Libs & Tests.

_

Roscoe A. Bartlett
Department 1424
Software Engineering and Research

Sandia
National _
Laboratories

November 2, 2023

Trilinos Users Group Meeting, Developers Day

U.S. DEPARTMENT OF -
ENERGY VIS4
Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology &
Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’'s National
Nuclear Security Administration under
contract DE-NA0003525.

SAND2023-12000C

CMake library target objects contain full usage requirements, example:

add library(<libname> ..) # Internally built library or IMPORTED library
target compile definitions (<libname> PUBLIC COMPILE DEFINE=1)
target:compile:features(<libname> PUBLIC cxx_std_177

target compile options (<libname> PUBLIC -02 PRIVATE -05)

target include directories (<libname> PUBLIC /base/dir/pub PRIVATE /base/dir/priv)
target:link_di;ectories(<libname>)

target link options(<libname> -mkl)

and propagate usage required and dependencies using target link libraries():

target link libraries(<downstreamExecOrLib>
[PRIVATE | PUBLIC| INTERFACE] <upstreamLib>)

What is a Modern CMake External Package?

<Package>Config.cmake: Package config file defines IMPORTED targets and pulls in all upstream
dependencies automatically:

find dependency (<upstreamPackage> REQUIRED) # Pulls in upstream dependencies!
add library (<Package>::<libname> IMPORTED [SHARED|STATIC])

. I
2‘ What is Modern CMake? m
I

Downstream CMake projects pull in these external packages using find_package(<externalPackage>)

3‘ Example Minimal Raw Modern CMake Package

<pakageDir>/CMakelists. txt

<pakageDir>/src/CMakeLlists. txt

cmake minimum required(

VERSION 3.23.0 FATAL ERROR)
project (Packagel LANGUAGES C CXX)
include (GNUInstallDirs)
find package (Tpll CONFIG REQUIRED)
add subdirectory(src)
if (Packagel ENABLE TESTS)

include (CTest)

add subdirectory(test)

endif ()

add library(packagel Packagel.hpp Packagel.cpp)
target include directories (packagel

PUBLIC $<BUILD INTERFACE:${CMAKE CURRENT SOURCE DIR}>)
target link libraries(packagel PRIVATE tpll::tpll)

add executable (packagel-prg Packagel Prg.cpp)
target link libraries(packagel-prg PRIVATE packagel)

<pakageDir>/test/CMakelLists. txt

add test (NAME Packagel Prg
COMMAND packagel-prqg)

set tests properties (Packagel Prg
PROPERTIES PASS REGULAR EXPRESSION
"Packagel Deps: tpll")

Limitations (i.e. NOT “Professional CMake” compliant):

» Does not create namespaced targets (e.g.
Package1::package1)

« Does not install libraries, header files, or executables
« Does not install a <Package>Config.cmake file

o
!

4‘ Example Minimal Raw Modern CMake External Package

<installDir>/1ib/cmake/Tpl2/Tpl2Config.cmake

if (TARGET Tpl2::tplla)
return ()
endif ()

find dependency (Tpll REQURIED)

add library(Tpl2::tpl2a IMPORTED SHARED)

set target properties(Tpl2::tpl2a PROPERTIES
IMPORTED LOCATION "<installDir>lib/libtpl2a.so")

target include directories(Tpl2::tpl2b SYSTEM
INTERFACE "/<installDir>/include")

target link libraries(Tpl2::tpl2a
INTERFACE $<LINK ONLY:Tpll::tpll>)

add library(Tpl2::tpl2b IMPORTED SHARED)

set target properties(Tpl2::tpl2b PROPERTIES
IMPORTED LOCATION "<installDir>lib/libtpl2b.so")

target include directories (Tpl2::tpl2b SYSTEM
INTERFACE "/<installDir>/include")

target link libraries(Tpl2::tpl2b
INTERFACE Tpl2::tpl2a)

Consistent with “Professional CMake":

Pulls in upstream dependencies (i.e. Tpl1)
Defines namespaced IMPORTED targets

IMPORTED targets CMake code can be
created by CMake project automatically

Non-CMake projects can manually create
and install these files

A modern CMake project must write two
CMake programs!

1.

Containing CMakeLists.txt files to
configure, build, test, and install the
package

An installed <Package>Config.cmake file

that downstream CMake projects run to
access the installed package

@

| Refactored TriBITS CMake Build System to Modern CMake @q

Goals for initial Trilinos (TriBITS) build system refactor%: [COMPLETE]

Allow packages to use raw CMake to define targets for libraries, executables, using modern
CMake and (e.g. provide <Package>::<lib> and <Package>::all_libs).

Use TriBITS functionality to define tests using tribits_add_test(), tribits_add_advanced_test() and
even tribits_add_executable_and_test() .

Use TriBITS external package/TPL system to find external packages (i.e. combine requirements
from all enabled packages and call find_package() just once per each external package/TPL).

TriBITS refactoring should allow existing packages to keep working without out modification.
The decision to use TriBITS to define targets and other optional functionality can be made on
a package-by-package basis (e.g. tribits_add_library() and tribits_add_executable()).

¢ See TriBITS #342

Constraints/Requirements:

Not break existing CMakeLists.txt files in existing TriBITS projects including Trilinos, Drekar,
Charon2, etc. [Successful]

Not break existing user Trilinos and other configure scripts. [Successful]

Allow refactoring of existing Trilinos packages to use raw CMake targets and build independently
from Trilinos to occur incrementally. [Successful]

Allow trimming down TriBITS and switching to native CMake in each TriBITS project to occur as
desired incrementally. [Successful (so far)]

https://github.com/TriBITSPub/TriBITS/issues/342

6‘ How are existing TriBITS packages using Modern CMake?

Example TriBITS CMakelLists.txt file

What tribits_add_library() is doing under the covers?

include directories(
${CMAKE_CURRENT_SOURCE_DIR})

tribits add library (packagel
HEADERS Packagel.hpp
SOURCES Packagel.cpp)

Trilinos CMake build system was upgraded
to use Modern CMake without touching:

« 1776 CMakelLists.txt files

« 229 tribits_add_library() calls

« 630 tribits_add_executable() calls

e 1393 tribits_add_test() calls

« 284 tribits_add_advanced_test() calls

e 2206 tribits_add_executable_and_test() calls

get directory property(includeDirsCurrent
INCLUDE DIRECTORIES)

add library(Packagel packagel
Packagel .hpp Packagel.cpp)
target include directories (Packagel packagel
PUBLIC $<BUILD INTERFACE:${includeDirsCurrent}>)
set target properties (Packagel packagel PROPERTIES
EXPORT NAME packagel)
target link libraries(Packagel packagel
PUBLIC Tpll::all libs)

add library(Packagel::packagel ALIAS Packagel packagel)

install (TARGETS Packagel packagel
EXPORT ${PACKAGE NAME}
INCLUDES DESTINATION ${CMAKE INSTALL INCLUDEDIR})

install (FILES Packagel.hpp
DESTINATION ${CMAKE INSTALL INCLUDEDIR})

* Consistent with Modern CMake Advocated in:

“Professional CMake”, by Craig Scott

Handling of External
Packages/TPLs

Finding external packages in raw CMake
find_package(<Package> [<version>] [MODULE|CONFIG] [COMPONENTS <c1><c2> ...]...)
* Finds (uses) either Find<Package>.cmake find module or <Package>Config.cmake package
config file!
» Sets <Package> FOUND=TRUE if found
find_package(<Package> MODULE ...)

» Use a Find<Package>.cmake find module found in CMAKE_MODULE_PATH
* Does not set <Package> DIR or <Package> CONFIG vars!

find_package(<Package> CONFIG ...)
* On output, sets <Package> DIR !=“ and <Package> CONFIG ="

« Oninput, if <Package> DIR !="" and package at ${<Package> DIR} does not satisfy usage
requirements, CMake will start find from scratch! (see discussion in CMake Issue #23685)

NOTE: The older Find<Package>.cmake package find modules are only used as last resort (and
are being phased out as much as possible by the CMake community).

https://gitlab.kitware.com/cmake/cmake/-/issues/23685

1) No standard name for target for “all the library targets for <Package>", examples:
» Boost::boost => Only include dirs
« HDF5::hdf5 => C libraries ; HDF5::HDF5 => All libraries (and changes with different HDF5 versions)
« netCDF::netcdf => All libraries

2) No uniform support for IMPORTED targets and find_dependency() on upstream dependent
packages, examples:

« Official find module FindBullet.cmake in CMake 3.25 does not yet support IMPORTED targets

» Recent netCDFConfig.cmake file not call find_dependency(HDF5) (see Trilinos GitHub PR #11175)

3) Finding inconsistent upstream packages (see discussion in CMake Issue #23685), examples:
« SomePackage versions 3 and 5 installed: First find_package(SomePackage 3...6) => 5, Second
find_package(SomePackage 2...4) => 3 (But installed version 3 works for both!)

9| CMake Packages and the Package Ecosystem Issues [Eml
I

These are fundamental problems with the CMake Package Ecosystem!

Existing solutions to these problems?
« => Spack solves the problem of finding inconsistent upstream packages (#3 above)

https://cmake.org/cmake/help/v3.25/module/FindBullet.html
https://github.com/trilinos/Trilinos/pull/11175
https://gitlab.kitware.com/cmake/cmake/-/issues/23685

Challenge: Create TriBITS-Compliant External Package <tpIName>config.cmake files for every external
packages/TPLs no matter how they are defined:

1. Legacy TriBITS TPLs: List of include directories, libraries, link options, etc.
TPL_<tpIName>_INCLUDE_DIRS and TPL_<tpIName>_LIBRARIES variables:

=> Automatically handled by refactored TriBITS through legacy FindTPL<tpIName>.cmake files

2. Using find_package(<externalPkg>) to find other external packages: Find<tpIName>.cmmake
module or <tpIName>Config.cmake file with or without modern CMake IMPORTED targets:

=> Create custom FindTPL<tpIName>.cmake files that call find_package(<tpIName>) and construct
self-contained <tpIName>::all_libs target.

3. Pre-installed upstream TriBITS-compliant packages
=> Automatically handled by refactored TriBITS

NOTE: The need to create custom FindTPL<tpIName>.cmake files where (partial) modern CMake is
used with Find<tpIName>.cmake find modules or <tpIName>Config.cmake package config files to
provide IMPORTED targets is where a majority of work of developers will be expended inreally
transitioning to modern CMake ®

101 TriBITS: Modern CMake with External Packages/TPLs [Eml
I

TriBITS Generated <tplName>Config.cmake and

11 <Package>Config.cmake files

Build Directory:
<buildDir>/
external packages/
<tpll>/
<tpll>Config.cmake
<tpl2>/
<tpl2>Config.cmake

cmake packages/
<packagel>/
<packagel>Config.cmake
<package2>/
<package2>Config.cmake

packages/

Generated <tpIName>Config.cmake files are included by

<packageName>config.cmake files to provide
<tpIName>:all_libs targets. They are not meant to be

found by find_package(<tpIName>) calls!

Can use built packages without installing with:
-D CMAKE_PREFIX_PATH=<buildDir>/cmake_packages

Install Directory:
<installDir>/
lib[64]/
external packages/
<tpll>/
<tpll>Config.cmake
<tpl2>/
<tpl2>Config.cmake

cmake/
<packagel>/
<packagel>Config.cmake
<package2>/
<package2>Config.cmake

Installed <tpIName>Config.cmake files are included by

<packageName>config.cmake files to provide

<tpIName>:all_libs targets. They are not meant to

be found by find_package(<tpIName>) calls!

Using installed packages:
-D CMAKE_PREFIX_PATH=<installDir>

17 | Generated <tplName>Config.cmake files for TriBITS Legacy TPLs

Legacy TPL configure arguments:

-D TPL SomeTpl INCLUDE DIRS="“/some/path/to/include/a“ \

-D TPL SomeTpl LIBRARIES=“-11ib2;-L/some/explicit/path2;-1lmkl;-11ibl;-L/some/explicit/pathl”

TriBITS-Generated SomeTplConfig.cmake file:

if (TARGET SomeTpl::all libs)
return ()
endif ()

add library(SomeTpl::1ibl IMPORTED INTERFACE)
set target properties (SomeTpl::1libl PROPERTIES
IMPORTED LIBNAME "1ibl")

add library(SomeTpl::1ib2 IMPORTED INTERFACE)
set:target_properties(SomeTpl::lib2 PROPERTIES
IMPORTED LIBNAME "1ib2")
target link libraries(SomeTpl::1ib2
INTERFACE SomeTpl: :some-other-option)

Continued ...

... Continued

add library(SomeTpl::all libs INTERFACE IMPORTED)
target link libraries (SomeTpl::all libs
INTERFACE SomeTpl::1libl B
INTERFACE SomeTpl::some-other-option
INTERFACE SomeTpl::1ib2
)
target include directories(SomeTpl::all libs SYSTEM
INTERFACE "/some/path/to/include/a"
)
target link options (SomeTpl::all libs
INTERFACE "-IL/some/explicit/path2"
INTERFACE "-mkl"
INTERFACE "-IL/some/explicit/pathl"
)

13| TriBITS External Package/TPL Dependencies

Define TPL dependencies file:
<tplDefsDir>/

FindTPL<tplName>.cmake
FindTPL<tplName>Dependencies.cmake

Example: FindTPLLAPACKDependencies.cmake:

tribits extpkg define dependencies (LAPACK
DEPENDENCIES BLAS)

NOTES:

« Dependencies needed to have the libraries listed on the link line in the correct order!

« |IMPORTED targets in LAPACKConfig.cmake are linked against BLAS::all_libs

« Currently, to preserve backwards compatibility, enabling TPL_ENABLE_<dowstreamTPL>=0ON does
not automatically enable dependent TPL_ENABLE_<upstreamTPL>=0ON

» Future, support optional and required upstream TPL dependencies? (Break backward
compatibility!)

14

TPL with dependencies

Legacy TPL configure arguments:

Generated <tplName>Config.cmake file for TriBITS Legacy

-D TPL SomeTpl INCLUDE DIRS="/some/path/to/include/a" \
-D TPL SomeTpl LIBRARIES="-11ib2;-L/some/path2;-11ibl;-L/some/explicit/pathl" \

TriBITS-Generated <tpIName>Config.cmake file:

if (TARGET SomeTpl::all libs)
return ()
endif ()

if (NOT TARGET UpstreamTpl::all libs)
include ("<..>/../UpstreamTpl/UpstreamTplConfig.cmake")
endif ()

add library(SomeTpl::1ibl IMPORTED INTERFACE)

set target properties(SomeTpl::1libl
PROPERTIES IMPORTED LIBNAME "1libl")

target_link libraries(SomeTpl::1libl
INTERFACE UpstreamTpl::all libs)

Continued ...

... Continued

add library (SomeTpl::1ib2 IMPORTED INTERFACE)
set target properties (SomeTpl::1ib2 PROPERTIES
IMPORTED LIBNAME "1ib2")
target link libraries(SomeTpl::1ib2
INTERFACE SomeTpl::1ibl)

add library(SomeTpl::all libs INTERFACE IMPORTED)
target link libraries(SomeTpl::all libs
INTERFACE SomeTpl::1ibl
INTERFACE SomeTpl::11ib2)
target include directories(SomeTpl::all 1lib
SYSTEM INTERFACE "/some/path/to/include/a")
target link options(SomeTpl::all libs
INTERFACE "-L/some/path2"
INTERFACE "-L/some/pathl")

Generated <tplName>Config.cmake files using find_package()

15 .
with modern CMake IMPORTED targets
FindTPLTpl2.cmake: FindTPLTpl2Dependencies.cmake:
find package (Tpl2 REQUIRED) tribits extpkg define dependencies (
tribits extpkg create imported all libs target and config file(Tpl2 Tpl2
INNER FIND PACKAGE NAME Tpl2 DEPENDENCIES Tpll)
IMPORTED TARGETS FOR ALL LIBS tpl2::tpl2a tpl2::tpl2b)

TriBITS-Generated Tpl2Config.cmake wrapper file:

<comments ..> Continued ...

Guard against multiple inclusion . .

£ (TARGET Tpl2::all 1ibs) add library(Tpl2::all libs INTERFACE IMPORTED)
et T target link libraries (Tpl2::all libs

endif () INTERFACE tpl2::tpl2a

INTERFACE tpl2::tplZ2b
if (NOT TARGET Tpll::all libs))

include (target link libraries (Tpl2::all libs
"${CMAKE_CURRENT_LIST DIR}/../Tpll/TpllConfig.cmake") INTERFACE $<LINK ONLY:Tpll::all libs> # i.e. PRIVATE
endif ())
include (CMakeFindDependencyMacro) # Standard TriBITS-compliant external package variables
set (Tpl2 IS TRIBITS COMPLIANT TRUE)
set (Tpl2 DIR "<tpl2InstallDir>/lib/cmake/Tpl2") set (Tpl2 TRIBITS COMPLIANT PACKAGE CONFIG FILE
find dependency (Tpl2) "${CMAKE CURRENT LIST FILE}")

set (Tpl2 TRIBITS COMPLIANT PACKAGE CONFIG FILE DIR
Continued ... "${CMAKE CURRENT LIST DIR}")

d e

TriBITS Uniform Handling of
Internal and External
Packages

17 | TriBITS Uniform Treatment of Internal and External Packages m

Any internally defined TriBITS Package <Pkg> can be pre-build/installed and pulled in with:

-D TPL_ENABLE_<Pkg>=ON \
-D CMAKE_PREFIX_PATH=<pkglnstallDir> \

Has the following effect:
» The package <Pkg> is enabled in the dependency logic just as of -D <Project> ENABLE_<Pkg>=0ON

was set.
» The package <Pkg> is treated an TriBITS-compliant external package and the internal
CMakelLists.txt file is slipped and instead find_package(<Pkg> CONFIG REQUIRED) is called.
» Every package <UpstreamPkg> upstream from <Pkg> is also an external package.
Finding the External Packages/TPLs is done in two loops:
1. Inreverse order, loop over enabled TriBITS-compliant external packages and call find_package(...). I

2. In forward order, look over remaining enabled TriBITS external packages and use
FindTPL<tpIName>.cmake module to find <tpIName>.

18

TribitsExampleProject2: Pre-build/install packages example

Tpl1

Tpl2

Tpl3 k

E

TribitsExampleProject2

Package1

Package2

N

~ Package3

CMake Configure Input:
-DTPL _ENABLE Package2=ON \
-DCMAKE PREFIX PATH=“<pkg2InstallDir>;<tpl4InstallDir>" \
-DTribitsExProj2 ENABLE ALL PACKAGES=ON \

CMake Configure Output:

Adjust the set of internal and external packages:

-- Treating internal package Package2 as EXTERNAL because
TPL_ENABLE Package2=O0N

-- Treating internal package Packagel as EXTERNAL because
downstream package Package? being treated as EXTERNAL

-- NOTE:
external
-- NOTE:
external
-- NOTE:
external

<..>

Final set of enabled packages:

Final set of enabled external packages/TPLs:

Tpl3 is
package
Tpl2 is
package
Tpll is
package

directly upstream from a TriBITS-compliant
Package?
indirectly upstream from a TriBITS-compliant

indirectly upstream from a TriBITS-compliant

Package3 1

Tpll Tpl2 Tpl3

Tpl4 Packagel Package2 6

19

TribitsExampleProject2: Pre-build/install packages example

CMake Configure Output (Continued)

Getting information for all
reverse order

Processing enabled external

enabled TriBITS-compliant or upstream external packages/TPLs in

package/TPL: Package2 (enabled explicitly, disable with <..>)

-- Calling find package (Package2) for TriBITS-compliant external package
-- Found Package2 DIR= '<pkg2InstallDir>/lib/cmake/Package2'

Processing enabled external
-- The external package/TPL
package already processed

Processing enabled external
-- The external package/TPL
package already processed

Processing enabled external
-- The external package/TPL
Processing enabled external
-- The external package/TPL

Getting information for all

Processing enabled external
<..>

package/TPL: Packagel (enabled explicitly, disable with <..>)
Packagel was defined by a downstream TriBITS-compliant external

package/TPL: Tpl3 (enabled explicitly, <..>)
Tpl3 was defined by a downstream TriBITS-compliant external

package/TPL: Tpl2 (enabled explicitly, disable with <..>)
Tpl2 was defined by a downstream TriBITS-compliant <..>
package/TPL: Tpll (enabled explicitly, disable with <..>)
Tpll was defined by a downstream TriBITS-compliant <..>

remaining enabled external packages/TPLs
package/TPL: Tpl4

(enabled explicitly, disable <..>)

E

>0 | TribitsExampleProject2: Pre-build/install packages example

CMake Configure Output (Continued)

<>

Configuring individual enabled TribitsExProj2 packages ...

Processing enabled top-level package: Package3 (Libs, Tests, Examples)
<>

-- Configuring done
-— Generating done

Important Points:
» Only CMakelLists.txt file or Package3 is processed! (Not for Package1 or Package2)
» Calling find_package() for TriBITS-compliant external packages/TPLs in reverse order:
« => Avoids finding inconsistent packages (e.g. a different Package1 than being used by Package?2)

« => Allows pulling an indirect <Package>Config.cmake file that can’t be found in the current
CMAKE_PREFIX_PATH (e.g. no search path for Package1Config.cmake)

21 ‘ Updated TriBITS: Flexible subgraph builds/installs ﬁ

Build/Install As:

i
1 CMake Project (fastest)
2 CMake Projects

6 CMake Projects
19 CMake Projects (slowest)

Package dependency graph
can be build/installed with
any subgraph partitioning
desired (Including one-
package-at-a-time).

TriBITS generates a
<Package>Config.cmake
package config file for each
package independent of
partitioning!

Example TriBITS Project Package Dependency Graph

»> | Build Trilinos against pre-installed Kokkos

Implementation in Kokkos, and Spack (beyond core TriBITS refactorings):
 Removed subpackages from the TriBITS build of Kokkos under Trilinos:
= Touched many Trilinos Packages
« Extended native non-TriBITS Kokkos CMake build system:
= Added some missing Kokkos XYZ variables to installed KokkosConfig.cmake file
= Added Kokkos::all_libs target to KokkosConfig.cmake file
« Updated Spack trilinos/package.py file:
= Added dependency on Spack ‘kokkos’ package (with a complex set of constraints)
= Added -D TPL_ENABLE_Kokkos=0ON to Trilinos CMake configure input

Impact on Customers on updated Spack Trilinos package:
» ‘Kokkos’ is no longer a COMPONENT of Trilinos!
» find_package(Trilinos COMPONENTS Kokkos Tpetra ...) => Error: Kokkos not part of Trilinos!
» Solution 1: find_package(Trilinos COMPONENTS Tpetra ...) ; find_package(Kokkos)

» Solution 2: find_package(Kokkos); find_package(Tpetra); ...

>3 | Splitting up Trilinos into multiple Spack package installs?

Options to break Trilinos into multiple Spack packages?
« Option 1: Pull out Spack packages only as needed (Current approach): E.g.:
» Kokos, KokkosKernels, Zoltan, SEACAS, Trilinos
« Option 2: Create Meta-Packages for Trilinos: E.g.:

» Kokkos, KokkosKernels, Zoltan, SEACAS, TrilinosTools, TrilinosDataStructures,
TrilinosLinearSolvers, TrilinosNonlinearSolvers, TrilinosDiscretizations, ...

» Option 3: A Spack package for every Trilinos package: E.qg.:
» Kokkos, Teuchos, RTOp, Tpetra, ... ROL
* Option 4: Create ‘trilinos-dev’ Spack package to drive development in addition to above options
Impact on Trilinos Developers?

» The more Spack packages there are, the harder and slower Trilinos testing development will be (if
using Spack to generate build environments)

Impact on Customers on new Spack Trilinos packages?
» Switch from find_package(Trilinos COMPONENTS Kokkos Tpetra MuelLU ... Piro) to:
=> find_package(Kokkos) ; find_package(Tpetra) ; find_package(MuelLU) ... find_package(Piro)
« Actually: It is better to call them in reverse package dependency order:
=> find_package(Piro) ... find_package(MuelLU) ; find_package(Tpetra); find_package(Kokkos)

Using Raw CMake for
TriBITS-Compliant Internal
and External Packages

>5 | Requirements for TriBITS-Compliant Packages

Provides the (INTERFACE) target <Package>::all_libs which provides all usage requirements for the
libraries of <Package> through the target properties:

INTERFACE_LINK_LIBRARIES, INTERFACE_INCLUDE_DIRECTORIES, INTERFACE_COMPILE_OPTIONS,
INTERFACE_COMPILE_DEFINITIONS, INTERFACE_LINK_OPTIONS, and any other INTERFACE_XXX or
IMPORTED_XXX target property needed to correctly use the libraries for package <Package>.
Provides namespaced variables <Package>_ENABLE_<UpstreamPackage> set to TRUE or FALSE for
all of the upstream required and optional dependencies for the package <Package>.

[Optional] Provides namespaced variables of the form <Package>_<SOME_INFO> for any other
information about the configuration of package <Package> that may need to be known by a
downstream TriBITS package.

[Optional] Provides any (namespaced by <package>_ or <Package>_) CMake macros or functions
that downstream CMake packages may need to use the upstream package <Package>.

[Optional] All of the upstream dependencies (listed in the INTERFACE_LINK_LIBRARIES
property recursively) are also TriBITS-compliant packages

Documentation link: TriBITS-Compliant Packages

o
!

https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html

26 | Requirements for TriBITS-Compliant Internal Packages m‘

« All of the requirements for a TriBITS-Compliant Package.

« Atthe end of configuration and generation, writes out a TriBITS-Compliant External Package file
<Package>Config.cmake and supporting files under the build directory <buildDir>/cmake_packages/<Package>/
allowing the built (but not installed) package to be used by downstream CMake packages/projects.

« Provides an install target to create a TriBITS-Compliant External Package file <Package>Config.cmake and
supporting files under the install directory <installDir>/lib/cmake/<Package>/ allowing the installed package to
be used by downstream CMake packages/projects.

- [Optional] All of the upstream dependencies (recursively) are also TriBITS-compliant packages.

If a TriBITS package provides any CTest tests, then it must also satisfy the following
requirements:
« Test names must be prefixed with the package name <Package>_.
« Tests should only be added if the variable <Package>_ENABLE_TESTS is true.
« Examples (that run as CTest tests) should only be added if the variable <Package>_ENABLE_EXAMPLES is true.
I

« The PROCESSORS test property and other test properties must be set in a way consistent with tribits_add_test() so
as to run in parallel with other tests and not overwhelm the computing resources on the machine.

e The test <fullTestName> must not be added if the cache variable <fullTestName>_DISABLE is set to TRUE or if the
cache variable <fullTestName>_SET_DISABLED_AND_MSG is set to non-empty (and the message string should be
printed to STDOUT).

Documentation link: TriBITS-Compliant Internal Packages

https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html

»7 | Requirements for TriBITS-Compliant External Packages

« All of the requirements for a TriBITS-Compliant Package.

« Defined by an installed <Package>Config.cmake file that provides IMPORTED targets and set()
statements for all of the needed variables.

* Provides CMake variables:

« <Package>_CONFIG or <Package>_TRIBITS_COMPLIANT_PACKAGE_CONFIG_FILE: Points to
the file <Package>Config.cmake (i.e. ${CMAKE_CURRENT_LIST_FILE})

« <Package>_DIR or <Package>_TRIBITS_COMPLIANT_PACKAGE_CONFIG_FILE_DIR: Points to
the base directory for <Package>Config.cmake (i.e. ${CMAKE_CURRENT_LIST_DIR})

- [Optional] All of the upstream dependencies (recursively) are also provided as TriBITS-
compliant external packages with <UpstreamPackage>Config.cmake files (see above) and all of
the targets and variables for a TriBITS-compliant external package are defined when the
<Package>Config.cmake file is included (or pulled in with find_package() or find_dependency()).

Documentation link: TriBITS-Compliant External Packages

https://github.com/TriBITSPub/TriBITS/blob/ee67e0549c8fc9b5105b0538fb01270ea4937ce1/tribits/doc/guides/TribitsGuidesBody.rst
https://github.com/TriBITSPub/TriBITS/blob/ee67e0549c8fc9b5105b0538fb01270ea4937ce1/tribits/doc/guides/TribitsGuidesBody.rst
https://github.com/TriBITSPub/TriBITS/blob/ee67e0549c8fc9b5105b0538fb01270ea4937ce1/tribits/doc/guides/TribitsGuidesBody.rst

g | TriBITS-Compliant Packages Using Raw CMake HowTos

TriBITS Users Guide (see tribits.org)

10 Howtos:

10.10 How to implement a TriBITS-compliant internal package using raw CMake

10.11 How to implement a TriBITS-compliant external package using raw CMake

Snapshotted Trilinos packages that also maintain their own native CMake build
system should consider using only (TriBITS-compliant) raw CMake, except for
defining tests with tribits_add_test() when building under TriBITS project:

10.12 How to use TriBITS testing support in non-TriBITS project

E.g.: Kokkos, KokkosKernels, STK, ...

NOTE: SEACAS uses TriBITS natively

https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html

29‘ TriBITS vs. Raw CMake TriBITS-Compliant CMake Package

packagel/CMakelLists. tribits.cmake

packagel/CMakeLists.raw.cmake

tribits package (Packagel)

add subdirectory(src)

tribits add test directories(test)
tribits package postprocess ()

cmake minimum required (VERSION 3.23.0 FATAL ERROR)

if (COMMAND tribits package)

message ("Configuring raw CMake package Packagel")
else ()

message ("Configuring raw CMake project Packagel")
endif ()

Standard project-level stuff

project (Packagel LANGUAGES C CXX)

include (GNUInstallDirs)

find package (Tpll CONFIG REQUIRED)

add subdirectory(src)

if (Packagel ENABLE TESTS)
include (CTest)
include ("cmake/raw/EnableTribitsTestSupport.cmake™)
add subdirectory (test)

endif ()

Stuff that TriBITS does automatically

include ("cmake/raw/DefineAllLibsTarget.cmake")

include ("cmake/raw/GeneratePackageConfigFileForBuildDir.cmake")
include ("cmake/raw/GeneratePackageConfigFileForInstallDir.cmake")

——

30‘ TriBITS vs. Raw CMake TriBITS-Compliant CMake Package

packagel/
src/CMakelists.tribits.cmake

packagel/
src/CMakelists.raw.cmake

tribits include directories(
${CMAKE_CURRENT_SOURCE_DIR})

tribits add library (packagel
HEADERS Packagel.hpp
SOURCES Packagel.cpp)

tribits add executable (packagel-prg
NOEXEPREFIX NOEXESUFFIX

SOURCES Packagel Prg.cpp
INSTALLABLE)

Create and install library 'packagel'
add library (Packagel packagel Packagel.hpp Packagel.cpp)
target include directories (Packagel packagel

PUBLIC S<BUILD INTERFACE:S${CMAKE CURRENT SOURCE DIR}>)
target link libraries (Packagel packagel

PRIVATE tpll::tpll)
set target properties(Packagel packagel PROPERTIES

EXPORT NAME packagel)
add library (Packagel::packagel ALIAS Packagel packagel)
install (TARGETS Packagel packagel

EXPORT ${PROJECT NAME}

INCLUDES DESTINATION ${CMAKE INSTALL INCLUDEDIR})
install(

FILES Packagel.hpp

DESTINATION ${CMAKE INSTALL INCLUDEDIR})

Create and install executable 'packagel-prg'
add executable (packagel-prg Packagel Prg.cpp)
target link libraries (packagel-prg PRIVATE Packagel::packagel)
install(
TARGETS packagel-prg
EXPORT ${PROJECT NAME}
INCLUDES DESTINATION ${CMAKE INSTALL INCLUDEDIR})

31
packagel/cmake/raw/

DefineAllLibsTarget.cmake

Generate the all libs target(s)

PROPERTIES EXPORT NAME all libs)

INTERFACE Packagel packagel)
install (TARGETS Packagel all libs

EXPORT ${PROJECT NAME}

COMPONENT ${PROJECT NAME }

INCLUDES DESTINATION

S{CMAKE INSTALL INCLUDEDIR})

add library(Packagel::all libs ALIAS

Packagel all 1libs)

add library(Packagel all libs INTERFACE)

Extra Code in Raw CMake TriBITS-Compliant CMake Package

packagel/cmake/raw/
PackagelConfig.cmake.in

set target properties(Packagel all libs

target link libraries(Packagel all libs

set (Tpll DIR "@Tpll DIRQ")
find package (Tpll CONFIG REQUIRED)
include("${CMAKE_CURRENT_LIST_DIR}/PackagelConfigTargets.cmake")

packagel/cmake/raw/
GeneratePackageConfigFileForBuildDir.cmake

Consistent with Modern CMake
Advocated in:

“Professional CMake”

by Craig Scott

if (COMMAND tribits package)
Generate PackagelConfig.cmake file for the build tree (for internal
TriBITS-compliant package)
set (packageBuildDirCMakePackagesDir
"${${CMAKE PROJECT NAME} BINARY DIR}/cmake packages/${PROJECT NAME}")
export (EXPORT ${PROJECT NAME }
NAMESPACE ${PROJECT NAME}::
FILE
"${packageBuildDirCMakePackagesDir}/${PROJECT NAME}ConfigTargets.cmake"
)
configure file(
"${CMAKE CURRENT LIST DIR}/PackagelConfig.cmake.in"
"${packageBuildDirCMakePackagesDir}/${PROJECT NAME}/PackagelConfig.cmake"
@ONLY)
endif ()

3> | Extra Code in Raw CMake TriBITS-Compliant CMake Package m

packagel/cmake/raw/
GeneratePackageConfigFileForInstallDir.cmake

Generate and install the PackagelConfig.cmake file for the install tree
(needed for both internal and external TriBITS package)
set (pkgConfigInstallDir "${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}")
install (EXPORT ${PROJECT_NAME}
DESTINATION "${pkgConfigInstallDir}"
NAMESPACE ${PROJECT NAME}::
FILE ${PROJECT_NAMETCOHfigTargets.cmake)
configure file(
"${CMAKE CURRENT SOURCE DIR}/cmake/raw/PackagelConfig.cmake.in"
"${CMAKE CURRENT BINARY DIR}/CMakeFiles/PackagelConfig.install.cmake"

RENAME "PackagelConfig.cmake"
DESTINATION "${pkgConfigInstallDir}")

@ONLY)
install (
FILES "${CMAKE CURRENT BINARY DIR}/CMakeFiles/PackagelConfig.install.cmake"

33

Future Work and Summary

34| Future TriBITS/Trilinos CMake Modernization Work? [Eml

TriBITS Publications:
« TriBITS overview SAND technical report (FY24 Q1)

* TriBITS overview journal article (JOSS?) packages and Trilinos deve|opers!
Address a few lingering issues with updated TriBITS: E.g.:

* Relocatable installations of installed “<Package>Config.cmake™ files?

DANGER! Risk of shifting significant
complexity from TriBITS to Trilinos

» Public/private package dependencies, optional and required intra-external package/TPL dependencies?
Refactor to use CMake features overlapping with TriBITS (see TriBITS #411): E.g.:

+ Use the standard CMake FortranCInterface.cmake module to handle Fortran/C name mangling.

» Consider switching to using find_package(MPI) (using standard CMake FindMPIl.cmake module).
Refactor to remove TriBITS features and simplify TriBITS (see TriBITS #569): E.g.:

» Switch to explicit library linking (more explicit, avoid over linking)

* Remove support for subpackages (lot of added complexity) <«

Refactor FindTPL<tpIName>.cmake files to use find_package(<ExternalPkg>) and remove support for
Legacy TriBITS TPLs

* This is where the most work lies and the biggest breaks to backward comparibility!

Refactor downstream CMake projects for changes in how Trilinos packages are installed: E.qg.:
« Stop using find_package(Trilinos)! => Instead, use find_package(Kokkos), find_package(Tpetra), ...

https://github.com/TriBITSPub/TriBITS/issues/411
https://github.com/TriBITSPub/TriBITS/issues/569

35 | Summary

* Modern TriBITS:

+ Uses Modern CMake internally (strips out a lot of older complex TriBITS code)

» Allows pre-building/installing Trilinos packages in any subgraph sets desired

» Allows usage of raw CMake to create TriBITS-compliant internal and external packages

» Usage of find_package(<ExternalPkg>) to pull in external packages using modern CMake IMPORTED targets.
* Realized impact so far:

» Significant simplifications in the implementation of TriBITS

» Trilinos can use pre-installed native Kokkos (Updated Spack Trilinos package)

* (Almost) no breakage in backward compatibility for Trilinos developers or customers
* Future plans:

« TriBITS Publications (FY24 Q1)

* Address a few lingering issues with updated TriBITS

» Refactor to use CMake features overlapping with TriBITS (see TriBITS #411)

» Refactor to remove TriBITS features and simplify TriBITS (see TriBITS #569)

+ Refactor FindTPL<tpIName>.cmake files to use find_package(<ExternalPkg>) and remove support for Legacy
TriBITS TPLs

» Refactor downstream CMake projects for changes in how Trilinos packages are installed

