
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly 
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

KOKKOS KERNELS

Luc Berger-Vergiat, Siva Rajamanickam
V. Dang, N. Ellingwood, J. Foucar, B. Kelley, E. Harvey,
K. Liegeois, C. Pearson, E. Prudencio

SAND2023-11561PE

Trilinos User Group meeting 2023
Albuquerque, New Mexico



ECP / SAKE 
UPDATES



SAKE ACCOMPLISHMENTS

• KPP-3 integrations:
• ATDM application integrations SPARC and EMPIRE
• Focused on features for solvers and preconditioners on AMD platforms (BlockTriDiag, ILU, Multigrid…)
• Supports application milestones

• ECP integrations
• Integration with Trilinos and PETSc
• Integration on AMD and Intel platforms

• ALL KPP-3 are reviewed and approved by federal program manager
• Trilinos contributes 1pt to Math Libraries
• Kokkos Kernels contribute 0.5pt to Math Libraries, 0.5pt to ATDM
• Sake amongst the first math libraries project fully approved

3



PLATFORM 
SUPPORT



HIP Backend

• HIP moves out of experimental in Kokkos 4.0.0
• Kokkos::Experimental::HIP becomes Kokkos::HIP
• Kokkos Kernels internal library clean-up

• More rocBLAS/rocSPARSE coverage
• SpMV: single vector, multivector and block variants supported
• SpGEMM and block SpGEMM
• All Blas2/3 and most Blas1 supported

• Stream support using Kokkos execution space

5



SYCL Backend

• Still experimental, although more mature
• Almost all tests passing on Ponte Vecchio (still issue with SpGEMM)
• More TPL support of oneAPI MKL
• Nightly testing of SYCL, should promote to CI once stable and if testing capacity allows
• Integration with Trilinos and PETSc

6

Runs using ship_003 from SuiteSparse and Kokkos Kernels 
native SpMV



NEW FEATURES



GENERAL LIBRARY UPDATES

• Library reorganized by components
• Blas
• Batched dense/sparse
• Sparse
• Graph
• ODE (WIP)

• Added oneMKL TPL

• Kokkos Kernels version macros
• CMake: KokkosKernels_VERSION
• Header (KokkosKernels_config.h): KOKKOSKERNELS_VERSION

8



GENERAL LIBRARY UPDATES

• Google Benchmark TPL
• Enable with: KokkosKernels_ENABLE_TEST=ON + KokkosKernels_ENABLE_PerfTests=ON + 

KokkosKernels_ENABLE_Benchmarks=ON

• Configuration output
• KokkosKernels::print_configuration(std::ostream&)
• Prints library version and TPL information
• Feedback welcomed on what additional information should be printed!

9



BLAS

• Blas completeness
• Blas1 complete
• Blas2
• General/Symmetric matrix needs SYMV to be complete
• No packed/banded algo yet

• Blas3
• General/Symmetric: need SYMM, HEMM and rank k/2k updates

• All Blas algorithms support stream execution
• KokkosBlas::myBlasKernel(space, …);

• General maintenance of TPLs
• Added support for newer versions of cuBLAS/rocBLAS
• Working on oneMKL support for Intel GPUs

10



SPARSE

• Sparse format conversion
• coo2csr, csc2csr

• Merged based SpMV for unbalanced rows in matrix

• SpGEMM
• New “reuse” interface, saves graph of previous matrix
• Improved TPL support (MKL, cuSPARSE) new rocSPARSE support

• Incomplete factorizations
• New parILUt algorithm (iterative computation of L and U)
• New MDF(0) algorithm (re-orders following Frobenius norm of discard factor on the fly)
• Stream version of ILU(k) and SpTRSV

11



SPARSE

• Brs format support
• Improved SpMV performance especially on AMD platform with TPLs
• Results below: 1 vector, block size = 7, rocm 5.2.0

• CrsMatrix sort and merge
• Needed for some TPL
• Useful after SpGEMM and or MPI communication

12

0

200

400

600

800

1000

f32/i32/i32 f64/i32/i32 f32/i32/u32 f64/i64/u64 f64/u64/i64

G
B/
s

scalar/ordinal/offset

Prev. Native

New Native

New TPLs



BATCHED

Sparse Batched algorithms
• Algorithms implemented:

• Linear algebra (SpMV)
• Iterative solvers (CG, GMRES)
• Preconditioner (Jacobi)

• Launch parameters tunned for architecture
• NVIDIA V100
• AMD MI50 / MI250

13



ODE

New component for time integration algorithms
• Explicit integrators

• Runge Kutta (orders 1 to 5)
• Various schemes for stability (Fehlberg 45, Cash-Karp, Dormand-Prince)
• Time adaptive

• Implementation for GPU work within a RangePolicy

14

Num systems 10,000 100,000 1,000,000
CTS-1 3.17128 31.709 N/A
ATS-2 0.0303719 0.365714 2.33355



RELEASE 4.2.0



STREAM BASED SPARSE PRECONDITIONERS

• Stream Gauss-Seidel
• Stream ILU(k)/SpTRSV

• Decompose the problem as we would with MPI
• Use a stream per subdomain

16

Local MPI rank matrix Stream split matrices Stream split factors



STREAM BASED ILU(K)

• Scaling study 1 to 8 streams
• Good scaling overall
• Some scalability loss in SpTRSV on 8 streams
• Performance very dependent on CUDA version (results obtained with CUDA 11.8)

• Like MPI partitioning, balancing is important!

17

2.4883

1.3527

0.9786

0.4103

0

0.5

1

1.5

2

2.5

3

No stream (orig.
problem)

2 streams 4 streams 8 streams

Ti
m

e 
(s

ec
.)

ILU(3) Numeric on Rank 9

0.0127

0.0073

0.0040

0.0024

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

No stream (orig.
problem)

2 streams 4 streams 8 streams

Ti
m

e 
(s

ec
.)

SPTRSV Solve (L, cusparse) on Rank 9



ODE

• Newton solver
• Drive adaptation from convergence behavior
• Cheaper secant variant option

• BDF, implicit time integration
• Similar feature to CVODE
• Time and order adaptive
• Order 1 to 5
• Initial time step estimation

• Best option for stiff problems see left 

18



UPCOMING 
WORK



ALGORITHMIC DEVELOPMENT

• Block-ILU(k) variant
• Fill based on block graph
• Integration with Ifpack2

• LAPACK select algorithms implementation (LU, SVD, QR)
• Add new library component
• Include cuSOLVER, rocSOLVER, MKL and Magma TPLs

• Improve BDF features: 
• Numerical differentiation Jacobian 
• Backtracking line search

• Batched ODE solvers
• Reduce branch divergence on GPU
• Promote vectorization on CPU
• Potentially complicated for BDF, easier for RK algorithms

20



LIBRARY IMPROVEMENTS

• SYCL backend: improve support and performance once Aurora comes online

• Improve integration with Trilinos and PETSc

• Establish automated performance testing

• Improve interface to enable auto-tunning

21



ACKNOWLEDGEMENTS

• Jonathan Hu and Tom Ransegnola for contributing multiple integrations of incomplete 
factorizations in Ifpack2 and more…

• Junchao Zhang for Kokkos Kernels/PETSc liaison, integration and contributing multiple TPL 
integrations and fixes

• Victor Brunini for interfacing with applications, providing design and performance 
feedback on new features

• Satish Balay and Sameer Shende for updating us on various incompatibilities and updates 
in Spack and xSDK

• Mark Adams for all the discussions on the batched linear solver interfaces and 
performance

• And to all the other contributors who help improved the library by providing feedback, 
documentation updates and bug fixes

We owe you a debt of gratitude, thank you for your continued support!

22



ANY 
QUESTIONS?


