Grafiki=Mrilinos-based Software for High-Performance Distributed Graph-based Algorithms

Nathan Ellingwood

Grafiki Motivation

Questa needs to solve linear systems on HPC systems

- Current focus: Scalable computation of hitting time moments for large scale data science problems
- Leverage DOE/Sandia experience with numerical linear algebra and performance portability

Grafiki: Software for high-performance graph-based algorithms

- Built on Trilinos, Sandia/DOE software with distributed linear algebra-based solvers designed for multi-physics engineering/science problems
- Current computational capabilities include:
- Graph hitting times (today's focus)
- Spectral clustering (hypergraph support)
- Eigenvector centrality (hypergraph support)
- Hitting time capabilities discussed today based on methods developed by Questa team Rich Lehoucq, Jon Berry, Danny Dunlavy

Brief Background

Hitting time: A random variable describing the number of steps for a random walk from vertex v to a vertex in subset H of graph G

- Use case - seed set expansion: given a set of "seed" vertices, find others related or grouped with them
- Applications: Information Retrieval, Social Network Analysis, Neuroscience...

Brief Background - Linear System Setup

Graph mean hitting times can be computed by linear system

- Derived from Markov chains applied to graph analysis
- Initial assumption: unweighted, symmetric graph - traversal to any neighbor equally likely

General relationship

$$
x_{i}=\text { ones }+\sum_{i \neq j} p_{i j} x_{j}
$$

- $\boldsymbol{x}_{\boldsymbol{i}}$: hitting time starting from node i
- $\boldsymbol{p}_{i j}$: transition probability from j to i
- $p_{i j} \leftarrow A_{i j} / d_{i}$: valid based on symmetric, unweighted graph assumption

Linear system in matrix form:

$$
\left(I-D^{-1} A\right) * x=\text { ones }
$$

- Non-seed vertices included
- A : adjacency matrix representing graph
- D: diagonal matrix of vertex degrees
- ones: vector of 1's

Challenges

Achieve performance-portability for distributed computing and GPU by addressing challenges from data science such as:

- Laplacian (implicit) operators
- Custom operators to avoid data duplication
- Multiple components
- "Discounting" avoids bookkeeping, data duplication
- Directed, non-symmetric graphs
- Extend data manipulation via composite operators
- Verification and debugging by small-example
- Different sparsity patterns
- Heuristics may require tuning; 2D partitioning

Laplacians and Iterative Solvers: CG \leftrightarrow PCG

Initial assumptions:

- A is an adjacency matrix for an undirected, symmetric, connected graph
- D is a diagonal matrix of vertex degrees, invertible

Laplacian used for linear system:
The normalized Laplacian:

$$
\begin{aligned}
& L_{\text {norm }}=I-D^{-1 / 2} A D^{-1 / 2} \\
& =D^{-1 / 2}(D-A) D^{-1 / 2}
\end{aligned}
$$

Preconditioned Conjugate Gradient

- using combinatorial Laplacian L, with
- Preconditioner: D

$$
(D-A) * x=b
$$

Conjugate Gradient (CG)

- using $L_{\text {norm }}$, no preconditioning

$$
\begin{gathered}
D^{-1 / 2}(D-A) D^{-1 / 2} * y=D^{-1 / 2} * b \\
y=D^{1 / 2} * x
\end{gathered}
$$

[^0]
Hitting time linear system

Given the hitting set H of vertices, we seek to solve the linear system below for mean hitting times:

$$
\Pi^{\mathrm{T}}(D-A) \Pi * \widehat{x}=\widehat{b}
$$

- Π^{T} : as left - multiply operator, removes rows corr. to H indices
- Π : as right - multiply operator removes cols corr. to H indices
- $D=\operatorname{diag}(A *$ ones $) ; r h s: \widehat{b}=\Pi^{\mathrm{T}}(\mathrm{D} *$ ones $)$
- \widehat{x} : mean hitting time moments from vertices of $G \backslash H$ to H

Solving the formulation above requires either

- Explicit creation of the "reshaped" Laplacian, rhs and Ihs for each set H, or
- Repeat application of Π^{T} and Π (recreate for each H) during PCG, or
- Disruptive logic in our mat-mat, mat-vec mult. operations (e.g. added comm.)

Tiny example

Example: Consider a simple two node undirected graph with corresponding matrices:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathrm{L}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

If we select node " 1 " as our hitting set H, this gives

$$
\Pi=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \Pi^{T}=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \Pi^{T} \mathrm{~L} \Pi=[1] \text { (row } 1 \text { and col } 1 \text { removed) }
$$

And the resulting linear system $\Pi^{T} L \Pi * \widehat{x}=\widehat{\boldsymbol{b}}$ is

$$
[1] * \widehat{x}=[1]
$$

Hitting time linear system - reformulated

An alternative formulation to the hitting time linear system for more performant computation:

$$
\Pi \Pi^{\mathrm{T}}(D-A) \Pi \Pi^{\mathrm{T}} * \Pi \hat{x}=\Pi \Pi^{\mathrm{T}} b
$$

- $\Pi \Pi^{\mathrm{T}}$: diagonal matrix, projector onto vertices not in H
- Left multiplication: zero out corr. rows to H
- Right multiplication: zero out corr. cols to H
- $\mathrm{D}=\operatorname{diag}(A *$ ones $)$
- b=A*ones
- $\widehat{\boldsymbol{x}}$: mean hitting time moments from nodes of $G \backslash H$ to H

Hitting time linear system - reformulated (cont.)

A refinement to the left-hand side for convenience

$$
\Pi^{\mathrm{T}}(D-A) \Pi^{\mathrm{T}} * \Pi^{\mathrm{T}} x=\Pi \Pi^{\mathrm{T}} b
$$

We make the identification:

$$
\Pi \widehat{\boldsymbol{x}}=\Pi^{\mathbf{T}} \boldsymbol{x} \text { where } \Pi^{\mathbf{T}} \boldsymbol{x}(\boldsymbol{i})=\left\{\begin{array}{c}
\widehat{\boldsymbol{x}}(\boldsymbol{i}) \text { for } \boldsymbol{i} \in G \backslash H \\
\mathbf{0} \text { for } \boldsymbol{i} \in H
\end{array}\right.
$$

- The components of $\Pi \hat{x}$ in the null space of $\Pi \Pi^{\mathrm{T}}$ are those corresponding to linear combinations of columns of $/$ associated with indices of H - we choose 0 for the "free parameters" for the solution to the associated homogenous equation; that is, we set $\boldsymbol{x}(\boldsymbol{i})=0$ for $\boldsymbol{i} \in H$
- The components of $\Pi \hat{x}$ orthogonal to the null space of $\Pi \Pi^{\mathrm{T}}$ are the uniquely defined components of interest, the mean hitting times for $G \backslash H$

Tiny example revisited

Example: Consider a simple two node undirected graph with corresponding matrices:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \mathrm{L}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

If we select node " 1 " as our hitting set, this gives

$$
\Pi \Pi^{T}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \Pi \Pi^{T} \mathrm{~L} \Pi^{T}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \text { (row/col } 1 \text { are "zeroed" out) }
$$

The resulting linear system $\Pi^{\mathrm{T}} L \Pi \Pi^{\mathrm{T}} * \Pi^{\mathrm{T}} \boldsymbol{x}=\Pi^{\mathrm{T}} \mathbf{b}$ is

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] *\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Grafiki: Custom linear operators

Performance considerations:

Avoid double-storage due to explicit construction of Laplacian - do not construct L!

- Use implicit Laplacian operators - requires only matrix-vector and element-wise multiplication or assignment!
Avoid matrix-matrix operations
- Store diagonal matrix and preconditioner as a vector with custom operators for element-wise operations - perfectly SIMD, all operations local to proc. owning the row

Avoid matrix "reshaping" for each hitting set (large setup costs, requires distributed communication)

- Use "hitting set projectors" stored as vectors in place of Π, Π^{T} operators - perfectly SIMD, all operations local to proc. owning the row

Avoid communication for hitting set updates

- Hitting set updates require only local update by owning proc. to the vector (no distributed communication needed)

Grafiki: Custom linear operators

Example: Demonstrate details of operator implementation

$$
\begin{gathered}
\left.A=\begin{array}{ccc}
0 & b & a \\
b & 0 & c \\
a & c & 0
\end{array}\right]
\end{gathered} \quad \mathrm{D}=\left[\begin{array}{ccc}
a+b & 0 & 0 \\
0 & b+c & 0 \\
0 & 0 & a+c
\end{array}\right]
$$

$$
L=D-A=\left[\begin{array}{ccc}
a+b & -b & -a \\
-b & b+c & -c \\
-a & -c & a+c
\end{array}\right]
$$

Combinatorial Laplacian (explicit)

Grafiki: Operator setup

Compute D, but store as a vector $\boldsymbol{d}=\boldsymbol{A} *$ ones

$$
\boldsymbol{d} \quad\left[\begin{array}{l}
a+b \\
b+c \\
a+c
\end{array}\right]=\frac{\operatorname{A}}{\left[\begin{array}{lll}
0 & b & a \\
b & 0 & c \\
a & c & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}
$$

Create "hitting set" projectors Π^{T}, but store as vector p

- Element-wise multiply acts like a "mask", zeros out entries corr. to H
Example: take as hitting set H the singleton $\{2\}$

$$
\boldsymbol{p}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Distributed computing notes:

- Distribution of rows of vector across proc.'s matches matrix
- Element-wise multiplication:
- Each proc. does work local to its owned rows
- Element-wise assignment:
- During initialization of "hitting set mask", each proc. searches list of hitting set indices, assigns 0 if it owns the row corresponding to the index

Grafiki: Apply operator

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
0 \\
x_{3}
\end{array}\right] \leftarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot *\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]} \\
& \text { Step } 1
\end{aligned}
$$

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \leftarrow\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]-\left[\begin{array}{lll}
0 & b & a \\
b & 0 & c \\
a & c & 0
\end{array}\right] *\left[\begin{array}{c}
x_{1} \\
0 \\
x_{3}
\end{array}\right]
$$

$$
\text { Step } 3
$$

$$
\begin{array}{cc}
{\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \leftarrow\left[\begin{array}{l}
a+b \\
b+c \\
a+c
\end{array}\right] \cdot *\left[\begin{array}{c}
x_{1} \\
0 \\
x_{3}
\end{array}\right]} & {\left[\begin{array}{c}
y_{1} \\
0 \\
y_{3}
\end{array}\right] \leftarrow\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot *\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]} \\
\text { Step 2 Step } 4
\end{array}
$$

Pseudo-code for $\Pi^{\mathrm{T}}(\boldsymbol{D}-\boldsymbol{A}) \boldsymbol{\Pi}^{\mathrm{T}} * \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{x}$:
Step 1: $\mathrm{x}=p . * x$ (element-wise multiplication)
Step 2: $\mathrm{y}=d_{. * x}$ (element-wise multiplication)
Step 3: $\mathrm{y}=y-A * x$ (fused spmv with vector subtraction)
Step 4: $\mathrm{y}=p . * y$ (element-wise multiplication)

Multiple components

Finding and bookkeeping of multiple components is inefficient and adds costly setup time

Discounting: instead of incrementing by " 1 " per "step" of the simulation, increment by

$$
\alpha: 0<\alpha \leq 1
$$

- $\boldsymbol{\alpha}$ referred to as the "discount factor"
- Sum of steps results in geometric series with upper bound $1 /(1-\alpha)=\sum_{i=1}^{\infty} \alpha^{i}$ (for $0<\alpha<1$)
- "Origins in the relationship between potentials and Markov chains" - Rich Lehoucq

The linear system update is trivial (as is the corresponding operator implementation):

$$
\Pi \Pi^{\mathrm{T}}(D-\alpha A) \Pi^{\mathrm{T}} * \Pi \Pi^{\mathrm{T}} x=\Pi \Pi^{\mathrm{T}} b
$$

Directed graphs

Directed graphs introduce new complications for the solver:

- Row of zeros: singular coefficient matrix
- D no longer valid as preconditioner
- Asymmetry: Breaks PCG requirements

Example: Consider the two node directed graph
 and corresponding matrices:

$$
A=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], D=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \mathrm{L}=\left[\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right]
$$

If node " 1 " is our hitting set, we attain a valid result
But if we select node " 2 " as our hitting set, the solver fails

Directed graphs

To support these added cases we use:

Biconjugate gradient stabilized (BiCGStab)

- Iterative method for solution of nonsymmetric systems
- Available in Matlab (bicgstab) and Trilinos through Belos

A new formulation to the linear system

- Equivalent to previous system for undirected graphs
- Same computational benefits as the previous linear system
- Similar relationship between non-preconditioned use with $L_{\text {norm }}$, and use of L with preconditioning

Linear system - reformulated for directed graphs

To reformulate the linear system...
Recall: the equations derived from the Markov chain,

$$
(I-S) * x=1, \text { where } S \text { is a Markov transition matrix }
$$

We set $\boldsymbol{S} \leftarrow \mathbf{D}^{\mathbf{- 1}} \mathbf{A}$ under previous assumptions about \boldsymbol{A}
If A has row(s) of zeros (e.g. row i), we set the corresponding row(s) of S as

$$
\boldsymbol{S}(\boldsymbol{i}, \boldsymbol{j})=\left\{\begin{array}{l}
\mathbf{1} \text { if } \boldsymbol{i}=\boldsymbol{j} \\
\mathbf{0} \text { if } \boldsymbol{i} \neq \boldsymbol{j}
\end{array}\right.
$$

This motivates defining $\widetilde{\boldsymbol{D}}: \quad$ And the updated operator $\overline{\boldsymbol{D}-\boldsymbol{\alpha} A}$:

$$
e_{i}^{T} \widetilde{D} e_{i}=\left\{\begin{array}{c}
e_{i}^{T} D e_{i} \text { for } e_{i}^{T} D e_{i}>0 \\
1 \text { for } e_{i}^{T} D e_{i}=0
\end{array} \quad e_{i}^{T}(\widetilde{D-\alpha A}) e_{i}=\left\{\begin{array}{c}
e_{i}^{T}(D-\alpha A) e_{i} \text { for } e_{i}^{T} D e_{i}>0 \\
1-\alpha \text { for } e_{i}^{T} D e_{i}=0
\end{array}\right.\right.
$$

Linear system - reformulated for directed graphs...

The updated linear system for directed graphs:

$$
\Pi \Pi^{\mathrm{T}}(\widetilde{D-\alpha} A) \Pi \Pi^{\mathrm{T}} * \Pi \Pi^{\mathrm{T}} x=\Pi \Pi^{\mathrm{T}} b
$$

- Where $\boldsymbol{b}=\widetilde{\mathbf{D}} *$ ones,
- solved with BiCGStab
- and (right) preconditioner $\boldsymbol{M}=\widetilde{\boldsymbol{D}}$
- produces the desired mean hitting times \boldsymbol{x}, where
- results corresponding to zero-rows are set to $1 /(1-\alpha)$

Tiny example revisited again

Example: Consider a simple two node directed graph with corresponding matrices:

$$
A=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], D=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \widetilde{D}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], D \widetilde{D-\alpha} A=\left[\begin{array}{cc}
1-\alpha & 0 \\
\alpha & 1
\end{array}\right]
$$

If we select node " 2 " as our hitting set, this gives

$$
\Pi \Pi^{\mathrm{T}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \Pi \Pi^{\mathrm{T}}(\widetilde{D-\alpha} A)=\left[\begin{array}{cc}
1-\alpha & 0 \\
0 & 0
\end{array}\right] \text { (row } 2 \text { and col } 2 \text { "zeroed" out) }
$$

The resulting linear system $\Pi^{\mathbf{T}}(\overline{\mathbf{D - \alpha}} \mathbf{A}) * \Pi^{\mathbf{T}} \mathbf{x}=\Pi^{\mathbf{T}} \mathbf{b}$ is

$$
\left[\begin{array}{cc}
1-\alpha & 0 \\
0 & 0
\end{array}\right] *\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Application Requirement: Verification

Solving the same problem with different software/tools

- Research conducted via Matlab/Octave - fast prototyping and testing
- Scale up implementation for large data sets - Grafiki
- Agreement of results essential to confidence in tools

Example: $12 \times 12, n n z=36$

Relative difference of mean ht
CG tol $=10 \mathrm{e}-4, \mathrm{H}=\{4\}$
$-2.72777540692822 e-07$
$-2.72777540692822 e-07$
-2.72777540692822e-07
N/A
-6.1877621860528e-08
$9.04881754882386 \mathrm{e}-08$
8.69025533663561e-08
$-5.48118673616131 e-08$
$2.53207324572656 e-07$
$9.69602156157076 \mathrm{e}-08$
-1.45566037785778e-08
$-5.21284232600952 e-08$

Application Requirement: Deployment

Application research requires deployment of tools to different and unfamiliar compute environments

- Grafiki, through Trilinos, supports MPI builds for distributed computation + threaded and/or accelerator options: Serial, OpenMP, Cuda, Hip (Experimental)

Docker containers available for:

- MPI + (multi) NVIDIA GPU
- MPI + OpenMP
- OpenMP

Spack

- In-progress (MPI + OpenMP)

Build from source

- Requires building dependencies
- BLAS/LAPACK
- Trilinos

Application Requirement: Multiple GPUs

Performance Results: Grafiki Mean Hitting Times

Data set: BrainGraph.mtx
18808797×18808797
Non-zeros (edges): 486315743

System info:

DGX System NVIDIA V100 GPUs NVIDIA driver: 470.199.02

CUDA version: 11.1
Docker CUDA version: 11.2
OpenMPI: 4.1.1

Ongoing and Follow-up Work

- Verification continued
- Larger data sets - subset of Wikipedia
- Increased unification between tool usage
- Software and Research
- Testing on larger graphs
- Improved tool interoperability
- Explore Python interoperability - improved user experience, productivity
- Custom file I/O improvements for specialized customer data formats

[^0]: * "Golub, Gene H.; Van Loan, Charles F. (2013). Matrix Computations (4th ed.). Johns Hopkins University Press. sec. 11.5.2. ISBN 978-1-4214-0794-4."

