
Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department
of Energy’s National Nuclear Security Ad-

ministration under contract DE-NA0003525.
SAND NO. 2023-11914C

Adoption and Usage of Spack
in ALEGRA DevOps and Development

Presented by:

Tim Fuller

November
1, 2023

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

2

UNCLASSIFIED UNLIMITED RELEASE

Alegra

Summary
Alegra is a roughly 34-year old code that provides approximate solutions to multiphysics problems
involving

large-deformation Lagrangian, Eulerian, or ALE solid dynamics/hydrodynamics;
electrical conductivity, magnetic induction/diffusion, nonlinear ohmic heating, Lorentz forces;
finite element discretizations;
material data and equations of state;
radiation transport, thermonuclear burn;
and
piezo and ferro electric effects.

UNCLASSIFIED UNLIMITED RELEASE

3

UNCLASSIFIED UNLIMITED RELEASE

Alegra

Challenges
Code base

roughly 34 year old “legacy code”
large code base with C++, Fortran, C, and
other language components
extremely complex physics

Dependencies
complex dependencies: roughly 30 TPLs
including Dakota, Trilinos, Xyce
each having its own build system
some TPLs have proprietary licenses

Data
relies on material data from a variety of sources
ITAR, UCNI, LANL proprietary, and LLNL
proprietary data
not all customers are authorized to receive data

Testing
most testing done on gifted, and aging, hardware
thousands of tests with tens of Gb of data
some tests take longer then 24 hours to execute

Building
maintaining builds on all SNL CEE-LAN and
HPC machines
maintaining builds on select SNL test beds
providing builds on customer machines for which
there are no SNL counterparts

Running
complex user interface
interactions with many other tools: MPI,
exodus, etc.

UNCLASSIFIED UNLIMITED RELEASE

4

UNCLASSIFIED UNLIMITED RELEASE

Alegra

manage and build TPLs;
manage and build
alegranevada source code;
manage source code testing;
manage source code releases;
and
define compiler interfaces
and compiler flags.

The legacy toolset implements
functionality from many modern tools

UNCLASSIFIED UNLIMITED RELEASE

5

UNCLASSIFIED UNLIMITED RELEASE

Alegra tooling modernizations

toolset2 is a Python library
that glues together the pieces of
our CI/CD workflow:

Spack
VVTest
GitLab
CDash

UNCLASSIFIED UNLIMITED RELEASE

6

UNCLASSIFIED UNLIMITED RELEASE

It’s...

Image credit: https://medium.com/the-adventures-of-platoboy/it-is-not-turtles-all-the-way-down-4306ea599c6bUNCLASSIFIED UNLIMITED RELEASE

6

UNCLASSIFIED UNLIMITED RELEASE

Spack all the way down

UNCLASSIFIED UNLIMITED RELEASE

7

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 1

UNCLASSIFIED UNLIMITED RELEASE

8

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 1

Fork and wrap spack with our toolset, hide as many Spack details from
developers

$ # setup environement
$ spacktivate
$ spack add ...
$ spack concretize...
$ spack install

$ nevada -E ENV install ...

Provide default environments and reference area (upstreams)
Provide spackages for every package in our software stack
Modified Spack to fit our needs

UNCLASSIFIED UNLIMITED RELEASE

8

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 1

Fork and wrap spack with our toolset, hide as many Spack details from
developers

$ # setup environement
$ spacktivate
$ spack add ...
$ spack concretize...
$ spack install

$ nevada -E ENV install ...

Provide default environments and reference area (upstreams)
Provide spackages for every package in our software stack
Modified Spack to fit our needs

UNCLASSIFIED UNLIMITED RELEASE

9

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 2

For every application that uses Spack, there is a wrapper to wrap Spack

(Chris Siefert)

UNCLASSIFIED UNLIMITED RELEASE

9

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 2

For every application that uses Spack, there is a wrapper to wrap Spack

(Chris Siefert)UNCLASSIFIED UNLIMITED RELEASE

10

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 2

Don’t wrap!

Don’t wrap, adapt
Don’t wrap, extend
Don’t wrap, contribute

UNCLASSIFIED UNLIMITED RELEASE

10

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 2

Don’t wrap!
Don’t wrap, adapt

Don’t wrap, extend
Don’t wrap, contribute

UNCLASSIFIED UNLIMITED RELEASE

10

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 2

Don’t wrap!
Don’t wrap, adapt
Don’t wrap, extend

Don’t wrap, contribute

UNCLASSIFIED UNLIMITED RELEASE

10

UNCLASSIFIED UNLIMITED RELEASE

Adoption strategy, part 2

Don’t wrap!
Don’t wrap, adapt
Don’t wrap, extend
Don’t wrap, contribute

UNCLASSIFIED UNLIMITED RELEASE

11

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, adapt

Expect developers to read Spack documentation and learn basics of Spack

Spack spec language

spack find
spack info
spack develop
spack concretize
spack install

UNCLASSIFIED UNLIMITED RELEASE

11

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, adapt

Expect developers to read Spack documentation and learn basics of Spack

Spack spec language
spack find

spack info
spack develop
spack concretize
spack install

UNCLASSIFIED UNLIMITED RELEASE

11

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, adapt

Expect developers to read Spack documentation and learn basics of Spack

Spack spec language
spack find
spack info

spack develop
spack concretize
spack install

UNCLASSIFIED UNLIMITED RELEASE

11

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, adapt

Expect developers to read Spack documentation and learn basics of Spack

Spack spec language
spack find
spack info
spack develop

spack concretize
spack install

UNCLASSIFIED UNLIMITED RELEASE

11

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, adapt

Expect developers to read Spack documentation and learn basics of Spack

Spack spec language
spack find
spack info
spack develop
spack concretize

spack install

UNCLASSIFIED UNLIMITED RELEASE

11

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, adapt

Expect developers to read Spack documentation and learn basics of Spack

Spack spec language
spack find
spack info
spack develop
spack concretize
spack install

UNCLASSIFIED UNLIMITED RELEASE

11

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, adapt

Expect developers to read Spack documentation and learn basics of Spack

Spack spec language
spack find
spack info
spack develop
spack concretize
spack install

provide 90% of the functionality we need for using Spack

UNCLASSIFIED UNLIMITED RELEASE

12

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend

Spack extensions allow one to extend Spack with custom commands.
Originally, we provided additional functionality by stitching together different
Spack commands with scripts
These scripts were fragile and often broke when we updated Spack
Spack provides a better solution in the form of extensions

spack:
config:

extensions:
- $toolset2/var/spack/extensions/spack-nevada

$ tree $toolset2/spack/extensions
$toolset2/spack/extensions/
|__ spack-nevada

|__ nevada
|__ cmd

|-- __init__.py
|-- distribution.py
|-- make.py
|-- multi_develop.py
|__ pull.py

UNCLASSIFIED UNLIMITED RELEASE

13

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: multi-develop

$ cd $workdir
$ git clone url:app
$ git clone url:dep1
$ git clone url:dep2
$ spack develop -p $(pwd)/app app@version
$ spack develop -p $(pwd)/dep1 dep1@version
$ spack develop -p $(pwd)/dep2 dep2@version
$ spack add app@version ^dep1@version ^dep2@version
$ spack concretize
$ spack install

UNCLASSIFIED UNLIMITED RELEASE

13

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: multi-develop

$ cd $workdir
$ git clone url:app
$ git clone url:dep1
$ git clone url:dep2
$ spack develop -p $(pwd)/app app@version
$ spack develop -p $(pwd)/dep1 dep1@version
$ spack develop -p $(pwd)/dep2 dep2@version
$ spack add app@version ^dep1@version ^dep2@version
$ spack concretize
$ spack install

UNCLASSIFIED UNLIMITED RELEASE

14

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: multi-develop

$ spack multi-develop -h
usage: spack multi-develop [-h] [-f FILE] ...

add multiple specs to an environment’s dev-build information

options:
-h, --help show this help message and exit

Input format:
details colon separated list of details
-f FILE File containing develop specs

‘spack multi-develop‘ is a wrapper around ‘spack develop‘ that allows
adding multiple specs to an environment’s dev-build information.

$ cat specs.yaml
develop:
- app@version

path: $CWD/app
clone: true

- dep1@version
path: $CWD/dep1
clone: true

- dep2@version
path: $CWD/dep2
clone: true

$ spack multi-develop -f specs.yaml
$ spack add app@version ^dep1@version ^dep2@version
$ spack concretize
$ spack install

UNCLASSIFIED UNLIMITED RELEASE

14

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: multi-develop

$ spack multi-develop -h
usage: spack multi-develop [-h] [-f FILE] ...

add multiple specs to an environment’s dev-build information

options:
-h, --help show this help message and exit

Input format:
details colon separated list of details
-f FILE File containing develop specs

‘spack multi-develop‘ is a wrapper around ‘spack develop‘ that allows
adding multiple specs to an environment’s dev-build information.

$ cat specs.yaml
develop:
- app@version

path: $CWD/app
clone: true

- dep1@version
path: $CWD/dep1
clone: true

- dep2@version
path: $CWD/dep2
clone: true

$ spack multi-develop -f specs.yaml
$ spack add app@version ^dep1@version ^dep2@version
$ spack concretize
$ spack install

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow
can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install

spack install can be slow
can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow

can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow
can we run make in the package’s build directory?

yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow
can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow
can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow
can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow
can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

15

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

Packages marked by spack develop can be rebuilt as the local source changes
with spack install
spack install can be slow
can we run make in the package’s build directory?
yes! but...

$ cd $(spack location -b app@version)
$ cd ..
$ source spack-build-env.txt
$ cd $(spack location -b app@version)
$ make install -j40

$ cd $(spack location -b app@version)
$ spack build-env app@version -- make install -j40

But what we really want to do is

$ spack make app -- install -j40

UNCLASSIFIED UNLIMITED RELEASE

16

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

$ spack make -h
usage: spack make [-h] ...

make SPEC directly with ‘make‘ or ‘ninja‘

positional arguments:
SPEC Spack package to build (must be a develop spec)

options:
-h, --help show this help message and exit

Additional arguments can be sent to the build system directly by
separating them from SPEC by ’--’. Eg, ‘spack make SPEC -- -j16‘

UNCLASSIFIED UNLIMITED RELEASE

17

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: make

import argparse
import os

import llnl.util.tty as tty
import spack.build_environment as build_environment
import spack.builder
import spack.cmd
import spack.paths

from llnl.util.filesystem import working_dir
from spack.util.executable import Executable

description = "make SPEC directly with ‘make‘ or ‘ninja‘"
section = "nevada"
level = "short"

epilog = """\
Additional arguments can be sent to the build system directly by separating them
from SPEC by ’--’. Eg, ‘spack make SPEC -- -j16‘
"""

def setup_parser(parser):
parser.epilog = epilog
parser.add_argument(

"spec",
metavar="SPEC",
nargs=argparse.REMAINDER,
help="Spack package to build (must be a develop spec)",

)

def make(parser, args):
env = spack.cmd.require_active_env(cmd_name="make")
try:

sep_index = args.spec.index("--")
extra_make_args = args.spec[sep_index + 1 :]
specs = args.spec[:sep_index]

except ValueError:
extra_make_args = []
specs = args.spec

specs = spack.cmd.parse_specs(specs)
if not specs:

tty.die("You must supply a spec.")
if len(specs) != 1:

tty.die("Too many specs. Supply only one.")
spec = env.matching_spec(specs[0])
if spec is None:

tty.die(f"{specs[0]}: spec not found in environment")
pkg = spec.package
builder = spack.builder.create(pkg)
if hasattr(builder, "build_directory"):

build_directory = os.path.normpath(
os.path.join(pkg.stage.path, builder.build_directory)

)
else:

build_directory = pkg.stage.source_path
build_environment.setup_package(spec.package, False, "build")
with working_dir(build_directory):

make_program = "ninja" if os.path.exists("build.ninja") else "make"
make = Executable(make_program)
make(*extra_make_args)

UNCLASSIFIED UNLIMITED RELEASE

18

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: distribution

The problem:
Our source code has very tight access controls
Many customers are external to Sandia
Most need to install on their own air-gapped systems

The solution:

$ spack distribution create # On my system
$ # scp to target
$ spack distribution install # on target system

UNCLASSIFIED UNLIMITED RELEASE

18

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: distribution

The problem:
Our source code has very tight access controls
Many customers are external to Sandia
Most need to install on their own air-gapped systems

The solution:

$ spack distribution create # On my system
$ # scp to target
$ spack distribution install # on target system

UNCLASSIFIED UNLIMITED RELEASE

19

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, extend: distribution

The problem:
Our source code has very tight access controls
Many customers are external to Sandia
Most need to install on their own air-gapped systems

The solution:

$ spack distribution -h
usage: spack distribution [-h] SUBCOMMAND ...

Create and install alegranevada distributions

positional arguments:
SUBCOMMAND

create Create the AlegraNevada distribution
install Install the AlegraNevada distribution
add-compilers Find compilers and add them to the AlegraNevada distribution

options:
-h, --help show this help message and exit

UNCLASSIFIED UNLIMITED RELEASE

20

UNCLASSIFIED UNLIMITED RELEASE

Don’t wrap, contribute

Contribute changes you require back to Spack
Spack developers are open to collaborations and helpful in getting
modifications incorporated upstream

UNCLASSIFIED UNLIMITED RELEASE

21

UNCLASSIFIED UNLIMITED RELEASE

Questions?

UNCLASSIFIED UNLIMITED RELEASE

