
Trilinos User-Developer Group Meeting
CSRI, Albuquerque | October 22nd - 24th, 2024

Trilinos use in 4C-multiphysics

Max Firmbach 1 Matthias Mayr 1,2
1Institute for Mathematics and Computer-Based Simulation, University of the Bundeswehr Munich
2Data Science & Computing Lab, University of the Bundeswehr Munich



What is 4C-multiphysics?

Comprehensive Computational Community Code (4C)

4C is a parallel multi-physics research code to analyze and solve a plethora of physical problems
by means of computational mechanics.

▶ provides simulation capabilities for a variety of physical models, including
▶ single fields such as solids and structures, fluids, scalar transport, or porous media
▶ multiphysics coupling and interactions between several fields

▶ mostly based on finite element methods (FEM, CutFEM)

▶ leverages the project for sparse linear algebra, nonlinear solvers, linear solvers &
preconditioners, domain partitioning & rebalancing, automatic differentiation, ...

▶ parallelized with MPI for distributed memory hardware architectures

Max Firmbach | University of the Bundeswehr Munich 1



Research areas in 4C

4C

physics
single fields

solid

beam

fluid

...

multi fields

beam-solid

fluid-solid

...

discretization

mortar
methods

isogeometric
analysis

cut
algorithms

numerics

physics-based
preconditioner

load
balancing

application

engineering

reinforced
concrete

all-solid-state
batteries

(rough
surface)
contact

...

bio medicine

stomach
modelling

stents, flow
diverters

...

Guiding principle

Application-motivated fundamental research.

All parts of the code are in one form or another
related to current or former research projects.

Jointly developed by several reasearch
groups across Germany!

Max Firmbach | University of the Bundeswehr Munich 2



Some facts and statistics about 4C

Repository
▶ First commit on Jan 9, 2002

(author: unknown)
▶ More than 30k commits
▶ 126 contributors (+students)

Research output
▶ >400 peer-reviewed publications
▶ >57 PhD theses

Code base
▶ 1911 files (89% C++)
▶ >1.16 mio lines of code

(incl. 35% comments)
▶ Code coverage: 71.6 %

...
Takeaway

▶ Trilinos is by far the most important third-party
library

▶ Trilinos’ develop branch is checked and tested
against the 4C main-branch on a weekly basis

Max Firmbach | University of the Bundeswehr Munich 3



4C & Trilinos

Trilinos is an integral part of 4C

Currently ≈ 20 packages are in active use.

Core
▶ Epetra
▶ EpetraExt
▶ Isorropia
▶ Kokkos
▶ Tpetra
▶ Teuchos
▶ Thyra
▶ Zoltan
▶ Zoltan2

Solvers
▶ Amesos
▶ Belos
▶ Ifpack
▶ MueLu
▶ Stratimikos
▶ Teko
▶ NOX
▶ Xpetra

Discretizations and
Analysis
▶ Intrepid2
▶ Shards
▶ Sacado

Max Firmbach | University of the Bundeswehr Munich 4



4C & Linear solvers / Preconditioners

▶ Prototyping with direct solvers from Amesos (Umfpack, SuperLU)
▶ Production runs with iterative solvers from Belos (mostly GMRES)

and respective preconditioners:
▶ Ifpack for incomplete factorizations (RILUK, ILUT)
▶ MueLu for algebraic multigrid (Unsmoothed, Smoothed, Petrov-Galerkin)
▶ Teko for block preconditioning (Block Gauss-Seidel, Block LU, SIMPLE)

Implementing own Block LU Strategy for mixed-dimensional preconditioning
(e.g. for beam-solid interaction)

▶ Exploring and starting to use the Stratimikos interface with xml-files ...
▶ ... to provide users easy access to example linear solver configs
▶ ... to simplify the linear solver interface to Trilinos and ease maintenance

Current state in 4C

Amesos, Belos, Ifpack andMueLu run very stable for already a long time in 4C. Recently
introduced Teko to replace self-implementations of block methods and add special features for
block preconditioning → so far works great!

Max Firmbach | University of the Bundeswehr Munich 5



4C & Linear solvers / Preconditioners

Mixed-dimensional beam-solid problem:(
A BT

1
B2 C

)
=

(
KB+ϵDTκ−1D −ϵDTκ−1M
−ϵMTκ−1D KS+ϵMTκ−1M

)

▶ large ϵ results in high condition number
▶ A is block diagonal
▶ block system might be nonsymmetric

Implementation based on Teko:
▶ LU2x2PreconditionerFactory
▶ derived LU2x2Strategy

In-house methods conveniently added to
Stratimikos linear solver builder.

Block preconditioner
1. Pre-compute SPAI of A and form explicit approximate

Schur complement:

Ã−1 = SPAI(A) and S = C − B1Ã−1BT
1

2. Calculate residual:(
r1
r2

)
=

(
b1
b2

)
−

(
A BT

1
B1 C

) (
x1
x2

)
3. Solve prediction of beam equation with SPAI smoother:

xk+1
1 = xk

1 + Ã−1r1

4. Solve Schur complement equation with AMG:

S̃x2 = r2 − B2x1

5. Solve correction of beam equation with SPAI smoother:

xk+1
1 = xk

1 + Ã−1(r1 − BT
1 x2)

Max Firmbach | University of the Bundeswehr Munich 6



4C & Linear solvers / Preconditioners

Comparison of linear solvers
▶ Amesos direct solver not feasible for problem size
▶ Incomplete factorization as preconditioner in
Ifpack leads to no convergence

▶ Very special block LU as Teko preconditioner is
scalable and fast (≈ 25 iterations)

Reinforced concrete wall model setup:

1 1 0.8

2.4

1

1

1

Sparsity pattern of the stiffness operator:

Max Firmbach | University of the Bundeswehr Munich 7



4C & Linear solvers / Preconditioners

Weak scaling study based on minimal
example:
Solid cube randomly filled with fibers

Scaling from ≈ 50.000 DOFs
to ≈ 50.000.000 DOFs.

101 102 103

20

40

60

Number of parallel processes [-]

Av
g.

lin
ea

ri
te

ra
tio

ns
[-]

smoothed aggregation plain aggregation

Regarding scalability

Special care has to be taken regarding the AMG method
for the Schur complement!

Max Firmbach | University of the Bundeswehr Munich 8



4C & Linear solvers / Preconditioners

Parameter robustness study on
a composite plate:

e2

e1
p

[45◦,−45◦]

e3

Varying stiffnes ratio EB/ES and
beam radius to plate thickness
ratio R/t.

101 102 103
0

10

20

30

Stiffness ratio EB/ES [-]
Av

g.
lin

ea
ri

te
ra

tio
ns

[-]

R/t = 1/5 R/t = 1/10 R/t = 1/20 R/t = 1/40

Regarding robustness

Preconditioner is considered to be robust in all relevant
parameters!

Max Firmbach | University of the Bundeswehr Munich 9



4C & Linear solvers / Preconditioners
Monolithic fluid-structure interaction problem:

A =

 S CSF
G CGF

CFS CFG F


Construct block Gauss-Seidel preconditioner:

M−1 =

 S
G

CFS CFG F

−1

Implementation based on Teko andMueLu:
▶ GaussSeidelPreconditionerFactory
▶ approximate sub-block inverses with AMG

Again Stratimikosmakes it easy to build the
preconditioner.

"all-in-one" algebraic multigrid method

1. Build segregated transfer operators:

R =

RS

RG

RF

 and P =

PS

PG

PF


Coarsen individual physical fields separately.

2. Construct block Gauss-Seidel smoother with:

L−1 =

 S
G

CFS CFG F

−1

→ Proper represenation of the multi-physics problem on
coarse levels and thus efficient smoothing of the error
frequencies related to the coupling.

Block Gauss-Seidel components could be
reused from Teko.

Max Firmbach | University of the Bundeswehr Munich 10



4C & Linear solvers / Preconditioners

Weak scaling study based on the
pressure wave benchmark problem:

Assuming matching meshes for fluid,
solid and ALE!

Scaling from ≈ 60.000 DOFs
to ≈ 60.000.000 DOFs.

101 102 103
0

20

40

60

Number of parallel processes [-]

Av
g.

lin
ea

ri
te

ra
tio

ns
[-]

Teko MueLu

Regarding scalability

Only the "all-in-one" multigrid method based onMueLu
shows scalability!

Max Firmbach | University of the Bundeswehr Munich 11



4C & Epetra to Tpetra Transition

Still using the Epetra backend ...

... thus bound to MPI only without the use of OpenMP or similar ...

... but currently in the process of switching to Tpetra!

Current strategy:
▶ Replace Epetra based packages with ones, which can do both: Epetra and Tpetra
▶ Reduce Epetra based self-implementations and use Trilinos functionality for it

(e.g. block preconditioning with Teko)
▶ Introduce wrapper classes for Epetra based objects

Long road ahead ...

Transition of the linear solver stack almost complete! Transition of nonlinear solver still not clear.

Max Firmbach | University of the Bundeswehr Munich 12



4C & Epetra to Tpetra Transition

Decided to use Thyra and the respective framework, due to Stratimikos (and most likelyNOX).

Additional challenges:
▶ Thyra vs. Xpetra situation going on in the code → especially with our block matrix

implementation and it’s wrapping to Thyra::PhysicallyBlockedLinearOp vs.
Xpetra::BlockedCrsMatrix (most cumbersome point is the GID numbering)

▶ Actively removing of almost all Teuchos::RCP as they pollute 4C (tend to be overused
when not necessary) → trying to avoid them

▶ Internal handling of Teuchos::ParameterList and the recent changes made to it
(Teuchos_MODIFY_DEFAULTS_DURING_VALIDATION)

Keep continuous integration running ...

Always guarantee that 4C builds with the current Trilinos develop branch!

Max Firmbach | University of the Bundeswehr Munich 13



Thank you!

4C has in the past, is currently and will in the future heavily build on Trilinos and uses a lot of it’s
features to do application-driven research! Excited what’s to come with Tpetra (and Kokkos)!

Collaborators:
▶ Matthias Mayr, UniBw M
▶ ... all 4C developers!

References: For more information and use-cases have a look at the
4C-multiphysics website: https://www.4c-multiphysics.org/

Financial support:
dtec.bw: Digitalization and Technology Research Center of
the Bundeswehr through the project hpc.bw: Competence
Platform for High Performance Computing

Contact:
▶ max.firmbach@unibw.de (https://www.unibw.de/imcs-en)

Max Firmbach | University of the Bundeswehr Munich 14


