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ECP / SAKE 
UPDATES



SAKE ACCOMPLISHMENTS

• KPP-3 integrations:
• ATDM application integrations SPARC and EMPIRE
• Focused on features for solvers and preconditioners on AMD platforms (BlockTriDiag, ILU, Multigrid…)
• Supports application milestones

• ECP integrations
• Integration with Trilinos and PETSc
• Integration on AMD and Intel platforms

• ALL KPP-3 are reviewed and approved by federal program manager
• Trilinos contributes 1pt to Math Libraries
• Kokkos Kernels contribute 0.5pt to Math Libraries, 0.5pt to ATDM
• Sake amongst the first math libraries project fully approved
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PLATFORM 
SUPPORT



HIP Backend

• HIP moves out of experimental in Kokkos 4.0.0
• Kokkos::Experimental::HIP becomes Kokkos::HIP
• Kokkos Kernels internal library clean-up

• More rocBLAS/rocSPARSE coverage
• SpMV: single vector, multivector and block variants supported
• SpGEMM and block SpGEMM
• All Blas2/3 and most Blas1 supported

• Stream support using Kokkos execution space
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SYCL Backend

• Still experimental, although more mature
• Almost all tests passing on Ponte Vecchio (still issue with SpGEMM)
• More TPL support of oneAPI MKL
• Nightly testing of SYCL, should promote to CI once stable and if testing capacity allows
• Integration with Trilinos and PETSc
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Runs using ship_003 from SuiteSparse and Kokkos Kernels 
native SpMV



NEW FEATURES



GENERAL LIBRARY UPDATES

• Library reorganized by components
• Blas
• Batched dense/sparse
• Sparse
• Graph
• ODE (WIP)

• Added oneMKL TPL

• Kokkos Kernels version macros
• CMake: KokkosKernels_VERSION
• Header (KokkosKernels_config.h): KOKKOSKERNELS_VERSION
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GENERAL LIBRARY UPDATES

• Google Benchmark TPL
• Enable with: KokkosKernels_ENABLE_TEST=ON + KokkosKernels_ENABLE_PerfTests=ON + 

KokkosKernels_ENABLE_Benchmarks=ON

• Configuration output
• KokkosKernels::print_configuration(std::ostream&)
• Prints library version and TPL information
• Feedback welcomed on what additional information should be printed!
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BLAS

• Blas completeness
• Blas1 complete
• Blas2
• General/Symmetric matrix needs SYMV to be complete
• No packed/banded algo yet

• Blas3
• General/Symmetric: need SYMM, HEMM and rank k/2k updates

• All Blas algorithms support stream execution
• KokkosBlas::myBlasKernel(space, …);

• General maintenance of TPLs
• Added support for newer versions of cuBLAS/rocBLAS
• Working on oneMKL support for Intel GPUs
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SPARSE

• Sparse format conversion
• coo2csr, csc2csr

• Merged based SpMV for unbalanced rows in matrix

• SpGEMM
• New “reuse” interface, saves graph of previous matrix
• Improved TPL support (MKL, cuSPARSE) new rocSPARSE support

• Incomplete factorizations
• New parILUt algorithm (iterative computation of L and U)
• New MDF(0) algorithm (re-orders following Frobenius norm of discard factor on the fly)
• Stream version of ILU(k) and SpTRSV
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SPARSE

• Brs format support
• Improved SpMV performance especially on AMD platform with TPLs
• Results below: 1 vector, block size = 7, rocm 5.2.0

• CrsMatrix sort and merge
• Needed for some TPL
• Useful after SpGEMM and or MPI communication
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BATCHED

Sparse Batched algorithms
• Algorithms implemented:

• Linear algebra (SpMV)
• Iterative solvers (CG, GMRES)
• Preconditioner (Jacobi)

• Launch parameters tunned for architecture
• NVIDIA V100
• AMD MI50 / MI250
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ODE

New component for time integration algorithms
• Explicit integrators

• Runge Kutta (orders 1 to 5)
• Various schemes for stability (Fehlberg 45, Cash-Karp, Dormand-Prince)
• Time adaptive

• Implementation for GPU work within a RangePolicy
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Num systems 10,000 100,000 1,000,000
CTS-1 3.17128 31.709 N/A
ATS-2 0.0303719 0.365714 2.33355



RELEASE 4.2.0



STREAM BASED SPARSE PRECONDITIONERS

• Stream Gauss-Seidel
• Stream ILU(k)/SpTRSV

• Decompose the problem as we would with MPI
• Use a stream per subdomain
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Local MPI rank matrix Stream split matrices Stream split factors



STREAM BASED ILU(K)

• Scaling study 1 to 8 streams
• Good scaling overall
• Some scalability loss in SpTRSV on 8 streams
• Performance very dependent on CUDA version (results obtained with CUDA 11.8)

• Like MPI partitioning, balancing is important!
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ODE

• Newton solver
• Drive adaptation from convergence behavior
• Cheaper secant variant option

• BDF, implicit time integration
• Similar feature to CVODE
• Time and order adaptive
• Order 1 to 5
• Initial time step estimation

• Best option for stiff problems see left 
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UPCOMING 
WORK



ALGORITHMIC DEVELOPMENT

• Block-ILU(k) variant
• Fill based on block graph
• Integration with Ifpack2

• LAPACK select algorithms implementation (LU, SVD, QR)
• Add new library component
• Include cuSOLVER, rocSOLVER, MKL and Magma TPLs

• Improve BDF features: 
• Numerical differentiation Jacobian 
• Backtracking line search

• Batched ODE solvers
• Reduce branch divergence on GPU
• Promote vectorization on CPU
• Potentially complicated for BDF, easier for RK algorithms
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LIBRARY IMPROVEMENTS

• SYCL backend: improve support and performance once Aurora comes online

• Improve integration with Trilinos and PETSc

• Establish automated performance testing

• Improve interface to enable auto-tunning
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ANY 
QUESTIONS?


