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Three useful resources for fusion energy for students:

Gomempororv Physics https://www.cpepphysics.org/

\ Education Project

Princeton Plasma Physics Laboratory
2021 Introduction to Fusion Energy and Plasma Physics Course
https://suli.pppl.gov/2021/course/

Progress toward fusion energy breakeven
and gain as measured against the Lawson
criterion

Wourzel, Hsu, Physics of Plasmas 29, 062103 (2022)



https://suli.pppl.gov/2021/course/
https://www.cpepphysics.org/

Overview of Drekar

Drekar is a finite element based multiphysics code built using Trilinos components
with a strong emphasis on implicit time integration methods and linear solvers

Drekar

Physics

Fluid Dynamics
Electromagnetics

Solids
Magnetohydrodynamics
Generalized Ohm’s Law
Multifluid Plasma

Advection-Diffusion-Reaction

Panzer Discretization + Algorithms

Finite Elements (nodal, edge, face, etc.)
Stabilization (VMS, AFC, etc.)
Time Integration (implicit, explicit, IMEX)

Nonlinear Solvers | NOX

Linear Solvers | Belos

Intrepid?2

Tempus

Preconditioners | Teko, Muelu, Ifpack2

Adjoints + Optimization

Phalanx

Sacado




Motivation

e ITER Fusion conditions:

* Temperature of > 100M deg K ( > 6x Sun core temp.).

* Pulse times of 0(100) - 0(1000) sec. are desired.
(energy confinement times of 0(1) - 0(10) sec.).

* Disruptions can cause

* Loss of vertical positioning control. ITER Tokamak

* Huge thermal energy deposition to the walls, and discharge of very
large electrical currents to surface.

* Huge forces can be generated in first wall & vacuum vessel
structures.

* ITER can sustain only a limited number of significant
disruptions, O(1 - 5).

* Understanding and controlling instabilities/disruptions in . yical Displacement Event (VDE) in ITER
plasma Conﬁnement iS Critical Tokamak Plasma and Wall Geometry (Drekar sim.)




Goal

» Analyze macroscopic plasma 3D behavior/instabilities under ITER conditions.
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* Implicit time integration (overstep fastest time scales/CFL on refined meshes).
 Stabilized FE formulation (resolution, higher-order accuracy, enforcing constraints)
(currently) Single-fluid compressible visco-resistive MHD.

* Newton-Krylov + multiphysics block preconditioners (Highly scalable, efficient and
robust solvers)



A Reduced length-scale/time scale representation; Basic single fluid
Resistive MHD [e.g. 3D H(grad) Variational Multiscale (VMS) Stabilized FE]

Resistive MHD Model in Conservative Form

d(pv

Sound wave off
diagonal coupling, and
nearly incompressible

flow limit (V - v ~ Oy

Alfven wave strong
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Heterogeneous Multiphysics: 3D implicit unstructured FE visco-resistive MHD in ITER geometry
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Discretization

Finite element discretization (Galerkin terms)
Find U = [p,m,T,B,¢]7 € U such that p=pon I}, m=mon IR, T=Ton 'L, B=B onI'B,
¢ =1 onTY, and
AW, U)=F(W) VW =[g,w,0,C,s|T eV,
where
A(W,U) = (g,0:p) — (Vg, pu)
+ (w,8:pu) — (Vw, pu®@u) — (V- w,p+ 35:(V - ) + (Vw, - (Vu+ (Vu)")) — (w,j x B)

+(60,8,T) + (6,u-VT) + g(e,:r(v ‘) + (V6,q) (a,b) — /Q ab d©

+(C,8B) —(VC,u@B-Baw) +(VC,% (VB-(VB)")) - (V-C,y) (a,b):/na-bdQ

+ (s, V- B), <A,B>:/A:Bd§z
Q

Deficiencies of Galerkin Weak Form:
* Equal-order interpolation have stability problems for saddle point prbs. (LBB condition, see .e.g. Gunzburger 1989)
* Induction —div B = 0; Lagrange multiplier coupling (B, 7))
* Strong guide field (large B) produces an incompressible flow limit type response
and a saddle point like structure (e.g. Stokes-like behavior for (pu, p))

* Strong convective transport and large unresolved gradients can produce unphysical spatial oscillations (internal / boundary layers).

* For unresolved high-wavenumber signals aliasing of energy into lower-wavenumber resolved components



Brief Outline Following Variational Multiscale (VMS) Approach
VMS: T.J.R Hughes et. al.; & VMS MHD: Codina et. al., JS et. al.

Upwinding and saddle point stabilization

Let us split the solution and test spaces in resolved and unresolved scales, i.e.,

A(Wh, U, + U/) = .F(Wh)

YWy, eV

U=U,+U" andV =V}, + V' thus we have

AW U F Uy =F(W—v-We—> U’ notresolved, modeled by U’ ~ —7PR(U")

VMS + additional optional DCO terms are included for enhanced stability

l.e. sub-grid / unresolved scales driven by residual
resolved scales of strong from PDEs, variationally
consistent

A(W4, Uy +U') = AWy, Up) — Z ((Van, pru’ +unp’) h
KeTs
+ (Vwp, pu’ Q up, + p'up @ up)x + (V- wi, 0 )k VMS
+ (VGh, uhT )K B
+ (VCh,uh QB —B' ® uh)K + (V . Ch;w,)K
+ (Vsh,B')K
+ (Van, vE Von)k ﬁF DCO LLF [density]
+ (VWh, 57 (Vun + (Vun) )k + (Vwi, 1, Von ® un)x = DCO R(s) [momentum]
C, o
+ 5 (wah b-V0,b-VT)x _I~ b DCO [temperature]

First order cG finite elements for pp, my, B, d)h and second order finite elements T},.

Bonilla, S, Tang, Crockatt, Ohm, Phillips, Pawlowski, Conde, Beznosov, On a Fully-implicit VMS-stabilized FE Formulation for Low Mach Number Compressible Resistive MHD

with Application to MCF, Comput. Methods Appl. Mech. Engrg. 2023

S, Pawlowski, Cyr, Tuminaro, Chacon, Weber, Scalable Implicit Incompressible Resistive MHD with Stabilized FE and Fully-coupled Newton-Krylov-AMG, Comput. Methods

Appl. Mech. Engrg. 304, 1-25, 2016



Preliminary Results



Vertical displacement events (VDEs) are major disruption events occurring
in tokamaks when vertical stability control is lost.

These events cause large currents to flow in the vessel and other adjacent metallic structures.

Precursor Thermal quench Current quench
A . —

r N N

Disruption ¢ >
Currents induced in walls ¢ '
Vertical displacement event & >
Runaway electrons >

1. Cold VDE, Thermal Quench - a fast internal energy loss (i.e. Temperature drop)
1. Initial equilibrium force balance is lost: (J x B)y+ # (VP)o+
2. Loss of vertical position control
2. Temperature drop => resistivity increases => plasma current drops + ohmic to runaway electron current conversion.

3. Plasma current drop, new sequence of quasi-steady “equilibriums” => magnetic field rearrangement. i.e. VDE

4. VDE => large halo currents produced in walls and large EM forces



Vertical Displacement Event (VDE) Il
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Internal kink

* Initial equilibrium with g profile < 0.9 (very unstable)
* Introduced (1,1) perturbation and let evolve in time Return map of B to

Poloidal plane:
Poincare Plot t=8498.214007

(1,1) leads to sawtooth crash with island growth « B.:cST . K, 11075
(2,1) is excited leading to stochastic magnetic field . no . 1020 . k1073
- breakdown of magnetic surfaces and a disruption. .« Sp: 10%- 10° « v:1075 2
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Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- Diagonal Physics and/or
Disparate Discretizations and Scalable Multigrid to play well together

w_on oo _on
o oz’ ot Oz

Semi-discrete in time (e.g. BE): Semi-discrete in time:
Eliminate variable to parabolic form Approximate Block Factorizations & Schur-complements:
8vn+1 8un+1 [ I —Ath u”+1 . u” —Ath’Un
un-l-l ="+ At - Un—l-l =" L At o _—Ath I ,Un+1 I Ath’U/n
R N i (D, U]_[1 UDy'|[Di-UDy'L 0 I 0
el NP ACRA L Dy| =0 I 0 Dy || Dy'L I
At Ox? ox )
The resulting equation The Schur complement is then
(I — ALy )u Tt = Fn D, —UD;'L = (I - A?*C,C,) ~(I — At*L,,)

Recall: This is motivating how we develop preconditioners, not for developing solvers.
The NK method still seeks the solution to the original nonlinear/linear system residual!

[w/ L. Chacon (LANL) ]



[Fns — [Fplh Fp]a Fg, Ly, FT]

Block Jacobi
-Fns Z CT- -
Y Fg Bg’
Cns BB I-r
At Z7 Fr




[Fns — [Fplh Fp]a Fg, Ly, FT]

Block Jacobi
[FnS7 FB7 LI’] [FT]
Operator Splitting AMG

F.. Z -1
Y Fg Bg'

Cns BB I-r

) [Fr]~]




[Fns — [Fplh Fp]a Fg, Ly, FT]

Block Jacobi
[Fn57 FB7 Lr] [FT]
Operator Splitting AMG
[F87 Lr] [FB7 Fns]
LU Decomp. + SIMPLEC LU Decomp. + SIMPLEC

Frs »Z | | -
Y/FB FB_l Fg BBT
| Cns I BB I-r

2x2 critical implicit Stiff Alfven wave coupling 2x2 Saddle point system for (B,r)




[Fns — [FpU7 Fp]a FB7 Lr7 FT]
Block Jacobi
[Fn57 FB7 Lr] [FT]
Operator Splitting AMG
[F87 Lr] [FB7 Fns]
LU Decomp. + SIMPLEC LU Decomp. + SIMPLEC
[Fg] [51] [Smag] [Fns]
AMG AMG AMG LU Decomp. + SIMPLEC

| T F.. Z 1 |
FB BBT FB 1 Smag _Y Fns_l I
S —Bg | | |

S, := L, — Bg(absrowsum(Fg))~ ' Bg T, Smag = FB — Y(absrowsum(F,))~1 Z

F,, B? ]

F,, = pU,p
[Bp,pu F,



[Fns — [Fplh Fp]a Fg, Ly, FT]

Block Jacobi
[Fn57 FB7 Lr] [FT]
Operator Splitting AMG
[F87 Lr] [FB7 Fns]
LU Decomp. + SIMPLEC LU Decomp. + SIMPLEC
[Fg] 5] [Smag] [Fns]
AMG AMG AMG LU Decomp. + SIMPLEC
[Ful [50]
AMG AMG
ST
Fns ~ Mns = [Fpu Bpu,p]
SP




[Fns — [Fplh Fp]a FB7 Lra FT]

Block Jacobi
[Fn57 F87 LI’] [FT]
Operator Splitting AMG
[FB7 Lr] [F87 Fns]
LU Decomp. + SIMPLEC LU Decomp. + SIMPLEC
B [5:] [Prmac] Fus = [Fpu, Fy
MG AMG AMG LU Decomp. + SIMPLEC
/ ] S,
(B,r) saddle AMG AMG
point problem |
for V- B =0 Nearly incompressible flow
saddle point problem
Stiff Alfven

Wave Coupling

V-ux0




Speedup

Drekar Strong Scaling Results 3D ITER VDE

Strong scaling unperturbed initial equilibrium on coarse mesh with S = 1e4.
To 250 global Alfven times. 72 cores = 4608 cores (64x increase).
Coarse Mesh 0: 347K elements, 7.2K poloidal x 48 toroidal

Constant time-step size dt = 2
Max CFL, ~ 750, CFL, ~3.2

Drekar Strong Scaling:
36 cores (maximum) used per node

Drekar Strong Scaling:
36 cores (maximum) used per node

16 p 2 Drekar Strong Scaling: ITER Coarse Mesh 0 (eta = 10%)
I 50 ¢
=|deal o as
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3 £35 F
0.5 5 ;
s E‘ <|deal §30 | §
[ 2 o0} § —\/\’—-”
£ <-Drekar 82 1
< L |
Q s 16x cores 1
5 0125 | § s |
- 515 F < >
S} 64x 1
0.0625 | §10 !
S5} < ' g
1 i M '
72 288 1152 0.03125 ' ' 0 ) ' '
72 288 1152 72 288 1152 4608

Number of Cores Number of Cores Number of Cores



Drekar Weak scaling Study 3D ITER VDE

1000

100

Work

10

Drekar Weak Scaling: ITER VDE Problem
to 50 global Alfven times for S = 1E4, 1E7

64x unknowns, cores

< >
——_"‘
e == e = = = = = - r— —— = =
192 nodes,
3 nodes, 24 nodes, 6912 cores

108 cores SM

G

Linear Iterations per Newton step S = 1E4
Time per Time-step w/10 S = 1E4 (sec.)
-=-Linear Iterations per Newton step S = 1E7

- Time per Time-step w/10 S = 1E7 (sec.)

1 2
1.E+06

mesh @. : 347K elements,
mesh 1. : 2.77M elements,

1.E+07 1.E+08 1.E+09
Number of Unknowns

7.2K poloidal x 48 toroidal, dt ~ 1.2; 108 cores on ghost
28.8K poloidal x 96 toroidal, dt ~ 0.55; 864 cores on ghost

mesh 2. : 22.2M elements,115.2K poloidal x 192 toroidal, dt ~ 0.25; 6912 cores on ghost

Unstructured
mesh sequence

To 50 global Alfven times
Max CFL, =400, CFL, =2

Prn=0.1,Prr=1



Lundquist Number scaling, coarse mesh 0.5
to 25 global Alfven times.

(Pr,, =10, Pry = 1i.e. both momentum and thermal diffusivities the same, scale 10x resistivity )

Scaling of Iterative Solver with Lundquist Number for VDE

-<-Time per time-step (sec.)

Linear Iterations / Newton Step
-<-Avg. Newton Step per Stage /
100 |

f Mesh 0.5:
O 1.28M elements, 10K
= poloidal x 128

10 ¢ toroidal, 1120 ARM

" cores
/
To 25 global Alfven times
1 | O T T T T O O T T | I O T 1T 1 I T T I T I 00 77 S N 7T T | B W T T I W)

Max CFL, = 400, CFL, =2
1.e+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 dt~ 1.0

Lundquist Number (based on a,)
mesh 0.5: 1.28M elements, 1120 ARM cores



Time-step Size scaling for S = 10/

Coarse meshO

Scaling of Iterative Solver with Time-step Size at S = 107

250
Linear Iterations / Newton Step
~Time per time-step (sec.)
200 @dt~4a4
CFL, = 1500
CFL,=2.0
150
g L]
g 100 I
50 | |
0 1 L l i L " PR " I ! L J
0 1 2 3 4 5

Time-step Size (global Alfven time)

mesh 0: 347K elements, 1120 ARM cores

Scaling of Total CPU Time with Time-step Size at S = 107

14000
~ | ~Total CPUTime |
S 12000
8
N
o 10000 @dt~a4
E CFL, = 1500
i= 8000 CFL,=2.0
D
6000
S
—
§ 4000
= 2000
0
0 1 2 3 4 5

mesh 0: 347K elements, 1120 ARM cores Time'Step Size (gIObaI Alfven time)

To 100 global Alfven times



Conclusions

Developed scalable fully implicit low Mach compressible visco-resistive MHD solver.
— Stabilized FE formulation - definite linear system and solvability (demonstated numerically)
— Approximate block factorization - scalable treatment of multiphysics equation coupling.

— Scalable AMG solves - efficient scalable sub-block preconditioning.

Demonstrated scalability (strong and weak), Lundquist number robustness, promising initial
efficiency for longer-time scale simulations.

Proof-of-principle numerical experiments.
— Cold VDE.

= (1,1) internal kink mode.

Future work

— Further V&V benchmarks.

— Extension to two temperature models (T;, Te).
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