
E xc e pt i ona l ser v i c e i n t he na t i ona l i n te re s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

E xc e pt i ona l ser v i c e i n t he na t i ona l i n te re s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

HANDS-ON WITH ATLAS/SHIRTY AS A
TRILINOS DEVELOPER

Chris Siefert, Christian Glusa & Jonathan Hu

Coding with LLMs at Sandia

S A N D 2 0 2 4 - 1 4 3 3 6 P E

Trilinos Users Group Meeting, October, 2024

PRE-TALK PREPARATION FOR ATLAS/SHIRTY HANDS-ON

2

• Sign up for the wg-atlas-users at metagroup.sandia.gov. This will take ~15 minutes to
process.

• In the Linux/Mac environment you’re using, make sure your proxies are setup correctly.

• Find Chris, Christian or Jonathan if you’re having trouble.

WHAT ARE ATLAS AND SHIRTY?

• ATLAS is an SRN SNL-hosted web-based LLM service.

• Current models as of 10/1/24: Llama 3.1 70B, Mistral 8x7b, Mistral-7b

• ATLAS does not log conversations, but does log metadata (e.g. which models used).

• Incidental personal use of ATLAS is allowed.

• Besides off-the-shelf chat models, ATLAS also supports Retrieval Augmented Generation
(RAG) with select SNL datasets (e.g. LDRD datasheets)

• RAG = Do a search; feed results to LLM; let LLM summarize

• ATLAS RAG also returns links to the relevant documents.

• Be aware: Some datasets are marked as containing CUI.

• If you’re in the right group, atlas.sandia.gov should work for you.

3

ATLAS CHAT EXAMPLE

4

ATLAS RAG EXAMPLE (FINDING MY OLD ASC PROJECT)

5

CUI markings will be included by default if a CUI RAG database is used

WHAT IS SHIRTY?

• Shirty is the SRN SNL toolkit for AI microservices. As of 10/1/24, the supported models are:

• Speech-to-text: Systream/faster-whisper-tiny, Systran/faster-whisper-medium,
Systran/faster-distil-whisper-medium.enm Systran/faster-whisper-large-v3, Systen/faster-
distil-whisper-large-v3

• Text-to-speech: tts-1

• LLM: codeqwen, thesven/Mistral-7B-Instruct-v0.3-GPTQ, neuralmagic/Meta-Llama-3.1-
70B-Instruct-FP8, NousResearch/Meta-Llama-3-8B-Instruct, dophin-2.7-mixtral-8x7b-AWQ

• Vision LLM: Phi-3-vision-128k-instruct

• All instructions we’re using can also be found at:

https://shirty.sandia.gov/index.html

6

OHPC Shirty is coming, but is not here yet!

https://shirty.sandia.gov/index.html

GET A SHIRTY API KEY

• Go here: https://shirty.sandia.gov/start/

• You will need a P/T for tracking purposes only. It will not be charged.

• This will give you your API key. Save this!

7

https://llm.sandia.gov/start/

VIM USERS: HOW TO SHIRTY

• Use up-to-date vim on CEE:

module use /projects/trilinos/modulefiles

 module load vim91

• Get the AI plug-in

mkdir -p ~/.vim/pack/plugins/start

git clone https://github.com/madox2/vim-

ai.git ~/.vim/pack/plugins/start/vim-ai

• Modify ~.vimrc:

8

• Fun Vim Shirty commands

let chat_engine_config = {

\ "engine": "chat",

\ "options": {

\ "model": "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8",

\ "endpoint_url": "http://shirty.sandia.gov/api/v1/chat/completions",

\ "max_tokens": 0,

\ "temperature": 0.1,

\ "request_timeout": 20,

\ "selection_boundary": "",

\ "key": "YOUR_KEY_HERE",

\ "initial_prompt": "",

\ },

\}

let g:vim_ai_complete = chat_engine_config

let g:vim_ai_edit = chat_engine_config

<ctrl-v> to highlight particular code

 :AI document this code

 :AI explain this code

 :AI rewrite this code

:help vim-ai

For more information, see:

https://github.com/madox2/vim-ai

https://github.com/madox2/vim-ai

EMACS USERS: HOW TO SHIRTY

• If you're on CEE, get a new emacs:

module use /projects/emacs/modules

module load emacs

• Download the ELPA keyring update

wget https://elpa.gnu.org/packages/gnu-elpa-
keyring-update-2022.12.1.tar

• Download the appropriate branch of GPTEL

git clone https://github.com/janEbert/gptel.git

(cd gptel; git fetch origin; git checkout --track
remotes/origin/optional-system)

• Start emacs and install the keyring

M-x package-install-file (ENTER) gnu-elpa-
keyring-update-2022.12.1.tar

• Install transient

M-x package-install (ENTER) transient

• Install GPTEL

M-x package-install-file (ENTER) gptel

9

• Add the following to your ~/.emacs

(setq

gptel-model "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8"

gptel-backend (gptel-make-openai "shirty"

 :stream t

 :protocol "https"

 :host "shirty.sandia.gov"

 :endpoint "/api/v1/chat/completions"

 :key "YOUR_KEY_HERE"

 :models '("neuralmagic/Meta-Llama-3.1-70B-Instruct-
FP8"")))

(setq gptel-api-key "YOUR_KEY_HERE")

;;(setq gptel-log-level 'debug) ;; This is useful if things don't
work

(setq gptel--system-message nil) ;; Mistral doesn't use the
"system message"

```

https://elpa.gnu.org/packages/gnu-elpa-keyring-update-2022.12.1.tar
https://elpa.gnu.org/packages/gnu-elpa-keyring-update-2022.12.1.tar
https://github.com/janEbert/gptel.git


EMACS USERS: HOW TO SHIRTY

• You can directly execute the code by placing the cursor after the snippet and C-x C-e.

• Run to open a dedicated chat buffer M-x gptel

• Write your query after ### and submit via C-c RET.

• C-u C-c RET instead opens a menu that allows to modify parameters for the query (model, context, system 
prompt, etc).

• Another way of interacting with an LLM is directly from another buffer. E.g. in a code buffer one can select a region 
that should be used for the query and do M-x gptel-send.
 
Finally, marking a region and calling C-u M-x gptel-send and the hitting  r for "refactor" requests a refactor of 
the selected region. Once the query is processed the changes can be displayed as diff, accepted or  rejected via the 
key combos displayed at the bottom of the screen.

• You can also add files or regions to the context for the LLM and ask  questions about them.  Use M-x gptel-add 
to add a region or M-x  gptel-add-file to add a file. Then query using C-u M-x gptel-send and select the 
context by typing C.

• More information can be found here: https://github.com/karthink/gptel 

10

https://github.com/karthink/gptel


VSCODE USERS: HOW TO SHIRTY

• Install the continue.dev extension in 
vscode.

• Ensure you have the sandia ssl cert 
somewhere, modify the caBundlePath 
keys to point to it

• Edit the config by running Ctrl+Shift+P 
and then finding the Continue: Open 
config.json command and selecting it 
and copy in the following...

11

{

  "tabAutocompleteModel": {

    "title": "Shirty",

    "provider": "openai",

    "model": "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8",

    "apiKey": "YOUR_KEY_HERE",

    "apiBase": "http://shirty.sandia.gov/api",

    "requestOptions": {

//"caBundlePath": "path/to/your/cert/nix-new.crt",

      "verifySsl": true,

      "noProxy": [".sandia.gov","sjirty.sandia.gov"]

    }

  },

  "models": [{

    "title": "Shirty",

    "provider": "openai",

    "model": "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8",

    "apiKey": "YOUR_KEY_HERE",

    "apiBase": "http://shirty.sandia.gov/api",

    "requestOptions": {

//"caBundlePath": "path/to/your/cert/nix-new.crt",

      "verifySsl": true,

      "noProxy": [".sandia.gov","shirty.sandia.gov"]

    }

  }

],

"allowAnonymousTelemetry": false,

 "slashCommands": [

 {

 "name": "edit",

 "description": "Edit selected code"

 },

 {

 "name": "comment",

 "description": "Write comments for the selected code"

 },

 {

 "name": "share",

 "description": "Download and share this session"

 },

 {

 "name": "cmd",

 "description": "Generate a shell command"

 }

 ]

}

 



VSCODE USERS: HOW TO SHIRTY

• Select the code you care about and Ctrl+L to add to chat.

• "Explain this code in plain english."  is something fun to try.

• The /comment slash command is another option.

• Slash commands for continue.dev are documented here: 

https://docs.continue.dev/customize/slash-commands 

12

https://docs.continue.dev/customize/slash-commands

	Default
	Slide 1: Hands-on with atlas/shirty as a trilinos developer
	Slide 2: Pre-talk Preparation for ATLAS/ShirtY hands-on
	Slide 3: What are atlas and Shirty?
	Slide 4: ATLAS chat example
	Slide 5: ATLAS RAG EXAMpLE (Finding my old ASC PROJECT)
	Slide 6: What is shirty?
	Slide 7: Get a shirty API KEY
	Slide 8: Vim users: How to shirty
	Slide 9: EMACS users: How to shirty
	Slide 10: EMACS users: How to shirty
	Slide 11: VSCODE users: How to shirty
	Slide 12: VSCODE users: How to shirty


