
E x c e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n t e r e s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

E x c e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n t e r e s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

TRILINOS CI TESTING/CONTRIBUTION
OVERVIEW

Samuel E. Browne
Sandia National Laboratories

HPSF Conference 05/07/2025

TRILINOS DEVSECOPS TEAM

The Trilinos DevSecOps (Framework) team is responsible for the CI processes that enable the
assurance of software quality for the Trilinos code suite. It also functions to assist with work
related to the build system of this large and complex C++ suite.

With the transition of Trilinos to the HPSF, open-source partner contribution and collaboration
is more greatly emphasized. This increased emphasis highlights the need to improve the
contribution experience, particularly with respect to accessible CI processes, and simpler build
experience.

Special thanks to Anderson Chauphan, Joe Frye, and Justin LaPre for their contributions to the
team and to this presentation.

2

HOW TRILINOS CI
TESTING WORKS

3

CI TESTING

• Trilinos uses a modified version of the “Gitflow” workflow with a develop and master (main)
branch, where developers merge changes to develop, and the summation of those changes
is merged to master on an approximately-weekly cadence.

• As part of this workflow, Trilinos has CI-style checks running through several different
automation frameworks to ensure code quality

§ Required
⎼ A fairly comprehensive set of package builds and tests succeed on multiple toolchains

⎼ No commits contain Git LFS objects (causes mirroring complexity for internal repositories)

⎼ All commits have a DCO signoff

⎼ Commits which touch packages that have opted-in to clang-tidy conform to the standard

⎼ MPI_COMM_WORLD is not used in any modified lines of code

§ Non-required
⎼ CodeQL static analysis

⎼ Upcoming/experimental builds

4

HOW DOES TRILINOS CI V1 WORK?

AT1 job
AT1 job

AutoTester1 job
Set up merged state
Execute build-and-test script(s)
Report status back to pipeline

AutoTester

gcc-openmpi
intel-classic

framework-tests
…

for pr in open_prs:
 report_start_status_comment()
 launch_all_test_jobs()
 wait_on_all_test_jobs()
 report_end_status_comment()

Pipeline controllable (limited) via
AT: labels on Pull Requests

CDash

User-facing Internal (opaque)

CDash

Pull Request

persistent ccache
object storage

HOW DOES TRILINOS CI V2 WORK?

Sandia-Hosted
Runner

Check if job can be run
Check out merged state
Execute build-and-test script(s)

Runner
Runner

CDash

Pull Request gcc10-openmpi4
framework-tests

oneapi2024
cuda11

…

Post
comment
with filtered
CDash result
URLs

Non-build checks
• DCO signoff
• No git LFS objects added
• No PRs to `master` branch
• …

User-facing Internal (opaque)

TRILINOS AT2 RUNNER DECISION TREE

Is author member of
Pretest-Inspectors?

Is PR approved (via label
or explicitly) by member

of Pretest-Inspectors?

Refuse to run job

Is .github directory
modified?

Is action triggered by
member of Pretest-

Inspectors?

Is AT2: SpecialApprove
label applied by member

of Framework team?

Run job

Is action triggered by
member of Pretest-

Inspectors?

= yes
= no

Arrow legend

A NOTE ON BUILD SPEED (WHY CCACHE MATTERS FOR TRILINOS)

• Building Trilinos packages from scratch is fairly compute-intensive, and when running in a CI
context, many duplicate compilations are performed run-to-run

• Using a per-node filesystem
compiler cache (ccache) is
giving a current direct hit
rate of 88-91% depending
on toolchain

8

HOW DOES TRILINOS CI V2 WORK WITHOUT SANDIA RESOURCES?

Runner

Check out merged state
Execute build-and-test script(s)

Runner
Runner

CDash

persistent sccache
object storage

CDash

Pull Request gcc10-openmpi4
framework-tests

oneapi2024
cuda11

…

Post
comment
with filtered
CDash result
URLs

Non-build checks
• DCO signoff
• No git LFS objects added
• No PRs to `master` branch
• …

persistent sccache
object storage

• Kitware mirror
script(s)

• HubCast

UO GitLab
rocm
sycl
…

Pull Request all_gitlab_checks
framework-tests
gcc10-openmpi4

…
Post
comment
with filtered
CDash result
URLs

Non-build checks
• DCO signoff
• No git LFS objects added
• No PRs to `master` branch
• …

HOW COULD TRILINOS CI V2 WORK WITH UO/CASS RESOURCES?

Runner

Check out merged state
Execute build-and-test script(s)

User-facing Internal (opaque)

Runner

CDash

THE FUTURE OF TRILINOS CI

• Encapsulating build/run environments as containers is incredible beneficial as compared to
large toolchain and TPL stack deployments on internal machines

§ Allows customers to reproduce exact CI testing environment

§ Trilinos can have a CI testing environment separate from Sandia hardware if necessary,
but can also utilize Sandia hardware in a relatively seamless manner

• Accelerated build and tests

§ Exploring per-package binary caching with Spack approach (later in this presentation)

§ Continue to use ccache on hardware supporting mounted filesystems, but explore
sccache for external resources

• Make Trilinos configurations as easy to understand and interact with as possible

11

MAKING TRILINOS
EASIER TO BUILD

12

MINIMIZING CONFIGURATION OPTIONS

• Most surveyed users tend to get a set of configuration options that work for them, then avoid
changing any unless necessary

• Trilinos should strive to minimize the number of configuration options that must be passed,
and ensure that sensible defaults are chosen to adjust the default configuration for the
majority of users

• This proliferation of configure options can be seen in the CI configurations

13

“Trilinos is too difficult to build” – every surveyed user

MINIMIZING CONFIGURATION OPTIONS

14

Old CI example

• ~250 total config options passed

• 145 related to TPL related

• 15 package disables*

• 40 test disables

• 50 global/package-level configuration

New CI example

• ~200 total config options passed

• 115 related to TPL related

• 15 package disables*

• 20 test disables

• 50 global/package-level configuration

Are they all necessary?

MINIMIZING CONFIGURATION OPTIONS

15

Old CI example

• ~250 total config options passed

• 145 related to TPL related

• 15 package disables*

• 40 test disables

• 50 global/package-level configuration

New CI example

• ~200 total config options passed

• 115 related to TPL related

• 15 package disables*

• 20 test disables

• 50 global/package-level configuration

Are they all necessary?

MINIMIZING CONFIGURATION OPTIONS – THIRD-PARTY LIBRARIES

• TPL options are system-dependent

§ If a user has only one installation of LAPACK, -DTPL_ENABLE_LAPACK is generally
sufficient

§ If a user has six installations of LAPACK, additional specificity may be needed for
robustness (example of necessary configure options)

• New CI testing containers contain environments set up to Just Work with the single enable
option

• At a minimum, must have the correct enables and disables

§ Exploring setting more sensible defaults

• Moving towards ”standard” find_package() as CMake package ecosystem matures will
help decrease this complexity

16

MINIMIZING CONFIGURATION OPTIONS – PACKAGE DISABLES

• Package disables are entirely due to deprecated packages, and will be eliminated at the end
of this year

17

MINIMIZING CONFIGURATION OPTIONS – TEST DISABLES

• Disabling Trilinos tests is generally due to a test that exhibits unstable behavior when running
in CI testing

• General position is that while unstable tests are problematic for CI testing, they may still
provide developers (or users) helpful information, so disable as part of CI instead of deleting

18

MINIMIZING CONFIGURATION OPTIONS – GLOBAL CONFIGURATION

• Largest spot for individual improvement within Trilinos packages

• Set defaults intelligently within multiple packages

§ Eliminate the case where one must pass options per-package:
⎼ set(TPL_ENABLE_CUDA ON CACHE BOOL "from .ini configuration”)

⎼ set(Kokkos_ENABLE_CUDA ON CACHE BOOL "from .ini configuration")

⎼ set(Phalanx_KOKKOS_DEVICE_TYPE CUDA CACHE STRING "from .ini configuration")

• Eliminate explicit setting of default options

§ Test the defaults!

19

SPACK

• Trilinos currently has ~80 Spack variants

• ~30 of them related to enabling non-deprecated packages

§ Casual or first-time users may not understand this, and see Trilinos as a monolith

§ How to represent Trilinos packages more understandably to users, while preserving the
level of granularity of other configuration options?

• Proposed solution: Model Trilinos packages as individual Spack packages

§ trilinos+sacado+muelu+cuda --> sacado+cuda muelu+cuda

§ Already have a limited example of this with Kokkos and KokkosKernels (though only
external “snapshotted” packages)

• Leverage knowledge and approach used for SNL Sierra code, see Phil Sakievich’s presentation
at 4:40PM on Thursday

20

CONCLUSION

• New CI infrastructure leverages tooling familiar to much of the open-source community
(GitHub Actions, containerized development environments, podman) and will help make the
Trilinos development/contribution process more accessible

• Emphasis on reducing the number of configuration options required to produce a build of
Trilinos that is desirable for most customers (to the degree possible)

• The Spack/Trilinos interaction is being worked to improve Trilinos user experience when
using the de-facto standard build orchestration tool for HPCs and scientific software

21

