permutation(permutation ,

dof_gids);
10 A_b = make_rcp <BlockedTpetraOperator >(gids , crsMat);
11

12 // Generate new parameters from permutation
13 RCP <ParameterList > xmlList = Teko::

generate_parameters_from_permutation(permutation , "TekoPrec");� �
How do we pick the right grouping/ordering for block Gauss-Seidel?

6

Ordering sub-blocks:

κ


[
A B

D

]−1

︸ ︷︷ ︸
M̃[A]−1

[
A B
C D

]
︸ ︷︷ ︸

A

 ̸= κ


[
D C

A

]−1

︸ ︷︷ ︸
M̃[RART]−1

[
D C
B A

]
︸ ︷︷ ︸
RART


Combinatoric Minimization Problem
Find block numbering permutation R∗ such that

R∗ (A) = argmin
∀R

∥∥∥M̃ [
RART

]
−RART

∥∥∥2
F
.

Isomorphic to NP-hard linear ordering problem (LOP) in operations research
Use available branch-and-bound solver with Lagrangian relaxation1

1
Charon and Hudry, “A branch-and-bound algorithm to solve the linear ordering problem for

weighted tournaments”. 7

Physics-to-sub-block mapping:
Strongly coupled physics may require monolithic approach:

κ


A B C

E F
J

−1

︸ ︷︷ ︸
M̃[A]−1

A B C
D E F
G H J


︸ ︷︷ ︸

A

 ̸= κ


[A B

D E

] [
C
F

]
J

−1

︸ ︷︷ ︸
M̃[A′]−1

[A B
D E

] [
C
F

]
[
G H

]
J


︸ ︷︷ ︸

A′



Combinatoric Minimin Problem
Find the minimum number of block merging operations such that∥∥∥M̃ [

R∗A′R∗]−R∗A′R∗
∥∥∥
F
≤ τ,

where R∗ = R∗ [A′] is the solution to the linear ordering problem and τ represents a
user-defined target error reduction.

8

Physics-to-sub-block mapping:
Use greedy heuristic algorithm, combined with LOP solver:

Algorithm Greedy Block Merging Algorithm
Require: Matrix A with nb blocks, user-provided threshold τ .
Ensure: Re-grouped matrix A′ with n′

b < nb blocks.
1: A(0) ← LOP(A)
2: k ← 0
3: while

∥∥∥M̃ [
A(k)

]
−A(k)

∥∥∥
F
≥ τ do

4: k ← k + 1
5: (i∗, j∗)← argmax

i,j,i>j

∥∥A(k−1)
∥∥

6: A(k) ← LOP(combineBlocks(A(k−1), i∗, j∗))
7: end while
8: return A(k)

Future work: Develop branch-and-bound bootstrapped by LOP 9

Ordering/grouping solved – let’s revisit the user app:� �
1 // based on driver -heuristic -permutation.cpp
2 using Teko:: TpetraHelpers :: BlockedTpetraOperator;
3

4 // vector <vector <GO>> with (rank -local) GOs for each physics
5 auto A_b = make_rcp <BlockedTpetraOperator >(dof_gids , crsMat);
6

7 // Run alg , generate gids vector <vector <GO>> for (merged) physics
8 auto [permutation , score] = Teko:: generate_heuristic_permutation(A_b);
9 auto gids = Teko:: construct_block_gids_from_permutation(permutation ,

dof_gids);
10 A_b = make_rcp <BlockedTpetraOperator >(gids , crsMat);
11

12 // Generate new parameters from permutation
13 RCP <ParameterList > xmlList =

Teko::generate_parameters_from_permutation(permutation, "TekoPrec");� �
How do we pick the solvers for each of the sub-blocks?

10

Sub-block solver choice:

κ


[
A B

D

]−1

︸ ︷︷ ︸
M̃[A]−1

[
A B
C D

]
︸ ︷︷ ︸

A

 ̸= κ


[
MA B

MD

]−1

︸ ︷︷ ︸
M[A−1]

[
A B
C D

]
︸ ︷︷ ︸

A



Convergence Result
A single resistant sub-block solver can derail the entire solver:

κ
(
M [A]−1A

)
≤ κ

(
M [A]−1 M̃ [A]

)
· κ

(
M̃ [A]−1A

)
≥ max

∀M−1
ii Aii

(
κ
(
M−1

ii Aii

))
︸ ︷︷ ︸

Sub-block Solver Conditioning

· κ
(
M̃ [A]−1A

)
︸ ︷︷ ︸

Multi-physics Coupling

11

Sub-block solver choice:
Use adaptive sub-block solver with schedule, e.g.:

1. GMRES(30), Jacobi
2. GMRES(30), DD(0)-ILU(0)
3. GMRES(30), DD(1)-ILU(1)
4. GMRES(30), DD(2)-ILU(2)
5. Sparse direct solver

Estimate preconditioner quality through residual reduction∥∥b−AM−1
A b

∥∥
2

∥b∥2
> ϵ

Move up the schedule to progressively more robust/expensive solvers
User able to provide custom settings for merged and unmerged blocks

e.g., AMG continuity/pressure solve

Future work: employ block AMG for merged blocks

12

Performance Results:

Table: Ablation performance test, one node on Amber.

Preconditioner Linear Solver Time (s) Overall Simulation Time (s)
DD(1)-ILU(1) 121.747 224
Teko, Hand Chosen 61.359 154
Teko Preset 32.584 (3.74x Speedup) 138 (1.62x Speedup)

Table: Coupled chemistry performance test, two nodes on Amber.

Preconditioner Linear Solver Time (s) Overall Simulation Time (s)
DD(0)-ILU(0) 515.323 714
Teko Preset 226.093 (2.28x Speedup) 353 (2.02x Speedup)

13

Table: End-to-end battery simulation, 20 ranks on local workstation

Preconditioner Linear Solver Time (s) Overall Simulation Time (s)
Amesos2/KLU2 5934.024 7305
Teko, Hand Chosen 957.081 4391
Teko Preset 693.531 (8.56x Speedup) 3872 (1.89x Speedup)

Table: Porous flow case, ‘in-the-wild’ user-case, two nodes on Amber.

Preconditioner Linear Solver Time (s) Overall Simulation Time (s)
DD(0)-ILU(0) 1908.776 2532
Teko Preset 223.608 (8.54x Speedup) 785 (3.23x Speedup)

14

Concluding remarks:
‘Physics-aware’ Teko preconditioners can outperform ‘black-box’
preconditioners (DD-ILU)

‘Physics-aware’ preconditioners require user expertise, difficult to set-up
Introduced heuristic algorithms based on minimizing ∥M [A]−A∥F

Leverage pre-existing algorithms for discrete optimization problems
Enable application user/developer to bootstrap settings
Requires some modification in user application

Future work: drive everything through XML

Performance results indicate heuristic approach is reasonable
Comparable or better performance to hand-selected settings
Additional input from user (e.g., MueLu setting for known pressure blocks)

Almost available in Trilinos/develop with
https://github.com/trilinos/Trilinos/pull/14036

Pre-print underway, not yet available

15

https://github.com/trilinos/Trilinos/pull/14036

