
Except io nal s erv ice in the nat i onal intere s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

ASC DEVOPS RESEARCH

Roscoe A. Bartlett, Anderson Chauphan,
Reed M. Milewicz, Jim M. Willenbring

FY25 Efforts and Trilinos

SAND2024-14392C

Trilinos Users Group Meeting 2024, Developers Day

October 24, 2025

ASC DEVOPS RESEARCH (ASCDOR): BOTTOM LINE UP FRONT

• What We Want To Do: Develop novel data-driven, AI-
assisted approaches to reduce existing and future ASC
software technical debt so that we can improve speed,
productivity, agility, and quality in ASC software
development.

• Why We Need To Do It: Technical debt leads to high
operational costs, unreliability, and a lack of agility. To move
faster as a lab, we must improve how we develop and
manage our software.

• How We Will Do It: We propose a three-pronged effort
between late FY24 – FY27 focused on (1) metrics collection
for DevOps tools and processes, (2) approaches for
identifying and quantifying technical debt, and (3) research
strategies to reduce identified technical debt.

2

DevOps Metrics
Collection

Quantification of
Technical Debt

Reduction of Technical
Debt

Provides
data for

Points to
areas of
greater
need

R&D strategies to reduce
technical debt based on
metrics and analysis

3

OUR METHODOLOGY

We iteratively developed a wide variety of proposal topics which could be of value to
ASC DevOps

• Used an Agile Innovation approach
(IdeaScrum) to identify, develop, and
refine research proposals.

• We conducted interviews key ASC
DevOps stakeholders to gather insights
and requirements.

• Based on these discussions, we
generated a broad range of research
ideas. Each idea was then developed
into user stories, which were iteratively
refined through cycles of prototyping,
review, and validation.

PROPOSAL IDEA DEVELOPMENT

• Measuring the Impact of Random Failures

• Better Provenance for Software Security

• Guide Compiler Toolchain and TPL Upgrades

• Inserting Security Tools into DevOps Pipelines

• Metrics Collection for DevOps Tools/Processes

• Simplifying Configuration Management

• Enabling and Improving Continuous Deployment

• Improving Requirements Traceability with LLMs

• Methodology for Large-Scale Test Management

• Complex Test Rejuvenation for Heterogeneous
Architectures

• Monitoring and Triage of Build and Test Failures

• Quantifying Technical Debt in the ASC Software
Portfolio

• Comparing Decentralized vs. Centralized DevOps
Solutions

• Developing a Community Health/Sustainability
Dashboard

• Better Developer Support for Package Managers

• Bootstrapping DevOps Setup and Deployment
4

16 Ideas Generated
8 Selected for

Prototyping and
Elaboration

4 Selected for
Internal Review

3 Selected for
Validation

• Developing a comprehensive suite of targeted metrics to measure the
effectiveness of ASC DevOps solutions. We seek to provide actionable insights
that can guide decision-making and align ASC practices with industry standards.

Metrics Collection for
DevOps Tools and

Processes

• Developing approaches to assess technical debt within ASC software projects. We
seek to quantify the impact of technical debt on development efficiency and point
to areas where larger improvements are possible.

Identifying and
Quantifying Technical

Debt in the ASC
Software Portfolio

• Investigating methodologies and tools to reduce the cost of test suites while not
sacrificing coverage. We seek enhancing the utility and efficiency of testing
practices within ASC, enabling teams to better leverage DevOps automation.

Methodology for
Large-Scale Test

Management

5

IN WORKING WITH ASC DEVOPS STAKEHOLDERS, WE
IDENTIFIED THE FOLLOWING NEEDS

A common overarching theme: the pursuit of efficiency, reliability, and continuous
improvement through DevOps

Enhanced Observability Informed
Decision-Making

Strategic
Management of

ASC Software
Assets

Impact

BR0

Slide 5

BR0 Is this really true? How is anything we are proposing going to "enable teams to better leverage DevOps
automation"?
Bartlett, Roscoe, 2024-04-24T13:17:13.981

6

WHAT WE MEAN BY TECHNICAL DEBT

Moving at the speed of mission has historically required making compromises between near-term
needs and long-term sustainability.

[Avgeriou] Avgeriou, Paris; Kruchten, Philippe; Ozkaya, Ipek; Carolyn, Seaman
(2016). "Managing Technical Debt in Software Engineering (Dagstuhl seminar 16162)”.
Dagstuhl Reports. 6 (4).

In software-intensive systems,
technical debt is a collection of
design or implementation constructs
that are expedient in the short term,
but set up a technical context that can
make future changes more costly or
impossible. Technical debt presents
an actual or contingent liability whose
impact is limited to internal system
qualities, primarily maintainability
and evolvability.[Avgeriou]

Cognitive
Overload

Computational
Overhead

Low intra-module cohesion, high inter-module
coupling, long/confusing functions, high
complexity, poor design/poor naming, no
comments or incorrect comments, other "code
smells", etc

Build-related: Long build times (e.g. deeply templated
C++ code, implicit template instantiation, deep stacks
of included header files), Long rebuild times (e.g. most
changes need to be made to header files which
propagate to all build targets), high RAM usage per
target not allowing using all the cores on a node to
build
Test run technical debt: No/poor unit or system tests
to allow development and testing pieces of code in
isolation, long test runtimes, multiple cores or
processes per test, high usage of expensive/scarce
accelerator resources (e.g. GPUs)

WHERE WE ARE TODAY, WHERE WE ARE GOING

7

Managing Debt and
Sustainability Matters for ASC

• “The ASC program lacks an
integrated approach for
leveraging and strategically
managing [environments and
common practices... thwarting]
co-development, efficiency and
sustainability objectives.” —
ASC DevOps TLT Charter[1]

• “A significant focus needs to be
on developing sustainable
solutions to lower the
recurring debt.” — ASC
DevOps Project Charter[2]

How We Address Debt
Today

• Manual work refactoring
code and tests

• Requires large amounts
of valuable developer
time, may require
specialized domain
knowledge, etc.

• Many existing tools for
refactoring aren’t
available for large-scale
C++.

How We Will Break
Through

[1] TLT Charter. https://wiki.sandia.gov/display/ADT/TLT+Charter. Accessed 3 June 2024.
[2] ASC DevOps Project DevOps Charter. https://wiki.sandia.gov/display/DevOps/ASC+DevOps+Resources. April 2018.
[3] Lunde, Bjørn Arild and Colomo-Palacios, Ricardo. "Continuous practices and technical debt: a systematic literature review." 2020 20th International Conference on Computational Science and Its
Applications (ICCSA). IEEE, 2020.

As is done in industry,
data collected from
DevOps pipelines and
continuous practices
can reveal
opportunities for
improvement[3].

Emerging AI4SE
technologies can
accelerate debt
reduction tasks.

METRICS => QUANTIFY TECH DEBT => REDUCE TECH DEBT
FOCUS ON COMPUTATIONAL OVERHEAD TECH DEBT?

8

DevOps Metrics Collection

Quantification of
Technical Debt

Reduction of Technical Debt

Provides data
for

Points to areas
of greater need Research (Re)Build Cost Reduction?

• More implicit template instantiation?
• More information hiding (e.g. pImpl)?
• Usage of C++20 modules?
• Factor out code to allow most

development and (re)builds of unit
tests?

• ???

Research Test Suite Cost Reduction?
• Select reduced test suite while

minimizing loss of coverage?
• Partition test suite and run at different

intervals?
• Reduce cost of existing system-level

tests?
• Factor out code and add unit tests

and move most testing to unit tests?
• ???

Legacy
Software
Change

Algorithm
(LSCA)

*

*
R&D strategies to reduce technical
debt based on metrics and analysis

Process to
achieve
balance

AI IMPACT ON LEGACY SOFTWARE (CODE) CHANGE ALGORITHM
OVERVIEW

9

Full code base

Large suite of expensive set of
system-level tests

(NOT shown to scale!)

Factored out code runnable in a
unit test harness

1. Analyze code to be extracted
1.a: Select code to be changed/extracted
1.b: Select control points

 LLVM/Clang AST with AI?
1.c: Select sensing points

 LLVM/Clang AST with AI?

2. Break dependencies
Minimal refactors to allow extraction
of code into unit test harness
• How to automate refactors?

 Existing refactoring tools?
 LLVM/Clang AST with AI?

3. Cover extracted code with
characterization tests
• How to select/generate test cases?

 Capture from full test suite?
 Code analysis & test

generation using AI?

4. Add new code and tests
4.a: Add new code and tests and/or

change behavior (e.g. using TDD)
4.b: Refactor updated code to make

simple and clean 😊

5. Propagate any changes to public
APIs?

 LLVM/Clang AST with AI?

Hard tasks in Red!
Research Questions in Green!

AI IMPACT ON LEGACY SOFTWARE CHANGE ALGORITHM
IMPLEMENTATION: DEEP DIVE EXAMPLES

• Developing characterization tests for undertested regions of
code can be automated or assisted by AI:

 Generate new test case

 Generate improved test case

 Generate 85% complete test case

• AI has the potential to bring down the cost of hardening legacy
production code, including impacting some of the most
challenging steps of the legacy software change algorithm.

10

3. Cover extracted code with
characterization tests
• How to select test cases?

 Capture from full test suite?
 Code analysis/test

generation using AI?

2. Break dependencies
Minimal refactors to allow extraction
of code into unit test harness
• How to automate refactors?

 Existing refactoring tools?
 LLVM/Clang AST with AI?

• Breaking dependencies can be automated or assisted by AI
 Refactoring and test improvement may evolve into a

virtuous cycle
⎼ Improved testing provides confidence for more aggressive

refactoring

Activities are individually impactful,
and contribute towards eventual
fully automated implementation of
the legacy software change
algorithm.

BR0

Slide 10

BR0 NOTE: These could work together. An initial set of tests could be extracted from the running system-level tests
and then a second LLM-based analysis tool could try to suggest new test cases that increase coverage. The
former uses data that is used in the existing tests which has a lot of advantages for numerical code.
Bartlett, Roscoe, 2024-05-01T17:59:45.446

WHY US, WHY NOW

11

Vision for the Future
“Humans and AI are

trustworthy collaborators
that rapidly evolve systems

based on programmer
intent.”[Carleton]

Planning
Analysis

Design

Implementation
Testing

Maintenance AI4SE

We must build a foundation of expertise in the deployment and practical application of emerging
AI/ML technologies in DevOps and software development now so we can benefit from current and
future advances in these technologies. Working directly with AI/ML toolchains in real-world
scenarios is needed to better understand how to mature and tailor them to ASC’s needs.

WHO CARES? IF YOU ARE SUCCESSFUL, WHAT DIFFERENCE
DOES IT MAKE?

• For Developers: Faster
development cycles, less
time chasing bugs.

• For Users: New features and
bug fixes appear faster, and
less new bugs introduced.

• For ASC Leadership: More
agility, better sustainability,
lower computer resource
usage to support
development and testing,
lower cost per new feature.

12

METRICS => QUANTIFY TECH DEBT => REDUCE TECH DEBT:
MULTI-DIMENSIONAL SCALING BREATH VS DEPTH OF EFFORTS!

13

DevOps Metrics Collection

Quantification of
Technical Debt

Reduction of Technical Debt

Provides data for

Points to areas of
greater need

D2: Breath(1) within an areaD1:
Depth

of areas
Build & Test

metrics

DevOps
Processes

metrics

Code quality
metrics

Deployment
metrics …

Computational
Overhead T.D.

Cognitive
Overload T.D.

Inefficient DO
workflows T.D.

Deployment
bottlenecks

T.D. …

D3: Breath(2) of ASC
codes studied/impacted

Trilinos EMPIRE SPARC GEMMA… … SIERRA

Reduce test
suite cost

Reduce
(re)build cost

Reduce code
complexity

Improve
DevOps

workflows …

…FY25

LOWER RISK, SHORT-TERM, LOWER-IMPACT EFFORTS VS.
HIGHER RISK, LONGER-TERM, HIGHER-IMPACT EFFORTS

Lower-risk, shorter-term, less-invasive, lower-impact
• Keep existing system-level tests as-is:

• Research selection of reduced test suite from existing tests while minimizing loss of coverage
• Research partitioning of test suite run at different intervals/integration points

• Reduce cost of existing system-level tests:
• Knobs: Reduce size of mesh, reduce number of iterations, start with closer initial guess, etc …
• Research adjustment of knobs that maintains coverage but with lower test cost

• Factor out code into unit test harness and add tests using Legacy Software Change Algorithm:
• Research usage of COTS refactoring tools on ASC-size codes
• Research usage of LLVM/Clang AST for creation of custom C++ refactorings
• Research extraction of characterization test cases from running full system-level tests
• Research usage of AI tools to generate LLVM/Clang AST refactoring scripts for custom refactorings
• Research usage of AI tools (using LLVM/Clang AST) to do refactorings to break dependencies and

get code out into unit test harness
• Research usage of AI/code-analysis tools to generate characterization test cases

Higher-risk, longer-term, more-invasive, higher impact
14

15

ASC DEVOPS RESEARCH - SCOPE & RESOURCES (2.25 FTE)

Develop novel AI-assisted approaches to reduce existing and future ASC software technical
debt for decades to come => Impact: Improve speed, productivity, agility, and quality!

Develop novel AI-assisted approaches to reduce existing and future ASC software technical
debt for decades to come => Impact: Improve speed, productivity, agility, and quality!

Key Project Plan Deliverables (FY25)
Q1: Select ASC codes and metrics for metrics

collection activity.
Q2: Gather selected metrics for selected codes.
Q3: Preliminary analysis of metrics collected.
Q4: Initial assessment of GenAI for test generation

and refactoring.

FY25

Build A
Foundation

FY26

Evaluate and
Improve

FY27

Deploy and
Socialize

Whitepaper: “AI-Assisted Research to Reduce ASC Software
Technical Debt”

Role Name FTE
PI, applied AI Research Reed M. Milewicz 0.45
Applied AI/Test Reseach, RSE Jim M. Wllenbring 0.45
Applied AI/LSCA Research, RSE Roscoe A. Bartlett 0.45
RSE Support Anderson Chauphan 0.50
ASC Code Team Support TBD, multiple people 0.00
Interns/Post Docs TBD 0.50

2.35FY25 SUM

ASC DevOps Research:
AI-Assisted Tech Debt Quantification and Reduction

FY25 SCOPE AND
TRILINOS EFFORTS

16

FY25 EFFORTS: METRICS INFRASTRUCTURE

• Kitware: Extending CMake/CTest/CDash for
extended build and test metrics:

 Target-based build and test metrics: start and end time-
stamps, wall-clock time, max load, max RAM, size of file
produced, …

 Categorize build targets based on type: object files,
library files, executables, others (e.g. custom commands)

 Categorize build targets based on lib vs. test (e.g. Using
target labels in CMake)

• Kitware: Fixing/extending CTest/CDash coverage
data collection/handling :

 Partition coverage between library and tests (e.g. Labels)
 Filter and download coverage data

17

• SNL ASCDOR: Develop tools to download, store, and analyze build and test data
 Tools to download build and test metrics data from CDash
 DB for long-term storage of build and test metric data
 Analysis tools for build and metric data, qualification of computational overhead TD

FY25 EFFORTS: METRICS AND TRILINOS?

• Turn on CMake/CTest build and test metrics in some Trilinos nightly builds:
 NOTE: Requires CMake/CTest ‘master’, dual submits to trilinos-cdash-qual.sandia.gov (running

CDash ‘master’)
 Update some official Trilinos PR and/or Nightly builds (some, most, all)?
 or, ASCDOR team set up some new builds for this purpose?

18

• Add matching Trilinos nightly coverage
builds:

• Must submit to trilinos-cdash-qual.sandia.gov
• Needed to direct testing/refactoring efforts

• Additional build and test metrics builds and
coverage builds:

• As needed, run additional Trilinos builds and
submit to trilinos-cdash-qual for other build
configurations

FY25 EFFORTS AND TRILINOS? QUANTIFCATION OF TECH DEBT

Quantification of Computational Overhead Technical Debt:

• Identify packages that consume the most build resources and show which
targets in each package are the most expensive in each metric

• Identify the object files, libraries, executables, etc. that consume the most
build resources (i.e. CPU time, RAM, generated file size, etc.)

• Identify packages and tests that consume the most resources for testing

• Compute cost of build and tests for Trilinos PR and Nightly builds

 => Translate to $$ cost per build, per PR, per day, per year?

Selection of targeted Trilinos packages/builds/etc as initial targets for
refactoring/testing research:
• Based on build data, test data, coverage, and interest from Trilinos

package developers
 => select candidate packages/code to experiment with

19

Computational
Overhead

Technical Debt

FY25 EFFORTS AND TRILINOS? TECH DEBT & LSCA RESEARCH

Research applying LLM/GenAI to Legacy Software
Change Algorithm (LSCA) algorithm

• Research factoring code out into unit test harness:

 Perform manual refactorings (measure human
time, create benchmarks)

 Research application of automated refactorings
with LLVM/Clang AST scripts

 Research generation of LLVM/Clang AST scripts
using GenAI

• Research generation of characterization tests:

 Manually add characterization tests (measure
human time, create benchmarks)

 Research generation of tests using GenAI,
LLVM/Clang AST, …

20

Full code base

2. Break dependencies
Minimal refactors to allow extraction of code
into unit test harness
 LLVM/Clang AST with AI?

3. Cover extracted
code with
characterization
tests
=> Code analysis &
test generation
using AI?

TRILINOS DEVELOPER FEEDBACK?

Who is interested in
collaborating/providing input
to this effort for Trilinos?

21

Any general
feedback/suggestions/concerns
for this research effort?

EXTRAS

22

WHAT DEPARTMENT 1424 OFFERS ASC DEVOPS

23

We research, develop, and deploy software
capabilities to accelerate science and engineering.

We lead and influence future computing
paradigms to serve the nation.

We advance frontiers of computing
research and deliver innovative mission
solutions.

1424

1420

1400

Department 1424 provides R&D capabilities spanning fundamental and applied research to deployed
and maintained software solutions. We intend to act as a force multiplier for ASC DevOps through
pathfinding, prototyping, and proving out DevOps capabilities (tools, methodologies, etc.).

24

What happens in FY26?

• Research deeper into approaches that look promising from FY25 work

• ???

What happens in FY27?

• Continue to refine promising approaches identified in FY25 and FY26

• Circle back and investigate the other approaches from FY25 that were not worked in
FY26.

• ???

How will these approaches be refined and deployed to the ASC code teams?

• Transition them to and work with the ASC DevOps Raise the Bar team?

• ???

ASC DEVOPS RESEARCH – FY26, FY27, DEPLOYMENT OF CAPABILITIES

25

OUR METHODOLOGY

We iteratively developed a wide variety of proposal topics which could be of value to
ASC DevOps

• Used an Agile Innovation approach
(IdeaScrum) to identify, develop, and
refine research proposals.

• We conducted interviews key ASC
DevOps stakeholders to gather insights
and requirements.

• Based on these discussions, we
generated a broad range of research
ideas. Each idea was then developed
into user stories, which were iteratively
refined through cycles of prototyping,
review, and validation.

PROPOSAL IDEA DEVELOPMENT

• Measuring the Impact of Random Failures

• Better Provenance for Software Security

• Guide Compiler Toolchain and TPL Upgrades

• Inserting Security Tools into DevOps Pipelines

• Metrics Collection for DevOps Tools/Processes

• Simplifying Configuration Management

• Enabling and Improving Continuous Deployment

• Improving Requirements Traceability with LLMs

• Methodology for Large-Scale Test Management

• Complex Test Rejuvenation for Heterogeneous
Architectures

• Monitoring and Triage of Build and Test Failures

• Quantifying Technical Debt in the ASC Software
Portfolio

• Comparing Decentralized vs. Centralized DevOps
Solutions

• Developing a Community Health/Sustainability
Dashboard

• Better Developer Support for Package Managers

• Bootstrapping DevOps Setup and Deployment
26

16 Ideas Generated
8 Selected for

Prototyping and
Elaboration

4 Selected for
Internal Review

3 Selected for
Validation

• Metrics Collection for DevOps Tools/Processes: Developing a
comprehensive suite of targeted metrics to measure the effectiveness of
ASC DevOps solutions. This initiative aims to provide actionable insights
that can guide decision-making and align ASC practices with industry
standards.

• Identifying and Quantifying Technical Debt in the ASC Software
Portfolio: Creating a methodology to assess technical debt within ASC
software projects. This research seeks to quantify the impact of technical
debt on development efficiency and point to areas where larger
improvements are possible.

• Methodology for Large-Scale Test Management: Investigating
approaches and tools to reduce the cost of test suites while not sacrificing
coverage. This ideas focus on enhancing the utility and efficiency of testing
practices within ASC, enabling teams to better leverage DevOps
automation.

27

IDEAS SELECTED FOR FULL DEVELOPMENT

A common overarching theme: the pursuit of efficiency, reliability, and continuous
improvement through DevOps

BR0

Slide 27

BR0 Is this really true? How is anything we are proposing going to "enable teams to better leverage DevOps
automation"?
Bartlett, Roscoe, 2024-04-24T13:17:13.981

THE BIG PICTURE: HOW THESE RESEARCH STORIES ARE
RELATED

• Enhanced Observability: Establishing a comprehensive metrics
collection framework is fundamental to gaining visibility into the
DevOps lifecycle. This observability is crucial for understanding the
current state of software development, deployment processes, and
overall system health.

• Informed Decision-Making: The insights gained from increased
observability enable organizations to identify areas for improvement
that may be hindering efficiency, reliability, or scalability (e.g., technical
debt).

• Strategic Management of DevOps-related Assets: With a clear
understanding of the DevOps landscape (like through metrics) and
identified areas of improvement (like technical debt), organizations can
then strategically manage their DevOps-related assets (like test suites).

28

BR0

Slide 28

BR0 Is this not mostly just paraphrase of the bullet of the last slide?
Bartlett, Roscoe, 2024-04-24T13:19:15.634

BACKGROUND: CATEGORIZATION OF TECHNICAL DEBT

• A) Cognitive Overload Technical Debt:
• Low intra-module cohesion, high inter-module coupling, long/confusing functions, high complexity,

poor design/poor naming, no comments or incorrect comments, other "code smells", etc
• B) Computational Overhead Technical Debt:

• Build-related technical debt:
• Long build times (e.g. deeply templated C++ code, implicit template instantiation, deep stacks of

included header files)
• Long rebuild times (e.g. most changes need to be made to header files which propagate to all

build targets)
• High RAM usage per target not allowing using all the cores on a node to build

• Test run technical debt:
• No/poor unit or system tests to allow development and testing pieces of code in isolation
• Long test runtimes, multiple cores or processes per test
• High usage of expensive/scarce accelerator resources (e.g. GPUs)

29

Easier to measure and track with metrics!

BOOTSTRAPPING THE ASC DEVOPS RESEARCH EFFORT

30

16 Ideas Generated
(Interviewed key

stakeholders)

8 Selected for
Prototyping and

Elaboration
4 Selected for

Internal Review
3 Selected

for
Validation

1. Metrics Collection for DevOps
Tools/Processes: Develop suite of
metrics to provide insights and guide
decision-making.

2. Identifying and Quantifying
Technical Debt in the ASC Software
Portfolio: Quantify the impact of
technical debt on development
efficiency to facilitate improvement.

3. Methodology for Large-Scale Test
Management: Enhance efficiency of
testing practices within ASC.

3
0

DevOps Metrics
Collection

Quantification of
Technical Debt

Research (Re)Build
Cost Reduction

Research Test Suite
Cost Reduction

Legacy
Software
Change

Algorithm
(LSCA)

Idea-
Scrum

Process

Reduction of
Technical Debt

Goal: Develop novel AI-assisted approaches to reduce existing and future ASC software technical
debt for decades to come => Impact: Improve speed, productivity, agility, and quality!

BR0

Slide 30

BR0 Perhaps we don't need this slide given the slide before this and the slide after this?
Bartlett, Roscoe, 2024-06-04T16:02:34.861

BR0 0 Or, this could be a summary slide towards the end? But given the number of slides that we have, perhaps we
should cut this slide out?
Bartlett, Roscoe, 2024-06-04T16:06:36.794

31

• Metrics Collection for DevOps Tools/Processes

• Identifying and Quantifying Technical Debt

• Methodology for Large-Scale Test Management

ASC DEVOPS RESEARCH - SCOPE & RESOURCES (2.35 FTE)

Develop novel AI-assisted approaches to reduce existing and future ASC software technical
debt for decades to come => Impact: Improve speed, productivity, agility, and quality!

Develop novel AI-assisted approaches to reduce existing and future ASC software technical
debt for decades to come => Impact: Improve speed, productivity, agility, and quality!

Key Project Plan Deliverables (FY25)
Q1: Select ASC codes and metrics for metrics

collection activity.
Q2: Gather selected metrics for selected codes.
Q3: Preliminary analysis of metrics collected.
Q4: Initial assessment of GenAI for test generation

and refactoring.

Role Name FTE
PI, applied AI Research Reed M. Milewicz 0.45
Applied AI/Test Reseach, RSE Jim M. Wllenbring 0.45
Applied AI/LSCA Research, RSE Roscoe A. Bartlett 0.45
RSE Support Anderson Chauphan 0.50
ASC Code Team Support TBD, multiple people 0.00
Interns/Post Docs TBD 0.50

2.35FY25 SUM

ASC DevOps Research:
AI-Assisted Tech Debt Quantification and Reduction

SYNERGIES WITH ASC DEVOPS RAISING THE BAR EFFORTS

• ASC DevOps Raising the Bar FY25 Testing Planning Team Support and Synergies

 Proposing a test suite reduction effort

⎼ Smaller scope

 References our plan to quantify and reduce technical debt

⎼ Stating this as a need for the Raising the Bar effort, but looking at ASC DevOps
Research to propose and execute

 General interest in metrics effort to motivate decisions

32

