
1Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Nathan Ellingwood

Thanks to Jon Berry, Danny Dunlavy, Rich Lehoucq, Mike Eydenberg, Alex Foss, Renee Gooding,
Carolyn Mayer, Derek Tucker, Michael Weylandt Nov. 1, 2023

Grafiki: Trilinos-based Software for
High-Performance Distributed
Graph-based Algorithms

SAND2023-11247C

2

Grafiki Motivation

Questa needs to solve linear systems on HPC systems
• Current focus: Scalable computation of hitting time moments for large scale data

science problems
• Leverage DOE/Sandia experience with numerical linear algebra and performance

portability
Grafiki: Software for high-performance graph-based algorithms
• Built on Trilinos, Sandia/DOE software with distributed linear algebra-based solvers

designed for multi-physics engineering/science problems
• Current computational capabilities include:

• Graph hitting times (today’s focus)
• Spectral clustering (hypergraph support)
• Eigenvector centrality (hypergraph support)

• Hitting time capabilities discussed today based on methods developed by Questa team Rich
Lehoucq, Jon Berry, Danny Dunlavy

3

Brief Background

Hitting time: A random variable describing the number of steps for a
random walk from vertex v to a vertex in subset H of graph G

• Use case - seed set expansion: given a set of “seed” vertices, find others related or
grouped with them

• Applications: Information Retrieval, Social Network Analysis, Neuroscience…

4

Brief Background - Linear System Setup

Graph mean hitting times can be computed by linear system
• Derived from Markov chains applied to graph analysis
• Initial assumption: unweighted, symmetric graph – traversal to any neighbor equally likely

General relationship

𝒙𝒊 = 𝒐𝒏𝒆𝒔 +(
𝒊"𝒋

𝒑𝒊𝒋 𝒙𝒋

• 𝒙𝒊: hitting time starting from node i

• 𝒑𝒊𝒋: transition probability from j to i

• 𝒑𝒊𝒋 ← 𝑨𝒊𝒋/𝒅𝒊: valid based on symmetric,
unweighted graph assumption

Linear system in matrix form:

𝑰 − 𝑫$𝟏𝑨 ∗ 𝒙 = 𝒐𝒏𝒆𝒔
• Non-seed vertices included

• 𝑨: adjacency matrix representing graph

• 𝑫: diagonal matrix of vertex degrees
• 𝒐𝒏𝒆𝒔: vector of 1’s

5

Challenges

Achieve performance-portability for distributed computing and GPU by
addressing challenges from data science such as:

• Laplacian (implicit) operators
• Custom operators to avoid data duplication

• Multiple components
• “Discounting” avoids bookkeeping, data duplication

• Directed, non-symmetric graphs
• Extend data manipulation via composite operators

• Verification and debugging by small-example
• Different sparsity patterns

• Heuristics may require tuning; 2D partitioning

6

Laplacians and Iterative Solvers: CG ↔ PCG

Initial assumptions:
• A is an adjacency matrix for an undirected,

symmetric, connected graph

• D is a diagonal matrix of vertex degrees,
invertible

Laplacian used for linear system:
The normalized Laplacian:

𝑳𝒏𝒐𝒓𝒎 = 𝑰 − 𝑫 ⁄(𝟏 𝟐𝑨𝑫 ⁄(𝟏 𝟐

= 𝑫 ⁄(𝟏 𝟐 𝑫− 𝑨 𝑫 ⁄(𝟏 𝟐

The combinatorial Laplacian:
𝑳 = 𝑫 − 𝑨

Preconditioned Conjugate Gradient
• using combinatorial Laplacian 𝑳, with

• 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑟: 	𝑫

𝑫 − 𝑨 ∗ 𝒙 = 𝒃

Conjugate Gradient (CG)
• using 𝑳𝒏𝒐𝒓𝒎, no preconditioning

𝑫 ⁄(𝟏 𝟐 𝑫− 𝑨 𝑫 ⁄(𝟏 𝟐 ∗ 𝒚 = 𝑫 ⁄(𝟏 𝟐 ∗ 𝒃
𝒚 = 𝑫 ⁄𝟏 𝟐 ∗ 𝒙

Th
es

e
m

et
ho

ds
 y

ie
ld

 e
qu

iv
al

en
t r

es
ul

ts
 fo

r 𝑥
∗

* “Golub, Gene H.; Van Loan, Charles F. (2013). Matrix Computations (4th ed.).
Johns Hopkins University Press. sec. 11.5.2. ISBN 978-1-4214-0794-4.”

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4214-0794-4

7

Hitting time linear system

Given the hitting set H of vertices, we seek to solve the linear system below for mean
hitting times:

𝚷𝐓 𝑫− 𝑨 𝚷 ∗ 0𝒙 = 1𝒃

• 𝚷𝐓: as	left − multiply	operator, removes	rows	corr. to	𝐻	indices	
• 𝚷: as	right − multiply	operator	removes	cols	corr. to	𝐻	indices
• 𝑫 = 𝒅𝒊𝒂𝒈 𝑨 ∗ 𝒐𝒏𝒆𝒔 ; 	𝒓𝒉𝒔: \𝒃 = 𝚷𝐓(𝑫 ∗ 𝒐𝒏𝒆𝒔)	
• _𝒙: mean hitting time moments from vertices of 𝐺\𝐻 to 𝐻

Solving the formulation above requires either
• Explicit creation of the “reshaped” Laplacian, rhs and lhs for each set H, or

• Repeat application of 𝛱, and 𝛱 (recreate for each H) during PCG, or

• Disruptive logic in our mat-mat, mat-vec mult. operations (e.g. added comm.)

8

Tiny example

Example: Consider a simple two node undirected graph
with corresponding matrices:

 𝐴 = 0 1
1 0 , 𝐷 = 1 0

0 1 , L = 1 −1
−1 1

If we select node “1” as our hitting set H, this gives

 Π = 0
1 , Π(= 0 1 , Π(LΠ = 1 (row 1 and col 1 removed)

And the resulting linear system 𝚷𝐓𝑳𝚷 ∗ 0𝒙 = 1𝒃 is

1 ∗ 0𝒙 = 1

12

9

Hitting time linear system - reformulated

An alternative formulation to the hitting time linear system for more
performant computation:

𝚷𝚷𝐓 𝑫− 𝑨 𝚷𝚷𝐓 ∗ 𝚷&𝒙 = 𝚷𝚷𝐓𝒃

• 𝚷𝚷𝐓:	diagonal matrix, projector onto vertices not in H
• 𝐋𝐞𝐟𝐭	𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧: zero	out	corr. rows	to	𝐻	
• 𝐑𝐢𝐠𝐡𝐭	𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧: zero	out	corr. cols	to	𝐻	

• 𝐃 = 𝒅𝒊𝒂𝒈(𝑨 ∗ 𝒐𝒏𝒆𝒔)	
• 𝒃 = 𝑨 ∗ 𝒐𝒏𝒆𝒔	
• 0𝒙: mean hitting time moments from nodes of 𝐺\𝐻 to 𝐻

10

Hitting time linear system - reformulated (cont.)

A refinement to the left-hand side for convenience

𝚷𝚷𝐓 𝑫− 𝑨 𝚷𝚷𝐓 ∗ 𝚷𝚷𝐓𝒙 = 𝚷𝚷𝐓𝒃

We make the identification:

𝚷0𝒙 = 𝚷𝚷𝐓𝒙	𝑤ℎ𝑒𝑟𝑒	𝚷𝚷𝐓𝒙(𝒊) = K0𝒙 𝒊 	𝑓𝑜𝑟	𝒊 ∈ 𝐺\𝐻
𝟎	𝑓𝑜𝑟	𝒊 ∈ 𝐻

• The components of 𝚷*𝒙 in the null space of 𝚷𝚷𝐓 are those corresponding to linear combinations of columns of I
associated with indices of H – we choose 0 for the “free parameters” for the solution to the associated
homogenous equation; that is, we set 𝒙 𝒊 = 0	for	𝒊 ∈ 𝐻

• The components of 𝚷*𝒙 orthogonal to the null space of 𝚷𝚷𝐓 are the uniquely defined components of interest,
the mean hitting times for 𝐺\𝐻

11

Tiny example revisited

Example: Consider a simple two node undirected graph
with corresponding matrices:

 𝐴 = 0 1
1 0 , 𝐷 = 1 0

0 1 , L = 1 −1
−1 1

If we select node “1” as our hitting set, this gives

 ΠΠ(= 0 0
0 1 , ΠΠ(LΠΠ(= 0 0

0 1 (row/col 1 are “zeroed” out)

The resulting linear system𝚷𝚷𝐓𝑳𝚷𝚷𝐓 ∗ 𝚷𝚷𝐓𝒙 = 𝚷𝚷𝐓𝐛 is

0 0
0 1 ∗ 0

𝑥6
= 0

1

12

12

Grafiki: Custom linear operators

Performance considerations:

Avoid double-storage due to explicit construction of Laplacian – do not construct L!
• Use implicit Laplacian operators - requires only matrix-vector and element-wise multiplication or

assignment!
Avoid matrix-matrix operations

• Store diagonal matrix and preconditioner as a vector with custom operators for element-wise operations
– perfectly SIMD, all operations local to proc. owning the row

Avoid matrix “reshaping” for each hitting set (large setup costs, requires distributed
communication)

• Use “hitting set projectors” stored as vectors in place of Π,Π! operators - perfectly SIMD, all operations
local to proc. owning the row

Avoid communication for hitting set updates
• Hitting set updates require only local update by owning proc. to the vector (no distributed

communication needed)

13

Grafiki: Custom linear operators

Example: Demonstrate details of operator implementation

𝐴 =
0 𝑏 𝑎
𝑏 0 𝑐
𝑎 𝑐 0

 D =
𝑎 + 𝑏 0 0
0 𝑏 + 𝑐 0
0 0 𝑎 + 𝑐

𝐿 = 𝐷 − 𝐴 =
𝑎 + 𝑏 −𝑏 −𝑎
−𝑏 𝑏 + 𝑐 −𝑐
−𝑎 −𝑐 𝑎 + 𝑐

Graph adjacency matrix Row sums of graph adjacency matrix

Combinatorial Laplacian (explicit)

14

Grafiki: Operator setup

Compute D, but store as a vector 𝒅 = 𝑨 ∗ 𝒐𝒏𝒆𝒔

𝑎 + 𝑏
𝑏 + 𝑐
𝑎 + 𝑐

=
0 𝑏 𝑎
𝑏 0 𝑐
𝑎 𝑐 0

1
1
1

Create “hitting set” projectors 𝚷𝚷𝑻, but store as vector p
• Element-wise multiply acts like a “mask”, zeros out entries

corr. to H

Example: take as hitting set H the singleton {2}

 𝒑 =
1
0
1

Distributed computing notes:
• Distribution of rows of vector

across proc.’s matches matrix
• Element-wise multiplication:

• Each proc. does work local to
its owned rows

• Element-wise assignment:
• During initialization of “hitting

set mask”, each proc. searches
list of hitting set indices,
assigns 0 if it owns the row
corresponding to the index

𝒅

𝑨 𝒐𝒏𝒆𝒔

15

Grafiki: Apply operator

Pseudo-code for 𝚷𝚷𝐓 𝑫− 𝑨 𝚷𝚷𝐓 ∗ 𝚷𝚷𝐓𝒙	:
 Step 1: x = 𝑝.∗ 𝑥 (element-wise multiplication)
 Step 2: y = 𝑑.∗ 𝑥 (element-wise multiplication)

 Step 3: y = 𝑦 − 𝐴 ∗ 𝑥 (fused spmv with vector subtraction)

 Step 4: y = 𝑝.∗ 𝑦 (element-wise multiplication)

𝑥#
0
𝑥$

←
𝑥#
𝑥%
𝑥$

.∗
1
0
1

𝑦#
𝑦%
𝑦$

←
𝑎 + 𝑏
𝑏 + 𝑐
𝑎 + 𝑐

.∗
𝑥#
0
𝑥$

𝑦#
𝑦%
𝑦$

←
𝑦#
𝑦%
𝑦$

−
0 𝑏 𝑎
𝑏 0 𝑐
𝑎 𝑐 0

∗
𝑥#
0
𝑥$

𝑦#
0
𝑦$

←
1
0
1
.∗

𝑦#
𝑦%
𝑦$

𝑆𝑡𝑒𝑝	1

𝑆𝑡𝑒𝑝	2

𝑆𝑡𝑒𝑝	3

𝑆𝑡𝑒𝑝	4

16

Multiple components

Finding and bookkeeping of multiple components is inefficient and adds costly setup
time

Discounting: instead of incrementing by “1” per ”step” of the simulation, increment by
𝜶: 	𝟎 < 𝜶 ≤ 𝟏

• 𝜶 referred to as the “discount factor”

• Sum of steps results in geometric series with upper bound ⁄1 1 − 𝛼 = ∑-./0 𝛼- (for 0 < 𝛼 < 1)
• “Origins in the relationship between potentials and Markov chains” – Rich Lehoucq

The linear system update is trivial (as is the corresponding operator implementation):

𝚷𝚷𝐓 𝑫− 𝜶𝑨 𝚷𝚷𝐓 ∗ 𝚷𝚷𝐓𝒙 = 𝚷𝚷𝐓𝒃

17

Directed graphs

Directed graphs introduce new complications for the solver:
• Row of zeros: singular coefficient matrix

• D no longer valid as preconditioner

• Asymmetry: Breaks PCG requirements

 Example: Consider the two node directed graph
 and corresponding matrices:

𝐴 = 0 0
1 0 , 𝐷 = 0 0

0 1 , L = 0 0
−1 1 	

 If node “1” is our hitting set, we attain a valid result
 But if we select node “2” as our hitting set, the solver fails

12

18

Directed graphs

To support these added cases we use:

Biconjugate gradient stabilized (BiCGStab)
• Iterative method for solution of nonsymmetric systems
• Available in Matlab (bicgstab) and Trilinos through Belos

A new formulation to the linear system
• Equivalent to previous system for undirected graphs
• Same computational benefits as the previous linear system
• Similar relationship between non-preconditioned use with 𝐿OPQR, and use of 𝐿

with preconditioning

19

Linear system - reformulated for directed graphs

To reformulate the linear system…
Recall: the equations derived from the Markov chain,

𝑰 − 𝑺 ∗ 𝒙 = 𝟏, where 𝑺 is a Markov transition matrix
We set 𝑺 ← 𝐃(𝟏𝐀 under previous assumptions about A

If A has row(s) of zeros (e.g. row i), we set the corresponding row(s) of S as

𝑺 𝒊, 𝒋 = K
𝟏	𝑖𝑓	𝒊 = 𝒋
𝟎	𝑖𝑓	𝒊 ≠ 𝒋	

This motivates defining _𝑫:

𝒆𝒊𝑻_𝑫𝒆𝒊 = `
𝒆𝒊𝑻𝑫𝒆𝒊	𝑓𝑜𝑟	𝒆𝒊𝑻𝑫𝒆𝒊 > 𝟎
𝟏	𝑓𝑜𝑟	𝒆𝒊𝑻𝑫𝒆𝒊 = 𝟎

And the updated operator b𝑫−𝜶𝑨:

𝒆𝒊𝑻 b𝑫−𝜶𝑨 𝒆𝒊 = `
𝒆𝒊𝑻 𝑫− 𝜶𝑨 𝒆𝒊	𝑓𝑜𝑟	𝒆𝒊𝑻𝑫𝒆𝒊 > 𝟎

𝟏 − 𝜶	𝑓𝑜𝑟	𝒆𝒊𝑻𝑫𝒆𝒊 = 𝟎

20

Linear system - reformulated for directed graphs…

The updated linear system for directed graphs:

𝚷𝚷𝐓 *𝑫−𝜶𝑨 𝚷𝚷𝐓 ∗ 𝚷𝚷𝐓𝒙 = 𝚷𝚷𝐓𝒃

• Where 𝒃 = _𝑫 ∗ 𝒐𝒏𝒆𝒔,
• solved with BiCGStab
• and (right) preconditioner 𝑴 = _𝑫
• produces the desired mean hitting times 𝒙, where
• results corresponding to zero-rows are set to ⁄1 1 − 𝛼

21

Tiny example revisited again

Example: Consider a simple two node directed graph
with corresponding matrices:

 𝐴 = 0 0
1 0 , 𝐷 = 0 0

0 1 , _𝐷 = 1 0
0 1 , b𝐷 − 𝛼𝐴 = 1 − 𝛼 0

𝛼 1

If we select node “2” as our hitting set, this gives

 ΠΠS = 1 0
0 0 , ΠΠS b𝐷−𝛼𝐴 = 1 − 𝛼 0

0 0 (row 2 and col 2 “zeroed” out)

The resulting linear system 𝚷𝚷𝐓 b𝐃−𝛂𝐀 ∗ 𝚷𝚷𝐓𝐱 = 𝚷𝚷𝐓𝐛 is

1 − 𝛼 0
0 0 ∗ 𝑥T

0 = 1
0

12

22

Application Requirement: Verification

Solving the same problem with different software/tools
• Research conducted via Matlab/Octave – fast prototyping and testing
• Scale up implementation for large data sets – Grafiki
• Agreement of results essential to confidence in tools

Example: 12 x 12, nnz = 36

Relative difference of mean ht
CG tol = 10e-4, H = {4}

 -2.72777540692822e-07
 -2.72777540692822e-07
 -2.72777540692822e-07

 N/A
 -6.1877621860528e-08
 9.04881754882386e-08
 8.69025533663561e-08
 -5.48118673616131e-08
 2.53207324572656e-07
 9.69602156157076e-08
 -1.45566037785778e-08
 -5.21284232600952e-08

23

Application Requirement: Deployment

Application research requires deployment of tools to different and
unfamiliar compute environments
• Grafiki, through Trilinos, supports MPI builds for distributed computation + threaded

and/or accelerator options: Serial, OpenMP, Cuda, Hip (Experimental)

Docker containers available for:
• MPI + (multi) NVIDIA GPU
• MPI + OpenMP
• OpenMP

Spack
• In-progress (MPI + OpenMP)

Build from source
• Requires building dependencies

• BLAS/LAPACK
• Trilinos

24

Application Requirement: Multiple GPUs

Data set: BrainGraph.mtx
18808797 x 18808797

Non-zeros (edges): 486315743

System info:
DGX System NVIDIA V100 GPUs
NVIDIA driver: 470.199.02

CUDA version: 11.1
Docker CUDA version: 11.2

OpenMPI: 4.1.1 0

5

10

15

20

25

30

35

40

1 2 3 4

Ti
m

e
(s

)

Number of GPUs

Op*x

Op*x Docker

Prec*x (*)

Prec*x Docker

SolveTime

SolverTime Docker

Performance Results: Grafiki Mean Hitting Times

25

Ongoing and Follow-up Work

• Verification continued
• Larger data sets – subset of Wikipedia
• Increased unification between tool usage

• Software and Research
• Testing on larger graphs
• Improved tool interoperability
• Explore Python interoperability – improved user experience, productivity
• Custom file I/O improvements for specialized customer data formats

