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Questa needs to solve linear systems on HPC systems

 Current focus: Scalable computation of hitting time moments for large scale data
science problems

* Leverage DOE/Sandia experience with numerical linear algebra and performance
portability

Grafiki: Software for high-performance graph-based algorithms

* Built on Trilinos, Sandia/DOE software with distributed linear algebra-based solvers
designed for multi-physics engineering/science problems

* Current computational capabilities include:
* Graph hitting times (today’s focus)
e Spectral clustering (hypergraph support)
* Eigenvector centrality (hypergraph support)

* Hitting time capabilities discussed today based on methods developed by Questa team Rich
Lehoucq, Jon Berry, Danny Dunlavy

@ Sandia National Laboratories 2
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Hitting time: A random variable describing the number of steps for a
random walk from vertex v to a vertex in subset H of graph G

* Use case - seed set expansion: given a set of “seed” vertices, find others related or
grouped with them

* Applications: Information Retrieval, Social Network Analysis, Neuroscience...

@ Sandia National Laboratories 3
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Graph mean hitting times can be computed by linear system
* Derived from Markov chains applied to graph analysis

* Initial assumption: unweighted, symmetric graph — traversal to any neighbor equally likely

General relationship Linear system in matrix form:

X;j = ones + z Dij Xj (1 - D‘lA) * X = ones

i#j

L _ _ Non-seed vertices included
* Xx;: hitting time starting from node |

. - o A: adjacency matrix representing graph
* pjj: transition probability fromjto i

_ _ D: diagonal matrix of vertex degrees
* pij < 4;j/d;: valid based on symmetric,

unweighted graph assumption

@ Sandia National Laboratories 4
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Achieve performance-portability for distributed computing and GPU by
addressing challenges from data science such as:

* Laplacian (implicit) operators
* Custom operators to avoid data duplication

* Multiple components
*  “Discounting” avoids bookkeeping, data duplication

* Directed, non-symmetric graphs
* Extend data manipulation via composite operators

e Verification and debugging by small-example

e Different sparsity patterns
* Heuristics may require tuning; 2D partitioning

@ Sandia National Laboratories 5
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Initial assumptions: Preconditioned Conjugate Gradient

* using combinatorial Laplacian L, with
* Preconditioner: D

 Aisan adjacency matrix for an undirected,
symmetric, connected graph

kS
S
5
d
* Dis adiagonal matrix of vertex degrees, LC_,' (D—A)*x=hb
invertible ©
=
]
Laplacian used for linear system: %; Conjugate Gradient (CG)
The normalized Laplacian: 5 * using Lyorm, NO preconditioning
Lnorm =1 — l)_l/zz‘ll)_l/2 % D—l/Z(D . A)D—l/Z xy = D—1/2 + b
=D V2(p - A)D~1/2 S y = DV2 x x
é -
F_.
The combinatorial La p|acia n: * “Golub, Gene H.; Van Loan, Charles F. (2013). Matrix Computations (4th ed.).

Johns Hopkins University Press. sec. 11.5.2. |SBN 978-1-4214-0794-4.”

L=D-A

@ Sandia National Laboratories 6
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Given the hitting set H of vertices, we seek to solve the linear system below for mean
hitting times:

N0 -An+«x=>

MT: as left — multiply operator, removes rows corr. to H indices

IT: as right — multiply operator removes cols corr.to H indices
D = diag(A * ones); rhs:b = I (D * ones)

* X: mean hitting time moments from vertices of G\H to H

Solving the formulation above requires either
* Explicit creation of the “reshaped” Laplacian, rhs and lhs for each set H, or
* Repeat application of I1T and IT (recreate for each H) during PCG, or

e Disruptive logic in our mat-mat, mat-vec mult. operations (e.g. added comm.)

@ Sandia National Laboratories 7
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Example: Consider a simple two node undirected graph @_@
with corresponding matrices:

a=ly ol o=lo dhr=[5 7]

If we select node “1” as our hitting set H, this gives

1= [(1)], N7 =[0 1], OTLI = [1] (row 1 and col 1 removed)
And the resulting linear system ITLII x X = b is

1] *x = [1]

@ Sandia National Laboratories 8
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An alternative formulation to the hitting time linear system for more
performant computation:

nn'(p —ANNn' «nx =MM's

[T diagonal matrix, projector onto vertices not in H
* Left multiplication: zero out corr. rows to H
* Right multiplication: zero out corr. cols to H

D =diag(A = ones)

b =A+*ones

X: mean hitting time moments from nodes of G\H to H

@ Sandia National Laboratories 9
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A refinement to the left-hand side for convenience

nnt'(op —AHnn' «nntx = nmn's

We make the identification:

~ _ T ..~ _ |X() forie G\H
[Ix = IIII" x where Il " x(i) = 0 foricH

« The components of IIX in the null space of IIIT are those corresponding to linear combinations of columns of /
associated with indices of H— we choose 0 for the “free parameters” for the solution to the associated
homogenous equation; that is, we set x(i) = 0 fori € H

* The components of IIX orthogonal to the null space of IIIIT are the uniquely defined components of interest,
the mean hitting times for G\ H

@ Sandia National Laboratories 10
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Example: Consider a simple two node undirected graph @_@
with corresponding matrices:
[0 1 1 o 11 -1
A_[1 OI'D_[O 1]’L_[—1 1]

If we select node “1” as our hitting set, this gives

nmnt = [8 (ﬂ JOnTLon’ = [O (row/col 1 are “zeroed” out)

o 1l

The resulting linear systemIIII LI « I Tx = N Tb is

o 1+[a) =Ll

@ Sandia National Laboratories
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Performance considerations:

Avoid double-storage due to explicit construction of Laplacian — do not construct L!

* Use implicit Laplacian operators - requires only matrix-vector and element-wise multiplication or
assignment!

Avoid matrix-matrix operations

* Store diagonal matrix and preconditioner as a vector with custom operators for element-wise operations
— perfectly SIMD, all operations local to proc. owning the row

Avoid matrix “reshaping” for each hitting set (large setup costs, requires distributed
communication)

« Use “hitting set projectors” stored as vectors in place of I1, [17 operators - perfectly SIMD, all operations
local to proc. owning the row

Avoid communication for hitting set updates

e Hitting set updates require only local update by owning proc. to the vector (no distributed
communication needed)

12
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Example: Demonstrate details of operator implementation

@ Sandia National Laboratories

0O b a a+b 0 0
A=1|b 0 c D = 0 b+c 0
a ¢ 0 0 0 a-+c
Graph adjacency matrix Row sums of graph adjacency matrix
a+b —b —a
L=D—-A=)| -b b+c -—c
—a —C a-+c¢

Combinatorial Laplacian (explicit)

13
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Compute D, but store as avectord = A * ones o _
Distributed computing notes:

p atb . 0 b ad * Distribution of rows of vector
btcl=1b 0 c|1 across proc.’s matches matrix
a+c a c¢ 0111 . T
* Element-wise multiplication:
A ones
e ) : T * Each proc. does work local to
Create “hitting set” projectors IIII", but store as vector p its owned rows
* Element-wise multiply acts like a “mask”, zeros out entries , ,
corr. to H * Element-wise assignment:
Example: take as hitting set H the singleton {2} * During initialization of “hitting
set mask”, each proc. searches
1 list of hitting set indices,
. assigns 0 if it owns the row
p=10 corresponding to the index
1

@ Sandia National Laboratories




X1 X1 1 Y1 Y1 O b a X1
HEERY el o g+ [o)
X3 X3 1 Y3 Y3 a c 0 X3
Step 1 Step 3
V1 a+b X1 Y1 1 Y1
B BB
Y3 a+c X3 Y3 1 Y3
Step 2 Step 4

Pseudo-code for T (D — A)MIT « M Tx :
Step 1: x = p.x x (element-wise multiplication)
Step 2: y = d.* x (element-wise multiplication)
Step3:y =y — A x x (fused spmv with vector subtraction)

Step 4:y = p.x y (element-wise multiplication)

@ Sandia National Laboratories




AAAAAA
P X l(.\cm'n,_\
L | Lonm s e
5 @ S -

YEURS
Yyv <

Finding and bookkeeping of multiple components is inefficient and adds costly setup
time

Discounting: instead of incrementing by “1” per "step” of the simulation, increment by
a:0<ac<l

e «areferred to as the “discount factor”

e Sum of steps results in geometric series with upper bound 1/(1 —a) = Y2, a' (for 0 < a < 1)

* “Origins in the relationship between potentials and Markov chains” — Rich Lehoucq

The linear system update is trivial (as is the corresponding operator implementation):

nnt'(p — AN «M'x = OM'b

@ Sandia National Laboratories 16
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Directed graphs introduce new complications for the solver:

 Row of zeros: singular coefficient matrix
* D no longer valid as preconditioner

* Asymmetry: Breaks PCG requirements
Example: Consider the two node directed graph @_@
and corresponding matrices:

- o=l Yl ¢

If node “1” is our hitting set, we attain a valid result
But if we select node “2” as our hitting set, the solver fails

@ Sandia National Laboratories
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To support these added cases we use:

Biconjugate gradient stabilized (BiCGStab)
* |terative method for solution of nonsymmetric systems
* Available in Matlab (bicgstab) and Trilinos through Belos

A new formulation to the linear system
* Equivalent to previous system for undirected graphs
* Same computational benefits as the previous linear system
* Similar relationship between non-preconditioned use with L,,,,-,, and use of L
with preconditioning

18
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To reformulate the linear system...
Recall: the equations derived from the Markov chain,
(I — S) *x =1, where S is a Markov transition matrix

We set § « D~1A under previous assumptions about A

If A has row(s) of zeros (e.g. row i), we set the corresponding row(s) of S as

SGD ={oir12)

0ifi#]j
This motivates defining D: And the updated operator D — aA:
TH eiTDei for eiTDei >0 T(D/:/A) _ eiT(D —aA)e; for eiTDei >0
eiDe; = T €i A€ = 1— The, = 0
lforeiDei=O aforei e; =

@ Sandia National Laboratories 19
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The updated linear system for directed graphs:

nn' (D —aA)On” «nn'x = NO7h

Where b = D * ones,

solved with BiCGStab

and (right) preconditioner M = D

produces the desired mean hitting times x, where
results corresponding to zero-rows are setto 1/(1 — )

@ Sandia National Laboratories 20
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Example: Consider a simple two node directed graph @—@

with corresponding matrices:
a=[y olo=ly 1=l 3] p=aa=[1 " ]

If we select node “2” as our hitting set, this gives

nnt = [(1) 8] JNT (D —ad) = [1 6 @ 8] (row 2 and col 2 “zeroed” out)
The resulting linear system ITIT (D/—\(xA) « [IIITx = M Tb is
l1—a 0 x11 1
[ 0 0]*[01_[0]

@ Sandia National Laboratories 21




Solving the same problem with different software/tools
* Research conducted via Matlab/Octave — fast prototyping and testing
* Scale up implementation for large data sets — Grafiki
* Agreement of results esseontial to confidence in tools

& Relative difference of mean ht
of o - CG tol = 10e-4, H = {4}
Example: 12 x 12, nnz = 36 T -2.727775406928226-07
al i 5 ‘ f -2.72777540692822¢-07
& -2.72777540692822¢-07
6 o ® ® 4 N/A

-6.1877621860528e-08
9.04881754882386¢e-08
8.69025533663561e-08
-5.48118673616131e-08
2.53207324572656e-07

10

o o ’ 9.69602156157076e-08
12} e ® 1 -1.45566037785778e-08
L . - - . " - -5.21284232600952e-08

@ Sandia National Laboratories 22
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Application research requires deployment of tools to different and
unfamiliar compute environments

e Grafiki, through Trilinos, supports MPI builds for distributed computation + threaded
and/or accelerator options: Serial, OpenMP, Cuda, Hip (Experimental)

Docker containers available for: Spack
* MPI + (multi) NVIDIA GPU * In-progress (MPI + OpenMP)
* MPI+ OpenMP Build from source
* OpenMP

* Requires building dependencies
*  BLAS/LAPACK
* Trilinos

@ Sandia National Laboratories
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Performance Results: Grafiki Mean Hitting Times

Data set: BrainGraph.mtx » —e—Op*x
18808797 x 18808797 > —e—Op*x Docker
Non-zeros (edges): 486315743 30 Prec*x (*)

25 ) —e—Prec*x Docker
System info: ? 20 ' —e—SolveTime
DGX System NVIDIA V100 GPUs a . solverTime Docker

NVIDIA driver: 470.199.02 \
10 \

CUDA version: 11.1 —2

Docker CUDA version: 11.2 >

OpenMPI: 4.1.1 0 ™= —= —— —
1 2 3 4

Number of GPUs

@ Sandia National Laboratories 24
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e Verification continued
* Larger data sets — subset of Wikipedia
* Increased unification between tool usage

e Software and Research
* Testing on larger graphs
* Improved tool interoperability
* Explore Python interoperability — improved user experience, productivity
e Custom file I/O improvements for specialized customer data formats

@ Sandia National Laboratories 25




