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from http://www.climate.be

• Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for 

sea-level rise in next decades to centuries.

• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity. 

• A critical step in ice-sheet modeling is to estimate the unknown or poorly known parameters (e.g. 

basal friction, bed topography) and the initial thermo-mechanical state of  the ice - Initialization

Brief Motivation an basic physics



ice velocity

gravit. acceleration

Model: Ice velocity equations

In this work we use a simplification of  Stokes equations, called First Order equations, obtained 

by scaling arguments given the shallow nature of  the ice sheets and using hydrostatic pressure.

Stokes equations:

Stress tensor:

Ice viscosity (dependent on temperature): 

Modeled surface ice speed



Model: Ice velocity equations

bed

Stokes equations:

Sliding boundary condition at ice bed:

Free slip:

No slip:
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Heat equation (for cold ice):

conductivity
dissipation

heating

geothermal 

heat flux
melting

rate

frictional 

heating

temperature 

flux

heat capacity

Boundary condition at the ice bed 

(includes melting and refreezing):

In this work we use a enthalpy formulation that accounts for temperate ice as well.

Model: Temperature equation

[1] A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter, Journal of Glaciology, 2012

[2] J. Hewitt and C. Schoof, The Cryosphere, 2017

modeled temperature



Software: MPAS-Albany Land Ice model (MALI)7

MALI relies on Trilinos for achieving performance portability through Kokkos programming 

model. And for providing large-scale PDE constrained optimization capabilities.

References:
1. Watkins et al., IJHPCA 2023

2. Liegeois, Perego, Hartland, J. Comput. Appl., 2023

3. Heinlein, Perego, Rajamanickam, SISC, 2022 

4. Hoffman et al. GMD, 2018

5. Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.

6. Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015

7. Perego, Price, Stadler, JGR, 2014

ALGORITHM SOFTWARE TOOLS

Thickness evolution / Temperature

Finite Volumes on Voronoi meshes

MPAS (Model for Prediction 

Across Scales)

Velocity/ SS Enthalpy solvers:
Finite Elements on prisms 

Albany

Optimization ROL

Nonlinear solver (Newton method) NOX

Krylov linear solvers/Prec Belos/MueLu, Belos/FROSch

Automatic differentiation Sacado

FE mesh

(vertically extruded)



8

Goal: Find the initial/present-day thermo-mechanical state of  the ice sheet and estimate the 

unknown/poorly known model parameters, by matching observations

Ice sheet initialization

min
𝑝

𝒥 𝑝, 𝑢 = න
Ω

|𝑢 − 𝑢𝑜𝑏𝑠|
2

𝜎2
+ℛ(𝑝)

Approach: PDE-constrained optimization

Find basal friction coefficient 𝛽 = exp(𝑝) that minimizes 

the mismatch with surface velocity:

Subject to the coupled velocity/temperature problem (constraint).

The constraint maps 𝑝 → 𝑢(𝑝). unknown sliding

parameter 𝛽 = exp(𝑝)

ℛ 𝑝 = 𝛼0 𝑝
2 + 𝛼1 ∇𝑝

2Typical regularization term:
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observed ice speed [yr/m] modeled basal friction [kPa yr/m]modeled ice speed [yr/m] modeled temperature [K]

Thermo-mechanical initialization of Greenland ice sheet

Variable resolution 1-10km mesh, 300K parameters, 14M unknowns. Initialization: ~10 hours on 2k nodes on NERSC Cori (Haswell) 

The optimization is constrained by the coupled velocity-temperature solvers. As a byproduct of  the optimization we get an 

initial temperature field that is consistent with the velocity
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Numerical Optimization approach:

• Reduced-space approach (objective functional is considered a function of  the parameter 

only, with the solution computed by solving the constraint for any given parameter) 

𝒥 𝑝 = 𝒥 𝑝, 𝑢(𝑝)

• Trust Region method (Lin-Moré), using truncated CG for solving the quadratic 

subproblem. Requires computation of  reduced gradient (𝜕𝑝𝒥, first total derivative of  𝒥) 

and reduced Hessian (𝜕𝑝𝑝𝒥, second total derivative of  𝒥) to create a quadratic 

approximation of  the objective 𝒥.

• All first and second order derivatives are computed using Automatic Differentiation and 

adjoints.

Ice sheet initialization



11 Ice sheet initialization
Hessian-vector product computations using automatic differentiation

Hessian of  residual 𝒇 dotted with the 

Lagrange multiplier 𝝀 in the direction 𝒗:

𝜕𝒖𝒑(𝝀
𝑇𝒇(𝒖, 𝒑)) 𝒗,𝜕𝒖𝒖(𝝀

𝑇𝒇(𝒖, 𝒑)) 𝒗,

𝜕𝒑𝒑(𝝀
𝑇𝒇(𝒖, 𝒑)) 𝒗𝜕𝒑𝒖(𝝀

𝑇𝒇(𝒖, 𝒑)) 𝒗,

Computed w/ automatic differentiation, 

differentiating twice, based on the formula:
𝜕𝒑𝒑 𝒥 𝒑 𝒗 = 𝜕𝑟 𝜕𝒑 𝒥 𝒑 + 𝑟 𝒗 ቚ

𝑟=0

Trust Region optimization methods with Krylov solvers require Hessian mat-vec products:

value Dx(0) Dx(1) Dx(2) …

value .value.value .Dx(0).value .Dx(1).value .Dx(2).value …

Dx(0) .value.Dx(0) .Dx(0).Dx(0) .Dx(1).Dx(0) .Dx(2).Dx(0) …

The Hessian-vector product is evaluated using nested Sacado Forward automatic differentiation types.

Any scalar value that implicitly depends on 𝒖 or 𝒑 is now a 2D array of  data:



12 Ice sheet initialization
Partial Hessian reconstruction

It is sometimes convenient to explicitly compute the Hessian matrix. 

This is the case when the Hessian is sparse with a known pattern (e.g. for a gradient squared regularization, 

the Hessian of  regularization term is a Stiffness matrix). 

In this case, we can reconstruct the matrix performing a small number of  matrix-vector products.  

This is achieved using coloring and seeding schemes.

A. H. Gebremedhin, F. Manne, A. Pothen, What Color Is Your Jacobian? 

Graph Coloring for Computing Derivatives, SIAM Review, 2005

In order to reconstruct a matrix representation of  

the partial Hessian of  the response with respect to 

a nodal parameter, we:

1. Precompute the graph of  the partial Hessian 

based on the finite element mesh,

2. Color the graph using Zoltan2,

3. Apply one Hessian-vector product per color,

4. Reconstruct the partial Hessian.

Coloring and seedling implemented by E. Phipps 

within ATDM project
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Ice sheet initialization: PDE constrained optimization

Optimization loop, O(100) iterations

Value of objective ( 𝒥 ): 

(state solve)

Reduced Gradient (𝜕𝑝𝒥): Quadratic subproblem:

(ℋ𝛿𝑝 = −𝜕𝑝𝒥, ℋ = 𝜕𝑝𝑝𝒥 ) 

Newton loop O(10) iters Truncated CG loop, O(20) iters

Linear solve

Adjoint solve

Adjoint solve 1

Adjoint solve 2

Reduced Hessian action:

Data from a relatively simple optimization (Humboldt glacier on a coarse mesh): 

# state solves: 116

# reduced gradients: 98

# reduced Hessian: 1568

# total linear solves (including adjoints):  3821
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Ice sheet initialization: PDE constrained optimization

 Cost is often dominated by evaluation of  reduced Hessian

(and in particular by the assembly phase)

Often reduces the number of  

optimization iterations.

Particularly effective when using 

nonuniform meshes

Improves convergence of  CG solver 

for the subproblem

Avoids expensive computation of  Hessians 

but it can badly affect convergence of  the 

optimization  method

Possible strategies to reduce cost:

• Change the dot-product used to define the gradient 𝒢, 

defined by 𝜕𝑝𝒥 𝑣 = 𝒢, 𝑣 .

Instead of  𝑢, 𝑣 𝑙2 = 𝑢𝑡𝑣 , use 𝑢, 𝑣 𝐿2 = 𝑢𝑡𝑀𝑣. 

Here 𝑀 is the lumped mass matrix.

Hence, 𝒢 ≔ 𝑀−1 𝜕𝑝𝒥.

• Find preconditioner for the reduced Hessian. Possibilities:

• Use a low-rank approximation of  the reduced 

Hessian (e.g., BFGS) as preconditioner,

• Use 𝜕𝑝𝑝ℛ 𝑝 to approximate reduced hessian (e.g. to 

initialize BFGS)

• Replace Hessian with low-rank approximation (e.g. BFGS)
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Ice sheet initialization: PDE constrained optimization

 Cost is often dominated by evaluation of  reduced Hessian

(and in particular by the assembly phase)

Problem: Optimization to initialize Humboldt glacier

Ice velocity depends on friction parameter. Ice 

temperature held constant.

Possible strategies to reduce cost:

• Change the dot-product used to define the gradient 𝒢, 

defined by 𝜕𝑝𝒥 𝑣 = 𝒢, 𝑣 .

Instead of  𝑢, 𝑣 𝑙2 = 𝑢𝑡𝑣 , use 𝑢, 𝑣 𝐿2 = 𝑢𝑡𝑀𝑣. 

Here 𝑀 is the lumped mass matrix.

Hence, 𝒢 ≔ 𝑀−1 𝜕𝑝𝒥.

• Find preconditioner for the reduced Hessian. Possibilities:

• Use a low-rank approximation of  the reduced 

Hessian (e.g., BFGS) as preconditioner,

• Use 𝜕𝑝𝑝ℛ 𝑝 to approximate reduced hessian (e.g. to 

initialize BFGS)

• Replace Hessian with low-rank approximation (e.g. BFGS)
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Ice sheet initialization: PDE constrained optimization

 Cost is often dominated by evaluation of  reduced Hessian

(and in particular by the assembly phase)

Problem: Optimization to initialize Humboldt glacier

Ice velocity depends on friction parameter. Ice 

temperature held constant.

Possible strategies to reduce cost:

• Change the dot-product used to define the gradient 𝒢, 

defined by 𝜕𝑝𝒥 𝑣 = 𝒢, 𝑣 .

Instead of  𝑢, 𝑣 𝑙2 = 𝑢𝑡𝑣 , use 𝑢, 𝑣 𝐿2 = 𝑢𝑡𝑀𝑣. 

Here 𝑀 is the lumped mass matrix.

Hence, 𝒢 ≔ 𝑀−1 𝜕𝑝𝒥.

• Find preconditioner for the reduced Hessian. Possibilities:

• Use a low-rank approximation of  the reduced 

Hessian (e.g., BFGS) as preconditioner,

• Use 𝜕𝑝𝑝ℛ 𝑝 to approximate reduced hessian (e.g. to 

initialize BFGS)

• Replace Hessian with low-rank approximation (e.g. BFGS)
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Ice sheet initialization: PDE constrained optimization
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 Cost is often dominated by evaluation of  reduced Hessian

(and in particular by the assembly phase)

Problem: Optimization to initialize Humboldt glacier

Ice velocity depends on friction parameter. Ice 

temperature held constant.
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Possible strategies to reduce cost:

• Change the dot-product used to define the gradient 𝒢, 

defined by 𝜕𝑝𝒥 𝑣 = 𝒢, 𝑣 .

Instead of  𝑢, 𝑣 𝑙2 = 𝑢𝑡𝑣 , use 𝑢, 𝑣 𝐿2 = 𝑢𝑡𝑀𝑣. 

Here 𝑀 is the lumped mass matrix.

Hence, 𝒢 ≔ 𝑀−1 𝜕𝑝𝒥.

• Find preconditioner for the reduced Hessian. Possibilities:

• Use a low-rank approximation of  the reduced 

Hessian (e.g., BFGS) as preconditioner,

• Use 𝜕𝑝𝑝ℛ 𝑝 to approximate reduced hessian (e.g. to 

initialize BFGS)

• Replace Hessian with low-rank approximation (e.g. BFGS)
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Final considerations

• Initialization via PDE-constrained optimization requires a large number of  linear solves and 

computation of  derivatives

• The cost of  optimization with Trust Region method is in large part dominated by assembling the 

terms needed for computing the reduced Hessian

• Approaches that limit the number of  reduced Hessian evaluations, like low-rank preconditioners, 

significantly improve performance

• The high assembly cost of  computing Hessian derivatives should be greatly reduced on GPUs.


