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SIERRA/Aria:

Expression-based multi-physics simulation code1

Segregated and monolithic physics coupling
Monolithic solver/preconditioner approaches:

KLU2/SuperLU sparse direct solvers through
Amesos2
Domain-decomposition with incomplete LU
(DD-ILU) through Ifpack2
Teko physics-based preconditioners

Teko solvers integrate with existing Trilinos
packages:

Amesos2, Belos, Ifpack2, MueLu

q = −k∇T

∇T k

T

1
Notz, Pawlowski, and Sutherland, “Graph-based software design for managing complexity and

enabling concurrency in multiphysics PDE software”. 2



Figure: 2D axisymmetric multi-physics
simulation domain1

Includes several multi-physics
couplings1:

Butler-Volmer
Stefan-Maxwell
Darcy’s Law
Continuity

DD-ILU may not converge
Sparse direct solvers do not scale
Weak Scaling: 57,640 DOFs to
461,120 DOFs

Solver: DD-ILU(1) preconditioned
GMRES(200)

1
Voskuilen, Moffat, Schroeder, and Roberts, “Multi-fidelity electrochemical modeling of thermally

activated battery cells”. 3
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Battery Weak Scaling, GMRES(200), DD-ILU(1), Overlap=1

1X Resolution, np=8
2X Resolution, np=16
4X Resolution, np=32
8X Resolution, np=64
Convergence Target
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Teko block splitting (trial-and-error):
c: solid phase species
x: liquid phase mass fractions
p: liquid phase pressure
v: solid/liquid phase voltage

Block representation of matrix:

A =


Acc Acx Acp Acv

Axc Axx Axp Axv

Apc Apx App Apv

Avc Avx Avp Avv


Construct Block Gauss-Seidel preconditioner:

M̃−1 (A) =


Acc Acx Acp Acv

Axx Axp Axv

App Apv

Avv


−1
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M̃−1 (A) requires sub-block inverses, replace withM−1 (A):

M−1 (A) =


Mcc Acx Acp Acv

Mxx Axp Axv

Mpp Apv

Mvv


−1

Convergence Result
A single resistant sub-block solver can derail the entire solver:

κ
(
M−1 (A)A

)
≤ κ

(
M−1 (A)M̃ (A)

)
· κ

(
M̃−1 (A)A

)
≥ max

∀M−1
ii Aii

(
κ
(
M−1ii Aii

))
︸ ︷︷ ︸

Sub-block Solver Conditioning

· κ
(
M̃−1 (A)A

)
︸ ︷︷ ︸

Multi-physics Coupling
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A single resistant sub-block solver can derail the entire solver
Use iterative sub-block solves to ensure convergence

Preconditioner M−1 (A) changes per iteration
Requires flexible GMRES (F-GMRES)2
Same orthogonalization cost
Double restart memory

Approximate sub-block inverses for diagonal entries:
M−1

cc : Jacobi
M−1

xx : GMRES + DD-ILU
M−1

pp : GMRES + DD-ILU
M−1

vv = A−1
vv : KLU2 sparse direct solver

2
Saad, “A flexible inner-outer preconditioned GMRES algorithm”. 7
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Teko provides effective preconditioners for multi-physics problems
Especially useful when DD-ILU struggles

Ingredients for Teko Solver Setup
Teko solver setup requires:

1. Physics-to-sub-block mapping
2. Ordering sub-blocks
3. Solvers/preconditioners for each sub-block

Goal: provide ability to auto-magically generate reasonable Teko settings� �
1 begin tpetra equation solver teko_linear_solver
2 begin preset solver
3 solver type = teko_multiphysics
4 end preset solver
5 end tpetra equation solver� �
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Ordering sub-blocks:
Block Gauss-Seidel ordering matters:

κ


[
A B

D

]−1
︸ ︷︷ ︸
M̃−1(A)

[
A B
C D

]
︸ ︷︷ ︸
A

 ̸= κ


[
D C

A

]−1
︸ ︷︷ ︸
M̃−1(RAC)

[
D C
B A

]
︸ ︷︷ ︸
RAC


Optimization Problem
Find block ordering permutation R∗ (·) C∗ such that:

(R∗, C∗) = argmin
∀R,C

κ(M̃−1 (RAC)RAC)

Naïve brute-force approach to optimal ordering is exponential in nb

Collaboration with SandiaAI: use graph-based heuristic for ordering
10



Ordering Heuristic
Input : A with nb blocks, n maximum iterations
Output: Re-ordered A′ more suitable for block Gauss-Seidel

1 A(1) = A
2 for k ← 1 to n do
3 Construct undirected graph G(k) ← (V = {1, . . . , nb}, E = (i, j) | ∀i ∈ V, j ≥ i)

4 Construct symmetric edge-weight matrix W
(k)
i,j ←


∥∥∥A(k)

i,j

∥∥∥
F

i > j∥∥∥A(k)
j,i

∥∥∥
F

j > i

0 i = j

5 D(k) ← diag(D
(k)
1 , . . . , D

(k)
nb

) with D
(k)
i =

∑nb
j=1 W

(k)
i,j

6 Form symmetric weighted graph Laplacian L(k) ← D(k) −W (k)

7 Q(k)Λ(k)
(
Q(k)

)T ← L(k) with λ1 ≤ λ2 ≤ · · · ≤ λnb

8 Construct re-ordering from Fiedler vector R(k) (·) C(k) ← argsort(V[:,2]) // Second smallest
9 A(k+1) ←R(k)A(k)C(k)

10 if A(k+1) = A(k) then return A(k+1)

11 end
12 return A(n+1)
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Apply ordering heuristic to battery problem
c: solid phase species
x: liquid phase mass fractions
p: liquid phase pressure
v: solid/liquid phase voltage

Previous ordering:

A =


Acc Acx Acp Acv

Axc Axx Axp Axv

Apc Apx App Apv

Avc Avx Avp Avv

 ,M−1 (A) =


Mcc Acx Acp Acv

Mxx Axp Axv

Mpp Apv

Mvv


−1

New ordering:

A′ =


Avv Avp Avc Avx

Apv App Apc Apx

Acv Acp Acc Acx

Axv Axp Axc Axx

 ,M−1
(
A′

)
=


Mvv Avp Avc Avx

Mpp Apc Apx

Mcc Acx

Mxx


−1
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Battery Weak Scaling, F-GMRES(200), Teko
1X Resolution, np=8
2X Resolution, np=16
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Heuristic 8X Resolution, np=64
Convergence Target
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Physics-to-sub-block mapping:
Strongly coupled physics may require monolithic approach:

κ


A B C

E F
J

−1
︸ ︷︷ ︸

M̃−1(A)

A B C
D E F
G H J


︸ ︷︷ ︸

A

 ̸= κ


[A B

D E

] [
C
F

]
J

−1
︸ ︷︷ ︸

M̃−1(A′)

[A B
D E

] [
C
F

]
[
G H

]
J


︸ ︷︷ ︸

A′


Monolithically treat combined block with DD-ILU

Alternative: sub-iterate via Hierarchical Block Gauss-Seidel

Simple greedy heuristic for grouping (next slide)
At every step, reduce nb × nb block system to (nb − 1)× (nb − 1):

A∗(nb−1)×(nb−1) ← argmin
A′

(nb−1)×(nb−1)

max
∀i,j∈{1,...,nb−1},j ̸=i

∥∥∥(A′i,j)(nb−1)×(nb−1)

∥∥∥
F
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Block Grouping Heuristic

Input : Matrix A with nb blocks, maximum iterations n < nb, threshold τ
Output: Re-grouped matrix A′ with n′b < nb blocks

/* Note:
∥∥∥∥[A B

C D

]∥∥∥∥
F

=
√
∥A∥2F + ∥B∥2F + ∥C∥2F + ∥D∥2F. */

1 A(0) ← A
2 r0 ← maxi,j,i̸=j ∥A

(0)
i,j ∥F

3 for k ← 0 to n− 1 do
4 (i∗, j∗)← argmaxi,j,i̸=j

∥∥∥A(k)
i,j

∥∥∥
F

5 A(k+1) ← combine(A(k), i∗, j∗) // A(k+1) is a nb − (k + 1) block system

6 rk+1 ← maxi,j,i̸=j ∥A
(k+1)
i,j ∥F

7 if rk+1

r0
≤ τ then return A(k+1)

8 end
9 return A(n)
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OMD FIC multi-physics example:
14 coupled PDEs:

Solid conduction
Porous-fluid coupled flow
Enthalpy
Species transport

Comparison between four preconditioners with
∥rN∥2
∥r0∥2

= 10−12

Monolithic DD-ILU
One-to-one physics-to-block mapping, using heuristic order
Hand-chosen grouping/order
Heuristic grouping/ordering, target reduction τ = 10−4

KLU2 sparse direct solver for sub-blocks

16
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Solvers/preconditioners for each sub-block:
Many sub-blocks will incorporate several physics

Poor man’s solution
DD-ILU preconditioned GMRES(30)
Target one order-of-magnitude residual reduction
F-GMRES(200) as outer solver

Repeat OMD FIC example:
One-to-one physics-to-block mapping, using heuristic order
Hand-chosen grouping/order
Heuristic grouping/ordering, target reduction τ = 10−4

18
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Concluding remarks:
DD-ILU is a great work-horse preconditioner

It can fail to converge

Teko provides diversification to multi-physics solver portfolio
Relies on existing preconditioners/solvers at sub-block level:

DD-ILU
MueLu

Flexible, extensible package with many options
Large landscape of solver settings difficult for users to navigate

WIP: Provide users with guidance through heuristics

Questions?
e-mail: malphil@sandia.gov

20
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