
Sandia National Laboratories is a
multimission laboratory managed and

operated by National Technology &
Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of
Honeywell International Inc., for the

U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Modern TriBITS

SAND2023-12000C

Roscoe A . Bart let t
Department 1424
Software Engineer ing and Research

November 2, 2023

Trilinos Users Group Meeting, Developers Day

What is Modern CMake?
CMake library target objects contain full usage requirements, example:

add_library(<libname> …) # Internally built library or IMPORTED library
target_compile_definitions(<libname> PUBLIC COMPILE_DEFINE=1)
target_compile_features(<libname> PUBLIC cxx_std_17)
target_compile_options(<libname> PUBLIC –O2 PRIVATE –O5)
target_include_directories(<libname> PUBLIC /base/dir/pub PRIVATE /base/dir/priv)
target_link_directories(<libname> …)
target_link_options(<libname> -mkl)

and propagate usage required and dependencies using target_link_libraries():
target_link_libraries(<downstreamExecOrLib>
 [PRIVATE|PUBLIC|INTERFACE] <upstreamLib>)

What is a Modern CMake External Package?
<Package>Config.cmake: Package config file defines IMPORTED targets and pulls in all upstream
dependencies automatically:

find_dependency(<upstreamPackage> REQUIRED) # Pulls in upstream dependencies!
add_library(<Package>::<libname> IMPORTED [SHARED|STATIC])
…

Downstream CMake projects pull in these external packages using find_package(<externalPackage>)

2

Example Minimal Raw Modern CMake Package

cmake_minimum_required(
 VERSION 3.23.0 FATAL_ERROR)
project(Package1 LANGUAGES C CXX)
include(GNUInstallDirs)
find_package(Tpl1 CONFIG REQUIRED)
add_subdirectory(src)
if (Package1_ENABLE_TESTS)
 include(CTest)
 add_subdirectory(test)
endif()

<pakageDir>/CMakeLists.txt
add_library(package1 Package1.hpp Package1.cpp)
target_include_directories(package1
 PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
target_link_libraries(package1 PRIVATE tpl1::tpl1)

add_executable(package1-prg Package1_Prg.cpp)
target_link_libraries(package1-prg PRIVATE package1)

<pakageDir>/src/CMakeLists.txt

add_test(NAME Package1_Prg
 COMMAND package1-prg)
set_tests_properties(Package1_Prg
 PROPERTIES PASS_REGULAR_EXPRESSION
 "Package1 Deps: tpl1")

<pakageDir>/test/CMakeLists.txt Limitations (i.e. NOT “Professional CMake” compliant):
• Does not create namespaced targets (e.g.

Package1::package1)
• Does not install libraries, header files, or executables
• Does not install a <Package>Config.cmake file

3

Example Minimal Raw Modern CMake External Package

if (TARGET Tpl2::tpl2a)
 return()
endif()

find_dependency(Tpl1 REQURIED)

add_library(Tpl2::tpl2a IMPORTED SHARED)
set_target_properties(Tpl2::tpl2a PROPERTIES
 IMPORTED_LOCATION "<installDir>lib/libtpl2a.so")
target_include_directories(Tpl2::tpl2b SYSTEM
 INTERFACE "/<installDir>/include")
target_link_libraries(Tpl2::tpl2a
 INTERFACE $<LINK_ONLY:Tpl1::tpl1>)

add_library(Tpl2::tpl2b IMPORTED SHARED)
set_target_properties(Tpl2::tpl2b PROPERTIES
 IMPORTED_LOCATION "<installDir>lib/libtpl2b.so")
target_include_directories(Tpl2::tpl2b SYSTEM
 INTERFACE "/<installDir>/include")
target_link_libraries(Tpl2::tpl2b
 INTERFACE Tpl2::tpl2a)

<installDir>/lib/cmake/Tpl2/Tpl2Config.cmake

Consistent with “Professional CMake”:
• Pulls in upstream dependencies (i.e. Tpl1)
• Defines namespaced IMPORTED targets
• IMPORTED targets CMake code can be

created by CMake project automatically
• Non-CMake projects can manually create

and install these files

A modern CMake project must write two
CMake programs!
1. Containing CMakeLists.txt files to

configure, build, test, and install the
package

2. An installed <Package>Config.cmake file
that downstream CMake projects run to
access the installed package

4

Refactored TriBITS CMake Build System to Modern CMake
5

Goals for initial Trilinos (TriBITS) build system refactorζ: [COMPLETE]
• Allow packages to use raw CMake to define targets for libraries, executables, using modern

CMake and (e.g. provide <Package>::<lib> and <Package>::all_libs).
• Use TriBITS functionality to define tests using tribits_add_test(), tribits_add_advanced_test() and

even tribits_add_executable_and_test() .
• Use TriBITS external package/TPL system to find external packages (i.e. combine requirements

from all enabled packages and call find_package() just once per each external package/TPL).
• TriBITS refactoring should allow existing packages to keep working without out modification.
• The decision to use TriBITS to define targets and other optional functionality can be made on

a package-by-package basis (e.g. tribits_add_library() and tribits_add_executable()).
ζ See TriBITS #342

Constraints/Requirements:
• Not break existing CMakeLists.txt files in existing TriBITS projects including Trilinos, Drekar,

Charon2, etc. [Successful]
• Not break existing user Trilinos and other configure scripts. [Successful]
• Allow refactoring of existing Trilinos packages to use raw CMake targets and build independently

from Trilinos to occur incrementally. [Successful]
• Allow trimming down TriBITS and switching to native CMake in each TriBITS project to occur as

desired incrementally. [Successful (so far)]

5

https://github.com/TriBITSPub/TriBITS/issues/342

How are existing TriBITS packages using Modern CMake?

include_directories(
 ${CMAKE_CURRENT_SOURCE_DIR})

tribits_add_library(package1
 HEADERS Package1.hpp
 SOURCES Package1.cpp)

What tribits_add_library() is doing under the covers?Example TriBITS CMakeLists.txt file
get_directory_property(includeDirsCurrent
 INCLUDE_DIRECTORIES)

add_library(Package1_package1
 Package1.hpp Package1.cpp)
target_include_directories(Package1_package1
 PUBLIC $<BUILD_INTERFACE:${includeDirsCurrent}>)
set_target_properties(Package1_package1 PROPERTIES
 EXPORT_NAME package1)
target_link_libraries(Package1_package1
 PUBLIC Tpl1::all_libs)

add_library(Package1::package1 ALIAS Package1_package1)

install(TARGETS Package1_package1
 EXPORT ${PACKAGE_NAME}
 INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})

install(FILES Package1.hpp
 DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})

Trilinos CMake build system was upgraded
to use Modern CMake without touching:
• 1776 CMakeLists.txt files
• 229 tribits_add_library() calls
• 630 tribits_add_executable() calls
• 1393 tribits_add_test() calls
• 284 tribits_add_advanced_test() calls
• 2206 tribits_add_executable_and_test() calls

* Consistent with Modern CMake Advocated in:

“Professional CMake”, by Craig Scott

6

7

Handling of External
Packages/TPLs

7

Finding external packages in raw CMake
find_package(<Package> [<version>] [MODULE|CONFIG] [COMPONENTS <c1> <c2> …] …)

• Finds (uses) either Find<Package>.cmake find module or <Package>Config.cmake package
config file!

• Sets <Package>_FOUND=TRUE if found

find_package(<Package> MODULE …)

• Use a Find<Package>.cmake find module found in CMAKE_MODULE_PATH
• Does not set <Package>_DIR or <Package>_CONFIG vars!

find_package(<Package> CONFIG …)

• On output, sets <Package>_DIR != “” and <Package>_CONFIG != “”
• On input, if <Package>_DIR != “” and package at ${<Package>_DIR} does not satisfy usage

requirements, CMake will start find from scratch! (see discussion in CMake Issue #23685)

NOTE: The older Find<Package>.cmake package find modules are only used as last resort (and
are being phased out as much as possible by the CMake community).

8

https://gitlab.kitware.com/cmake/cmake/-/issues/23685

CMake Packages and the Package Ecosystem Issues
1) No standard name for target for “all the library targets for <Package>”, examples:

• Boost::boost => Only include dirs
• HDF5::hdf5 => C libraries ; HDF5::HDF5 => All libraries (and changes with different HDF5 versions)
• netCDF::netcdf => All libraries

2) No uniform support for IMPORTED targets and find_dependency() on upstream dependent
packages, examples:

• Official find module FindBullet.cmake in CMake 3.25 does not yet support IMPORTED targets
• Recent netCDFConfig.cmake file not call find_dependency(HDF5) (see Trilinos GitHub PR #11175)

3) Finding inconsistent upstream packages (see discussion in CMake Issue #23685), examples:
• SomePackage versions 3 and 5 installed: First find_package(SomePackage 3...6) => 5, Second

find_package(SomePackage 2…4) => 3 (But installed version 3 works for both!)

These are fundamental problems with the CMake Package Ecosystem!
Existing solutions to these problems?
• => Spack solves the problem of finding inconsistent upstream packages (#3 above)

9

https://cmake.org/cmake/help/v3.25/module/FindBullet.html
https://github.com/trilinos/Trilinos/pull/11175
https://gitlab.kitware.com/cmake/cmake/-/issues/23685

TriBITS: Modern CMake with External Packages/TPLs

Challenge: Create TriBITS-Compliant External Package <tplName>config.cmake files for every external
packages/TPLs no matter how they are defined:

1. Legacy TriBITS TPLs: List of include directories, libraries, link options, etc.
TPL_<tplName>_INCLUDE_DIRS and TPL_<tplName>_LIBRARIES variables:
=> Automatically handled by refactored TriBITS through legacy FindTPL<tplName>.cmake files

2. Using find_package(<externalPkg>) to find other external packages: Find<tplName>.cmake
module or <tplName>Config.cmake file with or without modern CMake IMPORTED targets:
=> Create custom FindTPL<tplName>.cmake files that call find_package(<tplName>) and construct
self-contained <tplName>::all_libs target.

3. Pre-installed upstream TriBITS-compliant packages
=> Automatically handled by refactored TriBITS

NOTE: The need to create custom FindTPL<tplName>.cmake files where (partial) modern CMake is
used with Find<tplName>.cmake find modules or <tplName>Config.cmake package config files to
provide IMPORTED targets is where a majority of work of developers will be expended inreally
transitioning to modern CMake L

10

TriBITS Generated <tplName>Config.cmake and
<Package>Config.cmake files11

Build Directory:
<buildDir>/
 external_packages/
 <tpl1>/
 <tpl1>Config.cmake
 <tpl2>/
 <tpl2>Config.cmake
 …
 cmake_packages/
 <package1>/
 <package1>Config.cmake
 <package2>/
 <package2>Config.cmake
 …
 packages/

Generated <tplName>Config.cmake files are included by
<packageName>config.cmake files to provide
<tplName>::all_libs targets. They are not meant to be
found by find_package(<tplName>) calls!

Can use built packages without installing with:
 -D CMAKE_PREFIX_PATH=<buildDir>/cmake_packages

Install Directory:
<installDir>/
 lib[64]/
 external_packages/
 <tpl1>/
 <tpl1>Config.cmake
 <tpl2>/
 <tpl2>Config.cmake
 …
 cmake/
 <package1>/
 <package1>Config.cmake
 <package2>/
 <package2>Config.cmake
 …

Installed <tplName>Config.cmake files are included by
<packageName>config.cmake files to provide
<tplName>::all_libs targets. They are not meant to
be found by find_package(<tplName>) calls!

Using installed packages:
 -D CMAKE_PREFIX_PATH=<installDir>

11

Generated SomeTplConfig.cmake

Generated <tplName>Config.cmake files for TriBITS Legacy TPLs
12

Legacy TPL configure arguments:
 -D TPL_SomeTpl_INCLUDE_DIRS=“/some/path/to/include/a“ \
 -D TPL_SomeTpl_LIBRARIES=“-llib2;-L/some/explicit/path2;-lmkl;-llib1;-L/some/explicit/path1”

if (TARGET SomeTpl::all_libs)
 return()
endif()

add_library(SomeTpl::lib1 IMPORTED INTERFACE)
set_target_properties(SomeTpl::lib1 PROPERTIES
 IMPORTED_LIBNAME "lib1")

add_library(SomeTpl::lib2 IMPORTED INTERFACE)
set_target_properties(SomeTpl::lib2 PROPERTIES
 IMPORTED_LIBNAME "lib2")
target_link_libraries(SomeTpl::lib2
 INTERFACE SomeTpl::some-other-option)

Continued …

… Continued

add_library(SomeTpl::all_libs INTERFACE IMPORTED)
target_link_libraries(SomeTpl::all_libs
 INTERFACE SomeTpl::lib1
 INTERFACE SomeTpl::some-other-option
 INTERFACE SomeTpl::lib2
)
target_include_directories(SomeTpl::all_libs SYSTEM
 INTERFACE "/some/path/to/include/a"
)
target_link_options(SomeTpl::all_libs
 INTERFACE "-L/some/explicit/path2"
 INTERFACE "-mkl"
 INTERFACE "-L/some/explicit/path1"
)

TriBITS-Generated SomeTplConfig.cmake file:

12

TriBITS External Package/TPL Dependencies
13

Define TPL dependencies file:

<tplDefsDir>/
…
FindTPL<tplName>.cmake
FindTPL<tplName>Dependencies.cmake
…

Example: FindTPLLAPACKDependencies.cmake:

tribits_extpkg_define_dependencies(LAPACK
 DEPENDENCIES BLAS)

NOTES:
• Dependencies needed to have the libraries listed on the link line in the correct order!
• IMPORTED targets in LAPACKConfig.cmake are linked against BLAS::all_libs
• Currently, to preserve backwards compatibility, enabling TPL_ENABLE_<dowstreamTPL>=ON does

not automatically enable dependent TPL_ENABLE_<upstreamTPL>=ON
• Future, support optional and required upstream TPL dependencies? (Break backward

compatibility!)

13

Generated SomeTplConfig.cmake

Generated <tplName>Config.cmake file for TriBITS Legacy
TPL with dependencies14

Legacy TPL configure arguments:
 -D TPL_SomeTpl_INCLUDE_DIRS="/some/path/to/include/a" \
 -D TPL_SomeTpl_LIBRARIES="-llib2;-L/some/path2;-llib1;-L/some/explicit/path1" \

if (TARGET SomeTpl::all_libs)
 return()
endif()

if (NOT TARGET UpstreamTpl::all_libs)
 include("<…>/../UpstreamTpl/UpstreamTplConfig.cmake")
endif()

add_library(SomeTpl::lib1 IMPORTED INTERFACE)
set_target_properties(SomeTpl::lib1
 PROPERTIES IMPORTED_LIBNAME "lib1")
target_link_libraries(SomeTpl::lib1
 INTERFACE UpstreamTpl::all_libs)

Continued …

… Continued

add_library(SomeTpl::lib2 IMPORTED INTERFACE)
set_target_properties(SomeTpl::lib2 PROPERTIES
 IMPORTED_LIBNAME "lib2")
target_link_libraries(SomeTpl::lib2
 INTERFACE SomeTpl::lib1)

add_library(SomeTpl::all_libs INTERFACE IMPORTED)
target_link_libraries(SomeTpl::all_libs
 INTERFACE SomeTpl::lib1
 INTERFACE SomeTpl::lib2)
target_include_directories(SomeTpl::all_lib
 SYSTEM INTERFACE "/some/path/to/include/a")
target_link_options(SomeTpl::all_libs
 INTERFACE "-L/some/path2"
 INTERFACE "-L/some/path1")

TriBITS-Generated <tplName>Config.cmake file:

14

Generated SomeTplConfig.cmake

Generated <tplName>Config.cmake files using find_package()
with modern CMake IMPORTED targets15

FindTPLTpl2.cmake:

<comments …>

Guard against multiple inclusion
if (TARGET Tpl2::all_libs)
 return()
endif()

if (NOT TARGET Tpl1::all_libs)
 include(
 "${CMAKE_CURRENT_LIST_DIR}/../Tpl1/Tpl1Config.cmake")
endif()

include(CMakeFindDependencyMacro)

set(Tpl2_DIR "<tpl2InstallDir>/lib/cmake/Tpl2")
find_dependency(Tpl2)

Continued …

TriBITS-Generated Tpl2Config.cmake wrapper file:

15

find_package(Tpl2 REQUIRED)
tribits_extpkg_create_imported_all_libs_target_and_config_file(Tpl2
 INNER_FIND_PACKAGE_NAME Tpl2
 IMPORTED_TARGETS_FOR_ALL_LIBS tpl2::tpl2a tpl2::tpl2b)

FindTPLTpl2Dependencies.cmake:
tribits_extpkg_define_dependencies(
 Tpl2
 DEPENDENCIES Tpl1)

Continued …

add_library(Tpl2::all_libs INTERFACE IMPORTED)
target_link_libraries(Tpl2::all_libs
 INTERFACE tpl2::tpl2a
 INTERFACE tpl2::tpl2b
)
target_link_libraries(Tpl2::all_libs
 INTERFACE $<LINK_ONLY:Tpl1::all_libs> # i.e. PRIVATE
)

Standard TriBITS-compliant external package variables
set(Tpl2_IS_TRIBITS_COMPLIANT TRUE)
set(Tpl2_TRIBITS_COMPLIANT_PACKAGE_CONFIG_FILE
 "${CMAKE_CURRENT_LIST_FILE}")
set(Tpl2_TRIBITS_COMPLIANT_PACKAGE_CONFIG_FILE_DIR
 "${CMAKE_CURRENT_LIST_DIR}")

16

TriBITS Uniform Handling of
Internal and External

Packages

16

TriBITS Uniform Treatment of Internal and External Packages

Any internally defined TriBITS Package <Pkg> can be pre-build/installed and pulled in with:

-D TPL_ENABLE_<Pkg>=ON \
-D CMAKE_PREFIX_PATH=<pkgInstallDir> \

Has the following effect:
• The package <Pkg> is enabled in the dependency logic just as of -D <Project>_ENABLE_<Pkg>=ON

was set.
• The package <Pkg> is treated an TriBITS-compliant external package and the internal

CMakeLists.txt file is slipped and instead find_package(<Pkg> CONFIG REQUIRED) is called.
• Every package <UpstreamPkg> upstream from <Pkg> is also an external package.

Finding the External Packages/TPLs is done in two loops:
1. In reverse order, loop over enabled TriBITS-compliant external packages and call find_package(…).
2. In forward order, look over remaining enabled TriBITS external packages and use

FindTPL<tplName>.cmake module to find <tplName>.

17

CMake Configure Input:
 -DTPL_ENABLE_Package2=ON \
 -DCMAKE_PREFIX_PATH=“<pkg2InstallDir>;<tpl4InstallDir>” \
 -DTribitsExProj2_ENABLE_ALL_PACKAGES=ON \

CMake Configure Output:

Adjust the set of internal and external packages:

-- Treating internal package Package2 as EXTERNAL because
TPL_ENABLE_Package2=ON
-- Treating internal package Package1 as EXTERNAL because
downstream package Package2 being treated as EXTERNAL
-- NOTE: Tpl3 is directly upstream from a TriBITS-compliant
external package Package2
-- NOTE: Tpl2 is indirectly upstream from a TriBITS-compliant
external package
-- NOTE: Tpl1 is indirectly upstream from a TriBITS-compliant
external package

<…>

Final set of enabled packages: Package3 1

Final set of enabled external packages/TPLs: Tpl1 Tpl2 Tpl3
Tpl4 Package1 Package2 6

TribitsExampleProject2: Pre-build/install packages example

Tpl3

Tpl4

Package1

Package2

Package3

Tpl2
TribitsExampleProject2

Tpl1

18

TribitsExampleProject2: Pre-build/install packages example

CMake Configure Output (Continued)

Getting information for all enabled TriBITS-compliant or upstream external packages/TPLs in
reverse order ...

Processing enabled external package/TPL: Package2 (enabled explicitly, disable with <…>)
-- Calling find_package(Package2) for TriBITS-compliant external package
-- Found Package2_DIR= '<pkg2InstallDir>/lib/cmake/Package2'
Processing enabled external package/TPL: Package1 (enabled explicitly, disable with <…>)
-- The external package/TPL Package1 was defined by a downstream TriBITS-compliant external
package already processed
Processing enabled external package/TPL: Tpl3 (enabled explicitly, <…>)
-- The external package/TPL Tpl3 was defined by a downstream TriBITS-compliant external
package already processed
Processing enabled external package/TPL: Tpl2 (enabled explicitly, disable with <…>)
-- The external package/TPL Tpl2 was defined by a downstream TriBITS-compliant <…>
Processing enabled external package/TPL: Tpl1 (enabled explicitly, disable with <…>)
-- The external package/TPL Tpl1 was defined by a downstream TriBITS-compliant <…>

Getting information for all remaining enabled external packages/TPLs ...

Processing enabled external package/TPL: Tpl4 (enabled explicitly, disable <…>)
<…>

19

TribitsExampleProject2: Pre-build/install packages example

CMake Configure Output (Continued)

<…>

Configuring individual enabled TribitsExProj2 packages ...

Processing enabled top-level package: Package3 (Libs, Tests, Examples)

<…>

-- Configuring done
-- Generating done

Important Points:
• Only CMakeLists.txt file or Package3 is processed! (Not for Package1 or Package2)
• Calling find_package() for TriBITS-compliant external packages/TPLs in reverse order:

• => Avoids finding inconsistent packages (e.g. a different Package1 than being used by Package2)
• => Allows pulling an indirect <Package>Config.cmake file that can’t be found in the current

CMAKE_PREFIX_PATH (e.g. no search path for Package1Config.cmake)

20

Package dependency graph
can be build/installed with
any subgraph partitioning
desired (Including one-
package-at-a-time).

TriBITS generates a
<Package>Config.cmake
package config file for each
package independent of
partitioning!

Updated TriBITS: Flexible subgraph builds/installs21

5 8 9 11

4 6 10 12

7

2 13 14 16

1 3 15 17
18 19 1 CMake Project (fastest)

2 CMake Projects
6 CMake Projects

19 CMake Projects (slowest)

Build/Install As:

Example TriBITS Project Package Dependency Graph

Build Trilinos against pre-installed Kokkos
Implementation in Kokkos, and Spack (beyond core TriBITS refactorings):
• Removed subpackages from the TriBITS build of Kokkos under Trilinos:

Þ Touched many Trilinos Packages
• Extended native non-TriBITS Kokkos CMake build system:

Þ Added some missing Kokkos_XYZ variables to installed KokkosConfig.cmake file
Þ Added Kokkos::all_libs target to KokkosConfig.cmake file

• Updated Spack trilinos/package.py file:
Þ Added dependency on Spack ‘kokkos’ package (with a complex set of constraints)
Þ Added -D TPL_ENABLE_Kokkos=ON to Trilinos CMake configure input

Impact on Customers on updated Spack Trilinos package:
• ‘Kokkos’ is no longer a COMPONENT of Trilinos!

• find_package(Trilinos COMPONENTS Kokkos Tpetra …) => Error: Kokkos not part of Trilinos!
• Solution 1: find_package(Trilinos COMPONENTS Tpetra …) ; find_package(Kokkos)
• Solution 2: find_package(Kokkos); find_package(Tpetra); …

22

Splitting up Trilinos into multiple Spack package installs?

Options to break Trilinos into multiple Spack packages?
• Option 1: Pull out Spack packages only as needed (Current approach): E.g.:

• Kokos, KokkosKernels, Zoltan, SEACAS, Trilinos
• Option 2: Create Meta-Packages for Trilinos: E.g.:

• Kokkos, KokkosKernels, Zoltan, SEACAS, TrilinosTools, TrilinosDataStructures,
TrilinosLinearSolvers, TrilinosNonlinearSolvers, TrilinosDiscretizations, …

• Option 3: A Spack package for every Trilinos package: E.g.:
• Kokkos, Teuchos, RTOp, Tpetra, … ROL

• Option 4: Create ‘trilinos-dev’ Spack package to drive development in addition to above options
Impact on Trilinos Developers?

• The more Spack packages there are, the harder and slower Trilinos testing development will be (if
using Spack to generate build environments)

Impact on Customers on new Spack Trilinos packages?
• Switch from find_package(Trilinos COMPONENTS Kokkos Tpetra MueLU … Piro) to:

=> find_package(Kokkos) ; find_package(Tpetra) ; find_package(MueLU) … find_package(Piro)
• Actually: It is better to call them in reverse package dependency order:

=> find_package(Piro) … find_package(MueLU) ; find_package(Tpetra); find_package(Kokkos)

23

24

Using Raw CMake for
TriBITS-Compliant Internal

and External Packages

24

Requirements for TriBITS-Compliant Packages
25

• Provides the (INTERFACE) target <Package>::all_libs which provides all usage requirements for the
libraries of <Package> through the target properties:

• INTERFACE_LINK_LIBRARIES, INTERFACE_INCLUDE_DIRECTORIES, INTERFACE_COMPILE_OPTIONS,
INTERFACE_COMPILE_DEFINITIONS, INTERFACE_LINK_OPTIONS, and any other INTERFACE_XXX or
IMPORTED_XXX target property needed to correctly use the libraries for package <Package>.

• Provides namespaced variables <Package>_ENABLE_<UpstreamPackage> set to TRUE or FALSE for
all of the upstream required and optional dependencies for the package <Package>.

• [Optional] Provides namespaced variables of the form <Package>_<SOME_INFO> for any other
information about the configuration of package <Package> that may need to be known by a
downstream TriBITS package.

• [Optional] Provides any (namespaced by <package>_ or <Package>_) CMake macros or functions
that downstream CMake packages may need to use the upstream package <Package>.

• [Optional] All of the upstream dependencies (listed in the INTERFACE_LINK_LIBRARIES
property recursively) are also TriBITS-compliant packages

Documentation link: TriBITS-Compliant Packages

25

https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html

Requirements for TriBITS-Compliant Internal Packages
26

• All of the requirements for a TriBITS-Compliant Package.
• At the end of configuration and generation, writes out a TriBITS-Compliant External Package file

<Package>Config.cmake and supporting files under the build directory <buildDir>/cmake_packages/<Package>/
allowing the built (but not installed) package to be used by downstream CMake packages/projects.

• Provides an install target to create a TriBITS-Compliant External Package file <Package>Config.cmake and
supporting files under the install directory <installDir>/lib/cmake/<Package>/ allowing the installed package to
be used by downstream CMake packages/projects.

• [Optional] All of the upstream dependencies (recursively) are also TriBITS-compliant packages.

If a TriBITS package provides any CTest tests, then it must also satisfy the following
requirements:
• Test names must be prefixed with the package name <Package>_.
• Tests should only be added if the variable <Package>_ENABLE_TESTS is true.
• Examples (that run as CTest tests) should only be added if the variable <Package>_ENABLE_EXAMPLES is true.
• The PROCESSORS test property and other test properties must be set in a way consistent with tribits_add_test() so

as to run in parallel with other tests and not overwhelm the computing resources on the machine.
• The test <fullTestName> must not be added if the cache variable <fullTestName>_DISABLE is set to TRUE or if the

cache variable <fullTestName>_SET_DISABLED_AND_MSG is set to non-empty (and the message string should be
printed to STDOUT).

Documentation link: TriBITS-Compliant Internal Packages

26

https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html

Requirements for TriBITS-Compliant External Packages
27

• All of the requirements for a TriBITS-Compliant Package.
• Defined by an installed <Package>Config.cmake file that provides IMPORTED targets and set()

statements for all of the needed variables.
• Provides CMake variables:

• <Package>_CONFIG or <Package>_TRIBITS_COMPLIANT_PACKAGE_CONFIG_FILE: Points to
the file <Package>Config.cmake (i.e. ${CMAKE_CURRENT_LIST_FILE})

• <Package>_DIR or <Package>_TRIBITS_COMPLIANT_PACKAGE_CONFIG_FILE_DIR: Points to
the base directory for <Package>Config.cmake (i.e. ${CMAKE_CURRENT_LIST_DIR})

• [Optional] All of the upstream dependencies (recursively) are also provided as TriBITS-
compliant external packages with <UpstreamPackage>Config.cmake files (see above) and all of
the targets and variables for a TriBITS-compliant external package are defined when the
<Package>Config.cmake file is included (or pulled in with find_package() or find_dependency()).

Documentation link: TriBITS-Compliant External Packages

27

https://github.com/TriBITSPub/TriBITS/blob/ee67e0549c8fc9b5105b0538fb01270ea4937ce1/tribits/doc/guides/TribitsGuidesBody.rst
https://github.com/TriBITSPub/TriBITS/blob/ee67e0549c8fc9b5105b0538fb01270ea4937ce1/tribits/doc/guides/TribitsGuidesBody.rst
https://github.com/TriBITSPub/TriBITS/blob/ee67e0549c8fc9b5105b0538fb01270ea4937ce1/tribits/doc/guides/TribitsGuidesBody.rst

TriBITS-Compliant Packages Using Raw CMake HowTos
TriBITS Users Guide (see tribits.org)

• 10 Howtos:

• …

• 10.10 How to implement a TriBITS-compliant internal package using raw CMake

• 10.11 How to implement a TriBITS-compliant external package using raw CMake

• 10.12 How to use TriBITS testing support in non-TriBITS project

• …

28

Snapshotted Trilinos packages that also maintain their own native CMake build
system should consider using only (TriBITS-compliant) raw CMake, except for
defining tests with tribits_add_test() when building under TriBITS project:

E.g.: Kokkos, KokkosKernels, STK, …

NOTE: SEACAS uses TriBITS natively

https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html
https://tribitspub.github.io/TriBITS/users_guide/index.html

TriBITS vs. Raw CMake TriBITS-Compliant CMake Package29

tribits_package(Package1)
add_subdirectory(src)
tribits_add_test_directories(test)
tribits_package_postprocess()

package1/CMakeLists.tribits.cmake
cmake_minimum_required(VERSION 3.23.0 FATAL_ERROR)

if (COMMAND tribits_package)
 message("Configuring raw CMake package Package1")
else()
 message("Configuring raw CMake project Package1")
endif()

Standard project-level stuff
project(Package1 LANGUAGES C CXX)
include(GNUInstallDirs)
find_package(Tpl1 CONFIG REQUIRED)
add_subdirectory(src)
if (Package1_ENABLE_TESTS)
 include(CTest)
 include("cmake/raw/EnableTribitsTestSupport.cmake")
 add_subdirectory(test)
endif()

Stuff that TriBITS does automatically
include("cmake/raw/DefineAllLibsTarget.cmake")
include("cmake/raw/GeneratePackageConfigFileForBuildDir.cmake")
include("cmake/raw/GeneratePackageConfigFileForInstallDir.cmake")

package1/CMakeLists.raw.cmake

TriBITS vs. Raw CMake TriBITS-Compliant CMake Package30

package1/
 src/CMakeLists.tribits.cmake

package1/
 src/CMakeLists.raw.cmake

tribits_include_directories(
 ${CMAKE_CURRENT_SOURCE_DIR})
tribits_add_library(package1
 HEADERS Package1.hpp
 SOURCES Package1.cpp)
tribits_add_executable(package1-prg
 NOEXEPREFIX NOEXESUFFIX
 SOURCES Package1_Prg.cpp
 INSTALLABLE)

Create and install library 'package1'
add_library(Package1_package1 Package1.hpp Package1.cpp)
target_include_directories(Package1_package1
 PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
target_link_libraries(Package1_package1
 PRIVATE tpl1::tpl1)
set_target_properties(Package1_package1 PROPERTIES
 EXPORT_NAME package1)
add_library(Package1::package1 ALIAS Package1_package1)
install(TARGETS Package1_package1
 EXPORT ${PROJECT_NAME}
 INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
install(
 FILES Package1.hpp
 DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})

Create and install executable 'package1-prg'
add_executable(package1-prg Package1_Prg.cpp)
target_link_libraries(package1-prg PRIVATE Package1::package1)
install(
 TARGETS package1-prg
 EXPORT ${PROJECT_NAME}
 INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})

Extra Code in Raw CMake TriBITS-Compliant CMake Package31

Generate the all_libs target(s)
add_library(Package1_all_libs INTERFACE)
set_target_properties(Package1_all_libs
 PROPERTIES EXPORT_NAME all_libs)
target_link_libraries(Package1_all_libs
 INTERFACE Package1_package1)
install(TARGETS Package1_all_libs
 EXPORT ${PROJECT_NAME}
 COMPONENT ${PROJECT_NAME}
 INCLUDES DESTINATION
 ${CMAKE_INSTALL_INCLUDEDIR})
add_library(Package1::all_libs ALIAS
 Package1_all_libs)

package1/cmake/raw/
 DefineAllLibsTarget.cmake

if (COMMAND tribits_package)
 # Generate Package1Config.cmake file for the build tree (for internal
 # TriBITS-compliant package)
 set(packageBuildDirCMakePackagesDir
 "${${CMAKE_PROJECT_NAME}_BINARY_DIR}/cmake_packages/${PROJECT_NAME}")
 export(EXPORT ${PROJECT_NAME}
 NAMESPACE ${PROJECT_NAME}::
 FILE
 "${packageBuildDirCMakePackagesDir}/${PROJECT_NAME}ConfigTargets.cmake"
)
 configure_file(
 "${CMAKE_CURRENT_LIST_DIR}/Package1Config.cmake.in"
 "${packageBuildDirCMakePackagesDir}/${PROJECT_NAME}/Package1Config.cmake"
 @ONLY)
endif()

package1/cmake/raw/
 GeneratePackageConfigFileForBuildDir.cmake

set(Tpl1_DIR "@Tpl1_DIR@")
find_package(Tpl1 CONFIG REQUIRED)
include("${CMAKE_CURRENT_LIST_DIR}/Package1ConfigTargets.cmake")

package1/cmake/raw/
 Package1Config.cmake.in

Consistent with Modern CMake
Advocated in:

“Professional CMake”

by Craig Scott

Extra Code in Raw CMake TriBITS-Compliant CMake Package32

Generate and install the Package1Config.cmake file for the install tree
(needed for both internal and external TriBITS package)
set(pkgConfigInstallDir "${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}")
install(EXPORT ${PROJECT_NAME}
 DESTINATION "${pkgConfigInstallDir}"
 NAMESPACE ${PROJECT_NAME}::
 FILE ${PROJECT_NAME}ConfigTargets.cmake)
configure_file(
 "${CMAKE_CURRENT_SOURCE_DIR}/cmake/raw/Package1Config.cmake.in"
 "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/Package1Config.install.cmake"
 @ONLY)
install(
 FILES "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/Package1Config.install.cmake"
 RENAME "Package1Config.cmake"
 DESTINATION "${pkgConfigInstallDir}")

package1/cmake/raw/
 GeneratePackageConfigFileForInstallDir.cmake

33

Future Work and Summary

33

Future TriBITS/Trilinos CMake Modernization Work?
TriBITS Publications:
• TriBITS overview SAND technical report (FY24 Q1)
• TriBITS overview journal article (JOSS?)

Address a few lingering issues with updated TriBITS: E.g.:
• Relocatable installations of installed `<Package>Config.cmake` files?
• Public/private package dependencies, optional and required intra-external package/TPL dependencies?

Refactor to use CMake features overlapping with TriBITS (see TriBITS #411): E.g.:
• Use the standard CMake FortranCInterface.cmake module to handle Fortran/C name mangling.
• Consider switching to using find_package(MPI) (using standard CMake FindMPI.cmake module).

Refactor to remove TriBITS features and simplify TriBITS (see TriBITS #569): E.g.:
• Switch to explicit library linking (more explicit, avoid over linking)
• Remove support for subpackages (lot of added complexity)

Refactor FindTPL<tplName>.cmake files to use find_package(<ExternalPkg>) and remove support for
Legacy TriBITS TPLs
• This is where the most work lies and the biggest breaks to backward comparibility!
Refactor downstream CMake projects for changes in how Trilinos packages are installed: E.g.:
• Stop using find_package(Trilinos)! => Instead, use find_package(Kokkos), find_package(Tpetra), …

34

DANGER! Risk of shifting significant
complexity from TriBITS to Trilinos
packages and Trilinos developers!

https://github.com/TriBITSPub/TriBITS/issues/411
https://github.com/TriBITSPub/TriBITS/issues/569

Summary
• Modern TriBITS:

• Uses Modern CMake internally (strips out a lot of older complex TriBITS code)
• Allows pre-building/installing Trilinos packages in any subgraph sets desired
• Allows usage of raw CMake to create TriBITS-compliant internal and external packages
• Usage of find_package(<ExternalPkg>) to pull in external packages using modern CMake IMPORTED targets.

• Realized impact so far:
• Significant simplifications in the implementation of TriBITS
• Trilinos can use pre-installed native Kokkos (Updated Spack Trilinos package)
• (Almost) no breakage in backward compatibility for Trilinos developers or customers

• Future plans:
• TriBITS Publications (FY24 Q1)
• Address a few lingering issues with updated TriBITS
• Refactor to use CMake features overlapping with TriBITS (see TriBITS #411)
• Refactor to remove TriBITS features and simplify TriBITS (see TriBITS #569)
• Refactor FindTPL<tplName>.cmake files to use find_package(<ExternalPkg>) and remove support for Legacy

TriBITS TPLs
• Refactor downstream CMake projects for changes in how Trilinos packages are installed

35

