Sandia
National
Laboratories

Exceptional service in the national interest

KOKKOS KERNELS

Luc Berger-Vergiat, Siva Rajamanickam
V. Dang, N. Ellingwood, J. Foucar, B. Kelley, E. Harvey,
K. Liegeois, C. Pearson, E. Prudencio

Trilinos User Group meeting 2023
Albuquerque, New Mexico

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly ;%» [Py
“4/ENERGY

owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2023-11561PE

ECP / SAKE

UPDATES

SAKE ACCOMPLISHMENTS N
\\
« KPP-3 integrations: \
« ATDM application integrations SPARC and EMPIRE

Focused on features for solvers and preconditioners on AMD platforms (BlockTriDiag, ILU, Multigrid...)
Supports application milestones

* ECP integrations
Integration with Trilinos and PETSc
Integration on AMD and Intel platforms

« ALL KPP-3 are reviewed and approved by federal program manager
« Trilinos contributes 1pt to Math Libraries

« Kokkos Kernels contribute 0.5pt to Math Libraries, 0.5pt to ATDM
« Sake amongst the first math libraries project fully approved

PLATFORM

SUPPORT

HIP Backend

HIP moves out of experimental in Kokkos 4.0.0
« Kokkos::Experimental::HIP becomes Kokkos::HIP

« Kokkos Kernels internal library clean-up

More rocBLAS/rocSPARSE coverage
* SpMV: single vector, multivector and block variants supported

* SpGEMM and block SpGEMM
« All Blas2/3 and most Blas1 supported

Stream support using Kokkos execution space

SYCL Backend

- Still experimental, although more mature
« Almost all tests passing on Ponte Vecchio (still issue with SpGEMM)
» More TPL support of oneAPI MKL

« Nightly testing of SYCL, should promote to Cl once stable and if testing capacity allows
* Integration with Trilinos and PETSc

time [ms]

0.00 -

A100 MI250X PVC

Runs using ship_003 from SuiteSparse and Kokkos Kernels
native SpMV

GENERAL LIBRARY UPDATES

« Library reorganized by components
- Blas

« Batched dense/sparse
* Sparse

« Graph

- ODE (WIP)

« Added oneMKL TPL

« Kokkos Kernels version macros
¢ (CMake: KokkosKernels_ VERSION

« Header (KokkosKernels_config.h): KOKKOSKERNELS_VERSION

GENERAL LIBRARY UPDATES N
\s
« Google Benchmark TPL \

¢ Enable with: KokkosKernels ENABLE _TEST=ON + KokkosKernels_ ENABLE_PerfTests=ON +
KokkosKernels_ ENABLE _Benchmarks=ON

« Configuration output
« KokkosKernels::print_configuration(std::ostream&)

 Prints library version and TPL information
« Feedback welcomed on what additional information should be printed!

BLAS

« Blas completeness
« Blas1 complete

« Blas2

General/Symmetric matrix needs SYMV to be complete
No packed/banded algo yet
« Blas3

General/Symmetric: need SYMM, HEMM and rank k/2k updates

All Blas algorithms support stream execution
« KokkosBlas::myBlasKernel(space, ...);

General maintenance of TPLs
« Added support for newer versions of cuBLAS/rocBLAS
Working on oneMKL support for Intel GPUs

10

SPARSE

Sparse format conversion
* COO2cCsr, csc2csr

Merged based SpMV for unbalanced rows in matrix

SpGEMM
* New “reuse” interface, saves graph of previous matrix

* Improved TPL support (MKL, cuSPARSE) new rocSPARSE support

Incomplete factorizations
* New parlLUt algorithm (iterative computation of L and U)

* New MDF(0) algorithm (re-orders following Frobenius norm of discard factor on the fly)
« Stream version of ILU(k) and SpTRSV

A 3

SPARSE

« Brs format support
« Improved SpMV performance especially on AMD platform with TPLs

« Results below: 1 vector, block size =7, rocm 5.2.0

1000
800
v 600
e W Prev. Native
O 400
B New Native
200
L I 1] II II S e TP

(@]

f32/i32/i32 f64/i32/i32 f32/i32/u32 fe4/i64/uc4 fe4/u64/icd
scalar/ordinal/offset

« CrsMatrix sort and merge
« Needed for some TPL

« Useful after Sp GEMM and or MPI communication

12

BATCHED

PeleLM Gri30
Sparse Batched algorithms B (RS .

- Algorithms implemented: o
« Linear algebra (SpMV)
* [terative solvers (CG, GMRES)
« Preconditioner (Jacobi)

Time [sec]

0.010 4

0.005 4

0.000 T T T T
5000 10000 15000 20000 25000

« Launch parameters tunned for architecture °
* NVIDIAV100

« AMD MI50 / MI250

PeleLM Isooctane

0.14

< MI50

—— MI50 optimized
0121 & mi250x

—— MI250x optimized

0.10 4 ~©~ MI50 sorted

=== MI50 sorted optimized
©- MI250x sorted

T --- MI250x sorted optimized

Time [sec]

0 5000 10000 15000 20000 25000
Number of matrices

13

ODE

New component for time integration algorithms

« Explicit integrators
* Runge Kutta (orders 1 to 5)

« Various schemes for stability (Fehlberg 45, Cash-Karp, Dormand-Prince)
- Time adaptive

« Implementation for GPU work within a RangePolicy

10,000 100,000 1,000,000

CT5-1 3.17128 31.709 |~ —
ATS-2 0.0303719 0.365714 2.33355 — et

—=— ref slope 2
—+— Bogacki-Shampine
—&— ref slope 3
—+— Cash-Karp
—&— ref slope 5

-6 -5 —4 -3 -2

14

STREAM BASED SPARSE PRECONDITIONERS

« Stream Gauss-Seidel

« Stream ILU(k)/SpTRSV
« Decompose the problem as we would with MPI

« Use a stream per subdomain

Local MPI rank matrix Stream split matrices Stream split factors

N

L 2 R R 2

A .

STREAM BASED ILU(K)

« Scaling study 1 to 8 streams
« Good scaling overall

« Some scalability loss in SpTRSV on 8 streams
« Performance very dependent on CUDA version (results obtained with CUDA 11.8)

» Like MPI partitioning, balancing is important!

ILU(3) Numeric on Rank 9
(3) SPTRSV Solve (L, cusparse) on Rank 9
3
0.014
2.4883 .
25 0.012 Qo127
— 2 0.01
< -
& © 0.008
2 15 3527 -
= £ 0.006
(= =
1 0.9786 =
0.004
0.5 0.4103
0.002
0 0
No stream (orig. 2 streams 4 streams 8 streams .
No stream (orig. 2 streams 4 streams 8 streams
problem)
problem)

A "

ODE

+ Newton solver
« Drive adaptation from convergence behavior

« Cheaper secant variant option

- BDF, implicit time integration

- Similar feature to CVODE o s
- Time and order adaptive 0.8 — species 3
 Order1to5
- Initial time step estimation 067
0.4 1
« Best option for stiff problems see left
0.2 1
0.0

0 100 200 300 400 500

18

UPCOMING

WORK

ALGORITHMIC DEVELOPMENT

« Block-ILU(k) variant
 Fill based on block graph

« Integration with Ifpack2

« LAPACK select algorithms implementation (LU, SVD, QR)
« Add new library component

* Include cuSOLVER, rocSOLVER, MKL and Magma TPLs

* Improve BDF features:
« Numerical differentiation Jacobian

« Backtracking line search

- Batched ODE solvers
« Reduce branch divergence on GPU

* Promote vectorization on CPU
« Potentially complicated for BDF, easier for RK algorithms

A g

LIBRARY IMPROVEMENTS

SYCL backend: improve support and performance once Aurora comes online

Improve integration with Trilinos and PETSc

Establish automated performance testing

Improve interface to enable auto-tunning

A 2

ACKNOWLEDGEMENTS N
N\

« Jonathan Hu and Tom Ransegnola for contributing multiple integrations of incomplete \
factorizations in Ifpack2 and more...

« Junchao Zhang for Kokkos Kernels/PETSc liaison, integration and contributing multiple TPL
integrations and fixes

 Victor Brunini for interfacing with applications, providing design and performance
feedback on new features

« Satish Balay and Sameer Shende for updating us on various incompatibilities and updates
in Spack and xSDK

- Mark Adams for all the discussions on the batched linear solver interfaces and
performance

« And to all the other contributors who help improved the library by providing feedback,
documentation updates and bug fixes

We owe you a debt of gratitude, thank you for your continued support!

A 2

