
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

AUTOTESTER2

Samuel E. Browne, Anderson Chauphan, Joseph R.
Frye, Justin M. LaPre

Modernized Trilinos CI Testing

Trilinos User-Developer Group Meeting 10/24/2024

SAND2024-14377PE

ENVIRONMENT
MANAGEMENT

MANAGING TRILINOS BUILD ENVIRONMENTS

• Currently use a home-grown system called ‘GenConfig’
• Paired with third-party library modules that are maintained on our internal systems
• How do individual developers replicate pull request builds/tests?

3

EXTERNALLY-UNAVAILABLE REQUIREMENTS

• 5/7 GenConfig-related repositories
• TPLs on hardware
• Hardware itself (thought we have no control over this aspect)

How can we provide the configuration tool and a software environment (TPLs) that work
together to external partners?

4

MAKING GENCONFIG AVAILABLE TO THE COMMUNITY

• Continuing to use GenConfig (and related tooling) will require open-sourcing to make
available to the broader community

• Open-source process is progressing, but is slow

5

GenConfig LoadEnv KeywordParser SetEnvironmen
t

DetermineSystem ConfigParserEnhance
d

SetProgramOptions

Awaiting Acceptance Ready for GitHub On GitHub

MAKING TPLS AVAILABLE TO THE COMMUNITY

• Currently a team (SEMS) within Sandia deploys third-party libraries, compilers, and MPIs to
select systems that are used for automated testing

• Un-releasable to external partners for technical reasons
• However, SEMS moving towards delivery of TPLs with containers

• Also unavailable to internal systems outside the scope of the support agreement

6

CONTAINERS AS A MECHANISM FOR DISTRIBUTING TPLS

• Containers handily solve the third-party software problem
• There are limitations of reproducing novel software environments (e.g. DOE ATS systems),

but these environments are not currently in pull request testing, and are outside the scope
of this effort

• Containers greatly simplify the act of setting up build environments
• Complexity is still there, but is largely handled within the Dockerfile that describes how to build

the container image
• Complexity is largely removed from user workflow

7

HOW TO RUN A CONTAINER

Pull the image that you want to use from the registry

docker pull your-registry.yourdomain.com/yourimage

Run the image

Remove container once it exits

Run interactively and attach tty

Run bash as the container entrypoint

docker run --rm –it --entrypoint bash yourimage

8

EXAMPLE

9

Note that all TPLs are “Just There”, with no module load, source, etc. All (ish) of the complexity is baked
into the container recipe itself.

Can now clone Trilinos, or any other code you wish to develop.

HOW TO MOUNT YOUR LOCAL CODE INTO A CONTAINER

docker run --rm –it --entrypoint bash \
--mount type=bind,src=/path/on/your/machine,dst=/path/in/container \
yourimage

Allows you to get data in/out of container through the mounted directory
Depends on host filesystem (e.g. can have some issues when mounting a Windows directory
into a Linux container)

Extension: It is possible to point VSCode at a container image and have it boot said image,
mount your code project for you, and then place your terminal in the running container.

10

CONTAINERS HELP ENSURE CONSISTENCY

Cons
• There is overhead in learning to use containerized development environments
• Containers suffer a large performance hit for crossing CPU architectures (e.g. running an

x86_64 container on an Apple Silicon MacBook)

Pros
• Near-perfect reproducibility between container runs
• Ability to easily share development environments between developers
• Anybody can create a new container on any machine with compatible architecture
• Can take container used for “validation” runs (PR testing) and run locally on developer

machines

11

GITHUB
ACTIONS

CHECKS INTERFACE

13

OLD (AT1)
NEW (AT2)

…

CDASH SNEAK PEEK

14

UNAPPROVED USERS

[] Failure Status for user dependabot[bot]: 404 Not Found

[] Initiating User dependabot[bot] is not approved to run jobs on this
machine.

[] AT2: Please have someone from Developers trigger this workflow

[] Job is not approved

15

“SPECIAL” DIRECTORIES

[] .github directory was modified, requiring special approval...

[] AT2: latest special approval: No special approval found

[] AT2: Please have someone from framework review this PR and apply the
AT2-SpecialApprove label

** The workflow(s) will then need to be manually re-run

16

ACTIONS VS JENKINS-BASED CI

Cons
• Load balancing is more difficult without an “orchestration” tool (currently manually assign

containers to hardware)
• OpenShift/Kubernetes has potential to help address this

Pros
• Transparency about run stages and state
• Much more configuration-as-code under test (e.g. changing a CI configuration in the

.github files is ”self-testing”)
• Ability to re-run only specific checks (e.g. “only the GCC check failed, it looks like a load

issue, let’s try re-running it”)
• Jobs are queued immediately, and queued state is visible

17

INTERACTIVE DEMO

https://github.com/trilinos/Trilinos/actions/runs/11223351354?pr=13507

18

https://github.com/trilinos/Trilinos/actions/runs/11223351354?pr=13507

FILTERED CDASH OUTPUT EXAMPLE

19

CONCLUSIONS

• Containers + GitHub Actions will be the CI testing driver technologies moving forwards
• Containers allow distribution of exact CI testing environments to any collaborator, internal

or external
• Containers allow for testing of any containerized software stack in a similar manner (e.g.

SEMS, AUE)
• GitHub Actions will allow for higher levels of transparency, hopefully fostering better

developer confidence in CI
• AT2 system will allow for individual re-runs in case of system instability

Containers will be an important tool for all developers moving forwards

Thank you to the AutoTester2 team from SEMS, as well as the CSRI system admins for all of
their work on enabling this system!

20

DISCUSSION

